CN205983285U - 一种自学习光伏最大功率点跟踪装置 - Google Patents

一种自学习光伏最大功率点跟踪装置 Download PDF

Info

Publication number
CN205983285U
CN205983285U CN201620789828.4U CN201620789828U CN205983285U CN 205983285 U CN205983285 U CN 205983285U CN 201620789828 U CN201620789828 U CN 201620789828U CN 205983285 U CN205983285 U CN 205983285U
Authority
CN
China
Prior art keywords
photovoltaic array
diode
super capacitor
photovoltaic
power point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201620789828.4U
Other languages
English (en)
Inventor
谢从珍
胡江华
刘智健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201620789828.4U priority Critical patent/CN205983285U/zh
Application granted granted Critical
Publication of CN205983285U publication Critical patent/CN205983285U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型公开了一种自学***,控制可控开关的开和断。本实用新型通过控制开关闭和合,来控制超级电容的充、放电,控制光伏阵列两端电压使其追踪最大功率对应的电压,最终到达输出功率最大。

Description

一种自学习光伏最大功率点跟踪装置
技术领域
本实用新型涉及太阳能最大功率跟踪领域,特别涉及一种自学习光伏最大功率点跟踪装置。
背景技术
太阳能作为一种清洁能源已经越来越多的应用于各个领域,因此提高太阳能发电效率一直是人们研究的方向,最大功率点跟踪(MPPT)控制是提高太阳能输出效率的有效手段,目前一些机构或科研工作者提出了一些最大功率跟踪方法,如恒电压跟踪、扰动观察法、电导增量法等,其中恒电压跟踪步长对控制精度和速度影响较大,对外界环境变化的响应能力较差,且没有考虑温度变化对输出功率的影响,只使用于光照和温度变化较小的环境;扰动观察法则当外界环境快速变化***很可能会发生误判;电导增量法则在步长和阈值的选择上存在一定的困难。虽然一些学者有提出改进了的扰动观察法或电导增量法或基于人工智能的MPPT算法等,能够克服上述一些问题,但是改进后的最大功率跟踪算法及其电路相对复杂,本实用新型提出的一种基于环境适应性自学习光伏最大功率点跟踪装置及方法不仅能克服此类问题,而且方法及控制电路简单。
实用新型内容
本实用新型为了克服现有技术存在的缺点与不足,提供一种基于环境适应性自学习光伏最大功率点跟踪装置及方法。
本实用新型通过下述技术方案实现:
一种自学***,控制可控开关的开和断。
进一步地,所述调节电阻的电阻值R满足:
R<=V2 M/PMPP, (1)
其中PMPP为所有情况下的最大功率,VM为PMPP所对应的电压。
进一步地,所述超级电容3的电容量C满足:
对所述二极管、超级电容和调节电阻的公共节点由基尔霍夫定律得到:
IC=I-SIR
其中I为光伏阵列干路电流(流过二极管的电流),IR为流过调节电阻的电流,IC为流经超级电容的电流,IR=V/R;S=1,0分别对应可控开关断开和闭合。
进一步地,所述的控制装置采用单片机。
在一个采样时间Δt内,由式(1)和式(2)可得光伏阵列两端电压V的变化量ΔV可以表示为:ΔV=(I-SIR)C·Δt,当S=0时, ΔV=IC·Δt>0,电容被充电,V增加;当S=1时,ΔV=(I-IR)C·Δt,在本实用新型中选取较小的调节电阻R,使得R<=V2 M/PMPP,目的是确保I<IR,那么ΔV<0,此种情况下超级电容是对调节电阻R放电的,V减小。简而言之S=0时V增大,S=1时V减小。
相比现有技术,本实用新型的有益效果包括:
1、不仅在正常的情况能够实现最大功率跟踪,而且环境(光照和温度)快速变化或突变***也能快速实现跟踪,且响应速度很快。
2、算法简洁,电路拓扑简单。
3、算法中除了采样时间没有其他待设参数,方便移植和商业量产。
附图说明
图1是基于环境适应性自学习光伏MPPT***框图。
图2是基于环境适应性自学习光伏MPPT方法控制流程图。
图3是不同环境下光伏输出功率和电压图,其中,图3a、图3b分别展示了在不同辐照度和温度时,PV板输出功率PPV及其对应电压VPV的示意图。
图4为环境(辐照度和温度)突变方式图,其中,图4a、图4b分别为辐照度Ir和温度T的变化(突变)方式示意图。
图5为环境突变下光伏输出功率和电压图,其中,图5a、图5b分别展示了在Ir和T如图4a、4b输入时,光伏板输出功率PPV和电压VPV的结果示意图。
图中所示:1‐光伏阵列,2‐二极管,3‐超级电容,4‐可控开关, 5‐调节电阻,6‐采集测量装置,7‐控制装置。
具体实施方式
下面结合实施例及附图对本实用新型作进一步详细的描述,但本实用新型的实施方式不限于此。
实施例
如图1所示,一种自学习光伏最大功率点跟踪装置,包括:光伏阵列1、二极管2、超级电容3、可控开关4、调节电阻5、采集测量装置6、控制装置7。
所述光伏阵列1、二极管2、超级电容3、可控开关4、调节电阻5依次相连;
所述光伏阵列1,其发出的功率是目标控制对象;
所述二极管2,用于保护光伏阵列1;
所述调节电阻5,满足R<=V2 M/PMPP,其中PMPP为所有情况下的最大功率,VM为PMPP所对应的电压;
假设所述二极管2为理想二极管则光伏阵列1两端电压V和超级电容3两端电压相等;
所述采集测量装置6,用于测量光伏阵列1干路电流I、光伏阵列1的两端电压V、光照强度Ir、光伏阵列表面温度T;
所述控制装置7,输出高低电平,控制可控开关4开和断;
对所述超级电容3有:
对所述二极管2、超级电容3和调节电阻5的公共节点由基尔霍 夫定律:
IC=I-SIR (2)
其中I为光伏阵列1干路电流(流过二极管2的电流)IR流过调节电阻5的电流,IR=V/R;S=1,0分别对应可控开关4断开和闭合。
所述的控制装置7采用单片机。
在一个采样时间Δt内,由式(1)和式(2)可得光伏阵列1两端电压V的变化量ΔV可以表示为:ΔV=(I-SIR)C·Δt,当S=0时,ΔV=IC·Δt>0,超级电容C3被充电,V增加;当S=1时,ΔV=(I-IR)C·Δt,在本实用新型中选取较小的调节电阻5,使得R<=V2 M/PMPP,目的是确保I<IR,那么ΔV<0,此种情况下超级电容3是对调节电阻5放电的,V减小。简而言之S=0时V增大,S=1时V减小。
如图2所示,一种基于环境适应性自学习光伏最大功率点跟踪方法,包括如下步骤:
第一步:初始化,设置辅助矩阵PM_TEMP和VM_TEMP(初始值为0),用来存储不同温度和光照度下PV板MPP,如表1所示,温度和光照度被划分足够多份,所以认为其对应的相邻区间光照度和温度近似不变;
表1:不同环境下MPP查询表
第二步:采集测量装置6采样Ir、T、I和V,控制装置7检测Ir和T落在相应的PM_TEMP和PM_TEMP,并计算P=I*V;
第三步:判断P>=PM_TEMP是否为真,为真,则执行第四步;否则,执行第五步;
第四步:把P和V的值分别赋值给相应的PM_TEMP和VM_TEMP,并保持可控开关4状态不变;
第五步:判断V>VM_TEMP是否为真,为真,则执行第六步,否则执行第七步;
第六步:闭合可控开关4,经过一个采样时间,返回第二步;
第七步:断开可控开关4,经过一个采样时间,返回第二步;
具体而言,所述第四步中PM_TEMP和VM_TEMP被赋值,认为光伏阵列输出的功率在靠近最大功率,保持可控开关4状态不变,是保持这种靠近的趋势;
具体而言,第六步和第七步中闭合可控开关4和断开可控开关4,是使得光伏阵列输出电压V靠近VM_TEMP,而VM_TEMP是在靠近VM,所以最终V靠近VM
具体的:在MATLAB/Simulink里建立一个新MPPT***模型,PV板(Array type:SunPower SPR-315E-WHT-D;1Series modules;1Parallel strings)采用***自带的模块,模块部分参数如表2所示。电路参数:C=0.005F,R=2Ω;采样时间Δt=50μs。图3a,b展示了Ir=500W/m2,T=20℃、Ir=1000W/m2,T=25℃、Ir=1500W/m2,T=30℃、 Ir=2500W/m2,T=45℃时,PV板输出功率PPV及其对应电压VPV的结果。图4a、4b为Ir和T变化(突变)方式;图5a、5b展示了在Ir和T如图4a,4b输入时,光伏板输出功率PPV和电压VPV的结果。对比图3a和图5a可以看出,当辐照度从1000W/m2突变到1500W/m2、温度从25℃突变到30℃时,***只经过1ms达到稳态,说明***具有很好的环境适应性。
表2:PV板模块部分参数
Maximum Power(W) 315.072
Voltage at maximum power point VM(V) 54.7
Open circuit voltage Voc(V) 64.6
Short-circuit current Isc(A) 6.14
Temperature coefficient of Voc(%/deg.C) -0.27269
Temperature coefficient of Isc(%/deg.C) 0.061694
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。

Claims (4)

1.一种自学***,控制可控开关(4)的开和断。
2.根据权利要求1所述的一种自学习光伏最大功率点跟踪装置,其特征在于:所述调节电阻(5)的电阻值R满足:
R<=V2 M/PMPP
其中PMPP为所有情况下的最大功率,VM为PMPP所对应的电压。
3.根据权利要求2所述的一种自学习光伏最大功率点跟踪装置,其特征在于:所述超级电容(3)的电容量C满足:
I C = C d V d t ,
对所述二极管(2)、超级电容(3)和调节电阻(5)的公共节点由基尔霍夫定律得到:
IC=I-SIR
其中I为光伏阵列干路电流,IR为流过调节电阻(5)的电流,IC为流经超级电容(3)的电流,IR=V/R;S=1,0分别对应可控开关断开和闭合。
4.根据权利要求2所述的一种自学习光伏最大功率点跟踪装置,其特征在于:所述的控制装置(7)采用单片机。
CN201620789828.4U 2016-07-25 2016-07-25 一种自学习光伏最大功率点跟踪装置 Withdrawn - After Issue CN205983285U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620789828.4U CN205983285U (zh) 2016-07-25 2016-07-25 一种自学习光伏最大功率点跟踪装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620789828.4U CN205983285U (zh) 2016-07-25 2016-07-25 一种自学习光伏最大功率点跟踪装置

Publications (1)

Publication Number Publication Date
CN205983285U true CN205983285U (zh) 2017-02-22

Family

ID=58026409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620789828.4U Withdrawn - After Issue CN205983285U (zh) 2016-07-25 2016-07-25 一种自学习光伏最大功率点跟踪装置

Country Status (1)

Country Link
CN (1) CN205983285U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055020A (zh) * 2016-07-25 2016-10-26 华南理工大学 基于环境适应性自学习光伏最大功率点跟踪装置及方法
CN110989763A (zh) * 2018-05-16 2020-04-10 广西师范大学 一种光伏摄像头功率跟踪方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055020A (zh) * 2016-07-25 2016-10-26 华南理工大学 基于环境适应性自学习光伏最大功率点跟踪装置及方法
CN110989763A (zh) * 2018-05-16 2020-04-10 广西师范大学 一种光伏摄像头功率跟踪方法

Similar Documents

Publication Publication Date Title
Hiwale et al. An efficient MPPT solar charge controller
CN108336758A (zh) 一种基于纹波关联法的光伏组件mppt算法
Balamurugan et al. Fuzzy controller design using soft switching boost converter for MPPT in hybrid system
CN103280825B (zh) 一种光伏电站多台逆变器协调控制装置及控制方法
CN205983285U (zh) 一种自学习光伏最大功率点跟踪装置
Tang et al. One novel variable step-size MPPT algorithm for photovoltaic power generation
Panda et al. A comparative analysis of Maximum Power Point techniques for photovoltaic system
Mohammad et al. Improved solar photovoltaic array model with FLC based maximum power point tracking
Abdul-Razzaq et al. Comparison of PV panels MPPT techniques applied to solar water pumping system
Hasan Modeling and simulation of 1kw single phase grid tied inverter for solar photovoltaic system
Fergani et al. A PSO Tuning ANN for Extracting the MPP from a DC Microgrid System under Changing Irradiance
Zhang et al. Maximum power point tracking control of solar power generation systems based on type-2 fuzzy logic
Kaliamoorthy et al. A novel MPPT scheme for solar powered boost inverter using evolutionary programming
Saini et al. Stability analysis of FPGA based perturb and observe method MPPT charge controller for solar PV system
CN106055020B (zh) 基于环境适应性自学习光伏最大功率点跟踪装置及方法
Kanchev et al. Modelling and control of a grid-connected PV system for smart grid integration
Rafiei et al. A new method of maximum power point tracking (MPPT) of photovoltaic (PV) cells using impedance adaption by Ripple correlation control (RCC)
Sahu et al. Modelling of Grid Integrated PV System using Modified MPPT Technique
Jing et al. Maximum power point tracking in photovoltaic system by using fuzzy algorithm
Li et al. Research on photovoltaic MPPT control Strategy based on improved sliding mode control
Liu et al. Research on maximum power point tracking based on extremum seeking algorithm
Alaayed et al. A sliding mode based on fuzzy logic control for photovoltaic power system using DC-DC boost converter
Kamala et al. Characterization of PV cells with varying weather parameters to achieve maximum power
Rao et al. Implementation of FPGA Based MPPT Techniques for Grid-Connected PV System.
Putri et al. Maximum power point tracking based on particle swarm optimization for photovoltaic system on greenhouse application

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20170222

Effective date of abandoning: 20171201

AV01 Patent right actively abandoned