CN205123280U - 风电场的拓扑结构、升压控制装置及*** - Google Patents

风电场的拓扑结构、升压控制装置及*** Download PDF

Info

Publication number
CN205123280U
CN205123280U CN201520909017.9U CN201520909017U CN205123280U CN 205123280 U CN205123280 U CN 205123280U CN 201520909017 U CN201520909017 U CN 201520909017U CN 205123280 U CN205123280 U CN 205123280U
Authority
CN
China
Prior art keywords
transformer
cluster
turbine generator
wind turbine
unit step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520909017.9U
Other languages
English (en)
Inventor
吴成斌
刘登峰
杨鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Etechwin Electric Co Ltd
Original Assignee
Beijing Etechwin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Etechwin Electric Co Ltd filed Critical Beijing Etechwin Electric Co Ltd
Priority to CN201520909017.9U priority Critical patent/CN205123280U/zh
Application granted granted Critical
Publication of CN205123280U publication Critical patent/CN205123280U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本实用新型的实施例提供了一种风电场的拓扑结构、升压控制装置及***。所述风电场的拓扑结构包括:一一对应设置且选择性连接的至少一个风力发电机组集群和至少一个机组升压变压器集群,其中,所述风力发电机组集群包括多台并联连接的风力发电机组,所述机组升压变压器集群包括多台并联连接的机组升压变压器。通过本实用新型的风电场的拓扑结构、升压控制装置及***,使得风力发电机组升压变压器长期运行于高效率区间,功率损耗较小。并且,同组的机组升压变压器互为备用,提高了风电场集电网的可靠性。

Description

风电场的拓扑结构、升压控制装置及***
技术领域
本实用新型涉及风力发电技术领域,尤其涉及一种风电场的拓扑结构、升压控制装置及***。
背景技术
风能是一种清洁的可再生能源,把风能转变成机械能,再把机械能转化为电能,这就是风力发电。近年来,风电技术越来越受到世界各国的重视,并将保持较高的速度继续发展。然而,相对于其他发电设施,风力发电具有一定的特殊性,如负荷随机波动、轻载运行工况占多数等。
图1为现有技术风电场的拓扑结构的示例性示意图,参照图1,常见的风电场的拓扑结构是“一机一变”方式,即一台风力发电机组连接一台机组升压变压器。在风电场中,风力发电机的输出电压为690V。经过机组升压变压器将电压升高到10kV或35kV,然后经集电馈线将所有风力发电机输出的电能汇集输送到升压站(如主变压器)进行升压,达到110kV或220kV送入电力***。
然而,上述方式具有以下不足之处:首先,在负载率较高的区间,机组升压变压器的效率较高,当负载率下降到一定程度后,机组升压变压器的效率会急剧下降;其次,由于风力发电的输出波动大、轻载工况多的特点,上述拓扑结构会使机组升压变压器经常运行在低效率状态,其功率损耗相对较高。
实用新型内容
本实用新型实施例的目的在于,提供一种风电场的拓扑结构、升压控制装置及***,以实现使得风力发电机组升压变压器长期运行于高效率区间,降低功耗。
为实现上述实用新型目的,本实用新型的实施例提供了一种风电场的拓扑结构,所述拓扑结构包括:一一对应设置且选择性连接的至少一个风力发电机组集群和至少一个机组升压变压器集群,其中,所述风力发电机组集群包括多台并联连接的风力发电机组,所述机组升压变压器集群包括多台并联连接的机组升压变压器。
优选地,所述拓扑结构还包括多个第一自动断路器,所述第一自动断路器设置在所述机组升压变压器与对应设置的所述风力发电机组集群之间。
优选地,所述第一自动断路器的数量与所述机组升压变压器的数量相同,且一一对应设置。
本实用新型的实施例还提供了一种风电场的升压控制装置,所述风电场采用如前述实施例所述的拓扑结构,所述升压控制装置包括:负载率获取模块,用于分别获取所述至少一个风力发电机组集群的输出功率负载率;变压器数量调整模块,用于分别根据所述输出功率负载率调整对应设置的机组升压变压器集群中运行的机组升压变压器的数量。
优选地,所述负载率获取模块包括:
获取单元,用于分别获取每一风力发电机组集群中各风力发电机组的实际输出功率及额定输出功率,
计算单元,用于分别计算每一风力发电机组集群中各风力发电机组的实际输出功率的和值以及各风力发电机组的额定输出功率的和值,将所述实际输出功率的和值与所述额定输出功率的和值的比值作为所述风力发电机组集群的输出功率负载率。
本实用新型的实施例还提供了一种风电场的升压控制***,所述升压控制***包括如前述实施例所述的拓扑结构以及如前述实施例所述的升压控制装置,所述升压控制装置与所述拓扑结构中的机组升压变压器集群电气连接。
本实用新型实施例提供的风电场的拓扑结构、升压控制装置及***,通过将风力发电机组及机组升压变压器分别进行分组,同一集群内的风力发电机组采用并联的连接方式,同一集群内的机组升压变压器也采用并联的连接方式,形成集群对集群的拓扑结构。从而使得风力发电机组升压变压器长期运行于高效率区间,降低了功率损耗。并且,同一集群内的机组升压变压器之间互为备用,提高了风电场集电网的可靠性。
附图说明
图1为现有技术风电场的拓扑结构的示例性示意图;
图2为本实用新型实施例一的风电场的拓扑结构的流程示意图;
图3为本实用新型实施例二的风电场的升压控制装置的结构示意图。
具体实施方式
下面结合附图对本实用新型实施例风电场的拓扑结构、升压控制装置及***进行详细描述。
实施例一
图2为本实用新型实施例一的风电场的拓扑结构的流程示意图,参照图2,风电场的拓扑结构包括一一对应设置且选择性连接的至少一个风力发电机组集群210和至少一个机组升压变压器集群220,其中,风力发电机组集群210包括多台并联连接的风力发电机组,机组升压变压器集群220包括多台并联连接的机组升压变压器。
在具体的实现方式中,以风力发电机组集群为例,每个风力发电机组集群内风力发电机组的台数可以为任意数,各个风力发电机组集群之间可以使用相同台数的风力发电机组,也可以使用不同台数的风力发电机组。通常,风力发电机组的台数为大于等于2的自然数,以2-4台为宜。同理,机组升压变压器集群内机组升压变压器的台数也可以为任意数,各个机组升压变压器集群之间可以使用相同或者不同台数的机组升压变压器。
在本实施例中,风电场的拓扑结构采用的是“集群对集群”方式,在风力发电机组集群和机组升压变压器集群之间,风力发电机组与机组升压变压器的台数可以相同,也可以不同。此外,每个机组升压变压器集群中,各台机组升压变压器的容量可以相同,也可以大小搭配。
优选地,风电场的拓扑结构还包括多个第一自动断路器,第一自动断路器设置在机组升压变压器与对应设置的风力发电机组集群之间。
进一步地,第一自动断路器的数量与机组升压变压器的数量相同,且一一对应设置。
具体地,各机组升压变压器集群的输出端分别与集电馈线相连接。风电场的拓扑结构还可以包括依次连接的集电馈线、第二自动断路器、主变压器和电网母线。具体地,每个风力发电机组集群输出的电能汇集进入机组升压变压器集群,然后通过集电馈线汇集到主变压器,升压达到110kV或220kV送入电力***的电网母线。
本实用新型实施例的风电场的拓扑结构,通过将风力发电机组及机组升压变压器分别进行分组,同一集群内的风力发电机组和同一集群内的机组升压变压器均采用并联的连接方式,形成集群对集群的拓扑结构。从而使得风力发电机组升压变压器长期运行于高效率区间,降低了功率损耗。并且,同一集群内的机组升压变压器之间互为备用,当一台机组升压变压器损坏,同组内的其他机组升压变压器可保证对应的风力发电机组集群在一定功率以下运行,进而提高了风电场集电网的可靠性。
实施例二
图3为本实用新型实施例二的风电场的升压控制装置的结构示意图。风电场采用如实施例一所述的拓扑结构。
参照图3,该风电场的升压控制装置包括负载率获取模块310和变压器数量调整模块320。
负载率获取模块310用于分别获取至少一个风力发电机组集群的输出功率负载率。
具体地,负载率获取模块310可包括:
获取单元(未示出)用于分别获取每一风力发电机组集群中各风力发电机组的实际输出功率及额定输出功率。
计算单元(未示出)用于分别计算每一风力发电机组集群中各风力发电机组的实际输出功率的和值以及各风力发电机组的额定输出功率的和值,将所述实际输出功率的和值与所述额定输出功率的和值的比值作为所述风力发电机组集群的输出功率负载率。
计算单元具体可利用下式(1)计算风力发电机组集群的输出功率负载率:
其中,R为风力发电机组集群的输出功率负载率,P实际i为第i台风力发电机组的实际输出功率,为第i台风力发电机组的额定输出功率,i为风力发电机组集群中风力发电机组的台数,1≤i≤n,i为正整数。
变压器数量调整模块320用于分别根据输出功率负载率调整对应设置的机组升压变压器集群中运行的机组升压变压器的数量。
下面以一个风力发电机组集群为例说明该风电场的升压控制装置的工作原理。
假设与其对应设置的机组升压变压器集群包括三台并联连接的机组升压变压器,具体可进行如下处理:负载率获取模块310获取到风力发电机组集群的输出功率负载率为R,假设第一负载率阈值为R1,第二负载率阈值R2。当R≥R1时,变压器数量调整模块320调整该机组升压变压器集群的机组升压变压器全部运行;当负载率R2≤R<R1时,变压器数量调整模块320随机调整两台机组升压变压器投入运行;当负载率R<R2时,变压器数量调整模块320随机调整一台机组升压变压器投入运行。
在实际应用中,还可控制与机组升压变压器一一对应连接的多个第一自动断路器的投切,从而调整投入运行的机组升压变压器的台数。另外,R1的取值可以是67%,或者小于67%的数值如55%、60%等,R2的取值可以是33%,或者其他小于33%的数值。
同理可知,如果与该风力发电机组集群对应连接的机组升压变压器集群包括四台并联连接的机组升压变压器,那么可以设定三个负载率阈值,从而划分为四个阈值范围区间,输出功率负载率分别位于这四个阈值范围区间时对应四台、三台、两台、一台机组升压变压器运行。
本实用新型的风电场的升压控制装置,根据获取到的多个风力发电机组集群的输出功率负载率,对与其对应连接的各个机组升压变压器集群的机组升压变压器投运台数进行调节,实现了机组升压变压器长期运行于高效率区间,降低了功率损耗。
本实用新型还提供了一种风电场的升压控制***,包括如实施例一所述的拓扑结构以及如实施例二所述的升压控制装置,所述升压控制装置与所述拓扑结构中的机组升压变压器集群电气连接。
本实用新型的风电场的升压控制***,一方面,通过将风力发电机组及机组升压变压器分别进行分组,同一集群内的风力发电机组和同一集群内的机组升压变压器均采用并联的连接方式,形成集群对集群的拓扑结构;另一方面,根据获取到的多个风力发电机组集群的输出功率负载率,对与其对应连接的各个机组升压变压器集群的机组升压变压器投运台数进行调节。从而使得风力发电机组升压变压器长期运行于高效率区间,降低了功率损耗。
并且,同一集群内的机组升压变压器之间互为备用,当一台机组升压变压器损坏,同组内的其他机组升压变压器可保证对应的风力发电机组集群在一定功率以下运行,进而提高了风电场集电网的可靠性
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (6)

1.一种风电场的拓扑结构,其特征在于,所述拓扑结构包括一一对应设置且选择性连接的至少一个风力发电机组集群和至少一个机组升压变压器集群,其中,所述风力发电机组集群包括多台并联连接的风力发电机组,所述机组升压变压器集群包括多台并联连接的机组升压变压器。
2.根据权利要求1所述的拓扑结构,其特征在于,所述拓扑结构还包括多个第一自动断路器,所述第一自动断路器设置在所述机组升压变压器与对应设置的所述风力发电机组集群之间。
3.根据权利要求2所述的拓扑结构,其特征在于,所述第一自动断路器的数量与所述机组升压变压器的数量相同,且一一对应设置。
4.一种风电场的升压控制装置,其特征在于,所述风电场采用如权利要求1~3中任一项所述的拓扑结构,所述升压控制装置包括:
负载率获取模块,用于分别获取所述至少一个风力发电机组集群的输出功率负载率;
变压器数量调整模块,用于分别根据所述输出功率负载率调整对应设置的机组升压变压器集群中运行的机组升压变压器的数量。
5.根据权利要求4所述的升压控制装置,其特征在于,所述负载率获取模块包括:
获取单元,用于分别获取每一风力发电机组集群中各风力发电机组的实际输出功率及额定输出功率,
计算单元,用于分别计算每一风力发电机组集群中各风力发电机组的实际输出功率的和值以及各风力发电机组的额定输出功率的和值,将所述实际输出功率的和值与所述额定输出功率的和值的比值作为所述风力发电机组集群的输出功率负载率。
6.一种风电场的升压控制***,其特征在于,包括如权利要求1~3中任一项所述的拓扑结构以及如权利要求4或5所述的升压控制装置,所述升压控制装置与所述拓扑结构中的机组升压变压器集群电气连接。
CN201520909017.9U 2015-11-13 2015-11-13 风电场的拓扑结构、升压控制装置及*** Active CN205123280U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520909017.9U CN205123280U (zh) 2015-11-13 2015-11-13 风电场的拓扑结构、升压控制装置及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520909017.9U CN205123280U (zh) 2015-11-13 2015-11-13 风电场的拓扑结构、升压控制装置及***

Publications (1)

Publication Number Publication Date
CN205123280U true CN205123280U (zh) 2016-03-30

Family

ID=55578856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520909017.9U Active CN205123280U (zh) 2015-11-13 2015-11-13 风电场的拓扑结构、升压控制装置及***

Country Status (1)

Country Link
CN (1) CN205123280U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281369A (zh) * 2015-11-13 2016-01-27 北京天诚同创电气有限公司 风电场的拓扑结构、升压控制方法、装置及***
CN105976071A (zh) * 2016-05-30 2016-09-28 华南理工大学 一种基于优势粗糙集的风力发电机组检修决策方法
WO2018187645A1 (en) * 2017-04-07 2018-10-11 General Electric Company Low-wind operation of clustered doubly fed induction generator wind turbines
CN109301868A (zh) * 2018-10-26 2019-02-01 上海电气风电集团有限公司 一种大功率模块化风电变流器智能休眠控制***及方法
CN110622380A (zh) * 2017-05-23 2019-12-27 通用电气公司 电功率***和子***

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281369A (zh) * 2015-11-13 2016-01-27 北京天诚同创电气有限公司 风电场的拓扑结构、升压控制方法、装置及***
CN105976071A (zh) * 2016-05-30 2016-09-28 华南理工大学 一种基于优势粗糙集的风力发电机组检修决策方法
WO2018187645A1 (en) * 2017-04-07 2018-10-11 General Electric Company Low-wind operation of clustered doubly fed induction generator wind turbines
CN110741157A (zh) * 2017-04-07 2020-01-31 通用电气公司 集群双馈感应发电机风涡轮的低风操作
US10615608B2 (en) 2017-04-07 2020-04-07 General Electric Company Low-wind operation of clustered doubly fed induction generator wind turbines
CN110741157B (zh) * 2017-04-07 2021-05-25 通用电气公司 集群双馈感应发电机风涡轮的低风操作
CN110622380A (zh) * 2017-05-23 2019-12-27 通用电气公司 电功率***和子***
CN109301868A (zh) * 2018-10-26 2019-02-01 上海电气风电集团有限公司 一种大功率模块化风电变流器智能休眠控制***及方法

Similar Documents

Publication Publication Date Title
CN205123280U (zh) 风电场的拓扑结构、升压控制装置及***
CN102931653A (zh) 一种风光直流微电网的综合协调控制方法
CN102780398A (zh) 智能太阳能光伏电池板的组件优化器及其控制方法
CN201286019Y (zh) 一种与电网互联式110kw风光互补发电***
CN107634543A (zh) 一种海上风电升压***及升压方法
CN103023055A (zh) 利用复合储能技术平抑风光发电***输出功率波动的方法
CN103078329B (zh) 海上风电场长距离220kV海缆送出无功补偿分析方法
CN100395935C (zh) 大功率风力发电的并网***
CN203406827U (zh) 双模太阳能光伏发电装置
CN208539641U (zh) 一体化风电储能***
CN203278264U (zh) 一种风力发电机组能量传输装置
CN205304269U (zh) 一种光伏并网发电的直流升压***
CN105281369B (zh) 风电场的拓扑结构、升压控制方法、装置及***
CN203056604U (zh) 一种新型智能微电网
CN105048505B (zh) 一种用于智能小区的风光互补型微电网***
CN205017247U (zh) 一种光储联合发电装置
CN202218162U (zh) 风电交流变桨***交流驱动器充电电路
CN101795082A (zh) 一种兆瓦级直驱式风电并网软开关变流器
CN104753154A (zh) 储能***电池初始充电装置及方法
CN113765138A (zh) 一种330kV海上风电场输电***
CN202535082U (zh) 柔性直流***与风电场并接方式下的静止无功发生器运行***
CN202435053U (zh) 基于分布式新能源的小型微网运行控制装置
CN207732485U (zh) 一种大功率风力发电设备
CN204905890U (zh) 一种大型风电场并网***
CN104617598A (zh) 一种基于动态直流泄能电阻的风电场低电压穿越方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant