CN205137984U - Heat pump and cold combined heat and power generation system - Google Patents

Heat pump and cold combined heat and power generation system Download PDF

Info

Publication number
CN205137984U
CN205137984U CN201520756365.7U CN201520756365U CN205137984U CN 205137984 U CN205137984 U CN 205137984U CN 201520756365 U CN201520756365 U CN 201520756365U CN 205137984 U CN205137984 U CN 205137984U
Authority
CN
China
Prior art keywords
flue gas
water
port
internal combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520756365.7U
Other languages
Chinese (zh)
Inventor
张传兵
涂超
杨杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hexi Yuanda Energy Service Co Ltd
Original Assignee
Nanjing Hexi Yuanda Energy Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hexi Yuanda Energy Service Co Ltd filed Critical Nanjing Hexi Yuanda Energy Service Co Ltd
Priority to CN201520756365.7U priority Critical patent/CN205137984U/en
Application granted granted Critical
Publication of CN205137984U publication Critical patent/CN205137984U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

The utility model discloses a heat pump and cold combined heat and power generation system, including gas internal combustion generating set and flue gas hot water direct combustion type lithium bromide absorbed refrigeration unit, still include heat radiation water tank and flue gas three -way valve between gas internal combustion generating set and the flue gas hot water direct combustion type lithium bromide absorbed refrigeration unit, flue gas hot water direct combustion type lithium bromide absorbed refrigeration unit utilizes gas internal combustion generating set's cylinder liner water and flue gas preparation air conditioner hot water or cold water, the flue gas three -way valve is including the first opening of flue gas that communicates each other, flue gas second opening and flue gas third opening, the first opening of flue gas passes through flue intercommunication gas internal combustion generating set's smoke chamber exhaust port, flue gas second opening passes through the flue gas entry of flue intercommunication flue gas hot water direct combustion type lithium bromide absorbed refrigeration unit, flue gas third opening passes through the outdoor chimney of flue intercommunication, flue gas hot water direct combustion type lithium bromide absorbed refrigeration unit still is connected with outward and the cooling tower, the utility model discloses simple structure, energy comprehensive utilization are rateed highly.

Description

A kind of heat pump and cogeneration cooling heating system
Technical field
The present invention relates to technical field of energy utilization, be specifically related to a kind of heat pump and cogeneration cooling heating system.
Background technology
CCHP (CCHP) is a kind ofly based upon on the cascade utilization conceptual foundation of the energy, to freeze, the Poly-generation supply system of heat supply (heating and supplying hot water) and power generation process integration, object is to improve efficiency of energy utilization, reduces the discharge of carbide and pernicious gas.Typical cogeneration cooling heating system comprises power and electricity generation system and waste heat recovery cooling/hot systems, generating equipment mainly selects gas turbine or internal combustion engine, cogeneration cooling heating system is the effective means that the energy realizes cascade utilization, makes the utilization rate of the energy improve 20-30%.
The schematic diagram of existing comparatively perfect cogeneration cooling heating system as shown in Figure 1, mainly comprise engine, generator, cooling water tank, plate type heat exchanger and waste heat direct combustion unit, fuel provides the energy to impel engine running, thus drive generator to generate electricity, produce electric load, in its power generation process, recovery collection is carried out to the high-temperature flue gas produced, high temperature jacket water, utilize waste heat direct combustion unit and plate type heat exchanger, produce cooling load, heating load.But this mode reclaims COP efficiency value that high temperature jacket water heat carries out heating relative to still comparatively on the low side for heat pump techniques for application plate type heat exchanger, and comprehensive energy utilization rate also can have the rising space.
Summary of the invention
For solving the problem, the invention discloses a kind of heat pump and cogeneration cooling heating system, utilizing high-temperature flue gas and jacket water to produce idle call cold water and hot water as driving heat source, structure is simple, comprehensive utilization of energy rate is high.
A kind of heat pump and cogeneration cooling heating system, comprise gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, cooling water tank is connected between described gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, flue gas triple valve and pump, described fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group utilizes the jacket water of gas internal combustion electric generator group and flue gas to make air conditioning hot or cold water, described flue gas triple valve comprises flue gas first port be interconnected, flue gas second port and flue gas third connectivity mouth, described flue gas first port is communicated with the smoke chamber exhaust opening of gas internal combustion electric generator group by flue, described flue gas second port is communicated with the smoke inlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group by flue, described flue gas third connectivity mouth is by flue communication chamber trunk of funnel, described jacket water is circulated in gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group by pump, described fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group is also connected with outward and cooling tower.
As a further improvement on the present invention, three-way control valve is provided with between described cooling water tank and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, described three-way control valve comprises the first port, the second port and the third connectivity mouth that are interconnected, described first port is by the cylinder sleeve of pipeline communication gas internal combustion electric generator group, described second port is communicated with the hot water outlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, and described third connectivity mouth is communicated with the entrance of cooling water tank.
As a further improvement on the present invention, be connected with jacket water plate between described cooling water tank and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group to change, described jacket water plate changes and comprises primary side and secondary side, described primary side is provided with plate and changes the first port and plate changes the second port, described plate changes the first port and is connected to cooling water tank water inlet, described plate changes the second port and is connected to gas internal combustion electric generator group cylinder sleeve delivery port, and described pump drives the jacket water of circulating gas internal combustion engine generator group; Described secondary side is provided with plate and changes third connectivity mouth and plate changes the 4th port, and described plate changes third connectivity mouth and is connected to chilled water feed pipe, and described plate changes the 4th port and is connected to chilled water return pipe.
Compared with prior art, tool of the present invention has the following advantages and beneficial effect: fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group utilizes the high-temperature flue gas of the jacket water in gas internal combustion electric generator group and generation to carry out freezing and heating, and structure is simple, utilization rate is high; Jacket water reusable edible, economize energy.
Accompanying drawing explanation
Fig. 1 is prior art fundamental diagram.
Fig. 2 is System Working Principle figure of the present invention.
Fig. 3 is the workflow diagram of system in summer in the present invention.
Fig. 4 be in the present invention system in the winter time in workflow diagram.
Fig. 5 is the structural representation that in the present invention, cylinder sleeve plate changes.
Detailed description of the invention
Below in conjunction with the drawings and specific embodiments, illustrate the present invention further, following detailed description of the invention should be understood and be only not used in for illustration of the present invention and limit the scope of the invention.It should be noted that, the word "front", "rear" of use is described below, "left", "right", "up" and "down" refer to direction in accompanying drawing, word " interior " and " outward " refer to the direction towards or away from particular elements geometric center respectively.
As shown in Figure 2, natural gas provides the energy to generate electricity for gas internal combustion electric generator group to overall work principle of the present invention, produces electric load; High-temperature flue gas in power generation process and high temperature jacket water are then utilized by the collection of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, produce the air conditioning water needed for air-conditioning summer; Fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group is then switched to heat pump mode by winter, utilize jacket water plate to change and produce out heat pump low-grade heat source, the high-grade thermal source of recycling high-temperature flue gas is as driving heat source, winter produces the air-conditioning heating water needed for air-conditioning under heat pump working condition, and now heat pump working condition COP efficiency reaches 1.7.Specifically comprise two cover embodiments, one is applicable to summer, and one is applicable to winter.
Embodiment 1
The present embodiment is the situation of the technology of the present invention when summer, as shown in Figure 3, gas internal combustion electric generator group 31, fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32, pump 33, three-way control valve 34, cooling water tank 35, flue gas triple valve 36 and cooling tower 37 is comprised.Wherein three-way control valve 34 comprises the first port, the second port and the third connectivity mouth that are interconnected, first port is by the cylinder sleeve of pipeline communication gas internal combustion electric generator group 31, second port is communicated with the hot water outlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32, and third connectivity mouth is communicated with the entrance of cooling water tank 35.Flue gas triple valve 36 comprises flue gas first port, flue gas second port and the flue gas third connectivity mouth that are interconnected, flue gas first port is communicated with the smoke chamber exhaust opening of gas internal combustion electric generator group 31 by flue, flue gas second port is communicated with the smoke inlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32 by flue, flue gas third connectivity mouth is by flue communication chamber trunk of funnel, and pump 33 circulates for driving cylinder sleeve water lines.
Gas internal combustion electric generator group 31 utilizes natural gas energy resource to generate electricity, and produces electric load; The high-temperature flue gas wherein produced enters fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32 by flue gas triple valve 36, controls according to end workload demand the exhaust gas volumn entering refrigeration unit; The jacket water in like manner produced controls by the valve opening of three-way control valve 34 the cylinder sleeve water yield entering refrigeration unit; Fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32 utilizes the heat of high-temperature flue gas and jacket water to freeze, and produces the air conditioner cold water that summer air-conditioning uses.The effect of these two kinds of triple valves according to end with demand carrying out controlling to adjust exhaust gas volumn and the water yield that high-temperature flue gas and jacket water enter refrigeration unit, jacket water carries out cooling down process by cooling water tank 35, ensure back that the temperature of gas internal combustion electric generator group 31 cylinder sleeve reaches unit requirement, such jacket water recycles under pump 33 drives.
Embodiment 2
The present embodiment be the technology of the present invention in the winter time time situation, as shown in Figure 4, comprise gas internal combustion electric generator group 31, fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32, pump 33, jacket water plate change 44, cooling water tank 35, flue gas triple valve 36.Now fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32 has switched to heat pump working condition pattern; The jacket water that gas internal combustion electric generator group 31 produces in power generation process utilizes jacket water plate to change 44 to carry out heat exchange, produce the low level heat energy needed for heat pump.
Jacket water plate changes 44 connections and is arranged between the cylinder sleeve of gas internal combustion electric generator group 31 and cooling water tank 35, as shown in Figure 5, comprise primary side 501 and secondary side 502, on primary side 501, the first port 51 is the water return outlet of jacket water, is connected to cooling water tank 35 water inlet; The second port 52 on primary side 501 is the feed water inlet of jacket water, is connected to gas internal combustion electric generator group 31 cylinder sleeve delivery port; The jacket water of circulating gas internal combustion engine generator group 41 is driven by pump 33.On secondary side 502, third connectivity mouth 53 is the water return outlet of low level heat energy, is connected with the chilled water feed pipe of refrigeration unit; On secondary side 502, the 4th port 54 is the feed water inlet of low level heat energy, is connected with the chilled water return pipe of refrigeration unit; The former chilled water Primary pumps of refrigeration unit is utilized to drive circulation low level heat energy pipeline.
Under heat pump working condition, the high-temperature flue gas that gas internal combustion electric generator group 31 produces, controlled to adjust by flue gas triple valve 36, enter in fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32, absorption type heat pump assembly utilizes high-temperature flue gas as high-order thermal source (driving heat source), the heat of the low level heat energy that simultaneously stability jacket water is produced, finally produces out the air-conditioning heating water that winter air-conditioning uses.As shown in Figure 4, the heating water feed pipe produced under former cooling water mouth is connected to heat pump working condition, the heating water return pipe produced under former cooling water water return outlet is connected to heat pump working condition, the refrigeration unit in this enforcement is closed towards valve on the pipeline of cooling tower.Fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group 32 is switched to heat pump working condition by this improved plan technology, utilizes jacket water to produce tow taste heat, high-temperature flue gas produces air-conditioning heating water as driving heat source, and COP value reaches 1.7.
Technological means disclosed in the present invention program is not limited only to the technological means disclosed in above-mentioned technological means, also comprises the technical scheme be made up of above technical characteristic.

Claims (3)

1. a heat pump and cogeneration cooling heating system, comprise gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, it is characterized in that: between described gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, be connected to cooling water tank, flue gas triple valve and pump, described fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group utilizes the jacket water of gas internal combustion electric generator group and flue gas to make air conditioning hot or cold water, described flue gas triple valve comprises flue gas first port be interconnected, flue gas second port and flue gas third connectivity mouth, described flue gas first port is communicated with the smoke chamber exhaust opening of gas internal combustion electric generator group by flue, described flue gas second port is communicated with the smoke inlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group by flue, described flue gas third connectivity mouth is by flue communication chamber trunk of funnel, described jacket water is circulated in gas internal combustion electric generator group and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group by pump, described fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group is also connected with outward and cooling tower.
2. a kind of heat pump according to claim 1 and cogeneration cooling heating system, it is characterized in that: between described cooling water tank and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, be provided with three-way control valve, described three-way control valve comprises the first port, the second port and the third connectivity mouth that are interconnected, described first port is by the cylinder sleeve of pipeline communication gas internal combustion electric generator group, described second port is communicated with the hot water outlet of fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group, and described third connectivity mouth is communicated with the entrance of cooling water tank.
3. a kind of heat pump according to claim 1 and cogeneration cooling heating system, it is characterized in that: be connected with jacket water plate between described cooling water tank and fume hot-water Direct-fired LiBr Absorption Refrigerating Unit group and change, described jacket water plate changes and comprises primary side and secondary side, described primary side is provided with plate and changes the first port and plate changes the second port, described plate changes the first port and is connected to cooling water tank water inlet, described plate changes the second port and is connected to gas internal combustion electric generator group cylinder sleeve delivery port, and described pump drives the jacket water of circulating gas internal combustion engine generator group; Described secondary side is provided with plate and changes third connectivity mouth and plate changes the 4th port, and described plate changes third connectivity mouth and is connected to chilled water feed pipe, and described plate changes the 4th port and is connected to chilled water return pipe.
CN201520756365.7U 2015-09-28 2015-09-28 Heat pump and cold combined heat and power generation system Active CN205137984U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520756365.7U CN205137984U (en) 2015-09-28 2015-09-28 Heat pump and cold combined heat and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520756365.7U CN205137984U (en) 2015-09-28 2015-09-28 Heat pump and cold combined heat and power generation system

Publications (1)

Publication Number Publication Date
CN205137984U true CN205137984U (en) 2016-04-06

Family

ID=55623770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520756365.7U Active CN205137984U (en) 2015-09-28 2015-09-28 Heat pump and cold combined heat and power generation system

Country Status (1)

Country Link
CN (1) CN205137984U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180502A (en) * 2015-09-28 2015-12-23 南京河西远大能源服务有限公司 Heat pump and combined cooling heating and power system
CN107942771A (en) * 2017-10-24 2018-04-20 新奥泛能网络科技股份有限公司 Data center energizes control system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180502A (en) * 2015-09-28 2015-12-23 南京河西远大能源服务有限公司 Heat pump and combined cooling heating and power system
CN107942771A (en) * 2017-10-24 2018-04-20 新奥泛能网络科技股份有限公司 Data center energizes control system and method

Similar Documents

Publication Publication Date Title
CN105180502A (en) Heat pump and combined cooling heating and power system
CN107905897A (en) Gas turbine cycle flue gas waste heat recovery and inlet gas cooling association system and method
CN102087058A (en) Three-in-one solar heat pump unit
CN107830655A (en) The distributed energy resource system of summer in winter dual-use can be achieved
CN109539375A (en) A kind of cooling heating and power generation system and method for the Waste Heat Recovery containing domestic hot-water
CN109297211A (en) Intelligent cold-hot chp system
CN106930827B (en) A kind of cogeneration energy supplying system, method and device
CN210220283U (en) Efficient utilization system for data center gas internal combustion generator set
CN203742831U (en) Combined cooling-heating-power cogeneration system
CN103968598A (en) Large temperature difference centralized heating/cooling system
CN209399479U (en) A kind of cooling heating and power generation system of the Waste Heat Recovery containing domestic hot-water
CN205137984U (en) Heat pump and cold combined heat and power generation system
CN208332225U (en) The system energized using Proton Exchange Membrane Fuel Cells and gas turbine waste heat
CN205135796U (en) Novel cold combined heat and power generation system
CN208040541U (en) Gas turbine cycle flue gas waste heat recovery and inlet gas cooling association system
CN204806735U (en) Distributed energy system of heat engine drive VM circulation heat pump
CN108361679A (en) The system and method energized using Proton Exchange Membrane Fuel Cells and gas turbine waste heat
CN211926188U (en) Data center waste heat recovery utilizes system based on distributed energy
CN108468593A (en) A kind of gas internal-combustion engine distributing-supplying-energy system with solar energy complementation
CN209763538U (en) Combined cooling heating and power system coupling geothermal energy and solar energy
CN204704011U (en) A kind of distributed energy fume afterheat deep exploitation system
CN107387259B (en) Heating system, refrigerating system and combined cooling heating and power system
CN215062110U (en) Waste gas waste heat utilization system of incinerator
CN205536305U (en) Building formula distributed energy resource station cooling system
CN209840253U (en) Heat pump system for power plant waste heat cold and hot coupling utilization

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant