CN204574237U - A kind of system of publilc baths waste water reuse - Google Patents

A kind of system of publilc baths waste water reuse Download PDF

Info

Publication number
CN204574237U
CN204574237U CN201520198627.2U CN201520198627U CN204574237U CN 204574237 U CN204574237 U CN 204574237U CN 201520198627 U CN201520198627 U CN 201520198627U CN 204574237 U CN204574237 U CN 204574237U
Authority
CN
China
Prior art keywords
heat
clear water
water
attemperater
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520198627.2U
Other languages
Chinese (zh)
Inventor
郭文俊
郝富
张根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Wen long Sino American ring Polytron Technologies Inc
Original Assignee
Shanxi Literary Composition Imperial Colliery Engineering Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Literary Composition Imperial Colliery Engineering Design Co Ltd filed Critical Shanxi Literary Composition Imperial Colliery Engineering Design Co Ltd
Priority to CN201520198627.2U priority Critical patent/CN204574237U/en
Application granted granted Critical
Publication of CN204574237U publication Critical patent/CN204574237U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Sanitary Device For Flush Toilet (AREA)

Abstract

The utility model belongs to waste heat utilization technology field, relates to a kind of device utilizing publilc baths waste water residual heat, is specifically related to a kind of heat pump recycling publilc baths waste water residual heat, concrete technical scheme is: a kind of system of publilc baths waste water reuse, comprise water system, wastewater disposal basin, attemperater and the heat-exchanger rig be connected between wastewater disposal basin and attemperater, water system is whole system moisturizing, the thermal wastewater of discharging in wastewater disposal basin and the clear water of attemperater realize efficient heat exchange in heat-exchanger rig, reduced by the thermal wastewater temperature of heat-exchanger rig, raised by the clear water temperature of heat-exchanger rig, heat-exchanger rig comprises one-level heat-exchange system and secondary heat exchange system, one-level heat-exchange system is connected successively by multiple heat exchanger, multiple source pump and insulation unit is provided with in secondary heat exchange system, two-stage filtration system is adopted to carry out pre-recuperation of heat, high to the utilization ratio of thermal wastewater, clear water quick heating, the volume of attemperater is little.

Description

A kind of system of publilc baths waste water reuse
Technical field
The utility model belongs to waste heat utilization technology field, relates to a kind of device utilizing publilc baths waste water residual heat, is specifically related to a kind of heat pump recycling publilc baths waste water residual heat.
Background technology
Existing bathing mode is all that running water is used after heater is heated to about 42 DEG C, in shower process, the spent hot water of about 35 DEG C is fed directly in waste pipe and drains, spent hot water's temperature through shower process is relatively high, and a lot of heats is not utilized effectively, and has wasted.For the place of long-time hot-water supply, if adopt the heater mode of heating continued, no matter be electrical heating or coal heating, a large amount of energy will be needed, cause great waste.Current water system neither Automatic Control, and be mostly Artificial Control, automaticity is low.
Also have some waste heat utilization devices in the market, but these heat-exchanger rigs some just carry out a heat exchange by heat exchanger after namely complete heat transfer process, some device is when heat exchange, and heat exchange efficiency is low, and the time of heat exchanger work is long, weak effect.Meanwhile, in order to meet the needs of bathing, often need to be equipped with bulky attemperater, floor space is large, and length consuming time is very impracticable.
Utility model content
The utility model overcomes the deficiency that prior art exists, and aim to provide a kind of compact conformation, heat exchange efficiency is high, and can realize the publilc baths waste water residual heat recycling system of control automatically.
In order to solve the problems of the technologies described above, the technical solution adopted in the utility model is: a kind of system of publilc baths waste water reuse, the heat-exchanger rig comprising wastewater disposal basin, attemperater and be connected between wastewater disposal basin and attemperater, the thermal wastewater of discharging in wastewater disposal basin and the clear water of attemperater realize efficient heat exchange in heat-exchanger rig, reduced by the thermal wastewater temperature of heat-exchanger rig, raised by the clear water temperature of heat-exchanger rig.
Wherein, heat-exchanger rig comprises one-level heat-exchange system and secondary heat exchange system, one-level heat-exchange system is made up of one or more heat exchanger, multiple heat exchanger is connected successively, waste water tunnel and water-dilution channel is divided in heat exchanger, thermal wastewater high for temperature to be delivered in the waste water tunnel in heat exchanger by the thermal wastewater in wastewater disposal basin by pump group, clear water low for temperature to be delivered in the water-dilution channel in heat exchanger by the water of discharging in running water pipe by pump group, thermal wastewater and clear water realize a heat exchange in heat exchanger, the temperature of thermal wastewater reduces, the temperature of clear water raises, multiple heat exchanger can increase overall heat exchange area, the quantity of concrete heat exchanger is determined according to the size at outdoor bathing place and actual needs.
Multiple source pump is provided with in secondary heat exchange system, multiple source pump can carry out parallel connection or series connection according to actual needs, concrete selection mode can according to overall structure and heat exchange need determine, in source pump, realize secondary heat exchange by the thermal wastewater of one-level heat-exchange system and clear water, improve the utilization rate of thermal wastewater heat.Insulation unit is also provided with in secondary heat exchange system, when clear water is after the heat exchange of a heat-exchange system and source pump, clear water temperature does not reach temperature required, namely insulation unit is started, insulation unit heats the clear water in attemperater, the temperature entered before insulation unit due to the water in attemperater is just higher, general and rated temperature is more or less the same, therefore the heat exchange efficiency being incubated unit is inevitable lower than source pump, under normal circumstances, the negligible amounts of insulation unit, the low unit of heat exchange efficiency can be reduced like this use, reduce the waste of the energy, if attemperater volume is larger, quantity by the power and increase insulation unit that increase insulation unit solves.
Wherein, water system comprises tap water tank and tap water pipe, tap water pipe is arranged two delivery ports, a delivery port is connected with water service pipe, meet domestic water, another delivery port is connected with the water inlet of tap water tank by electric butterfly valve, is controlled logical the closing of tap water tank inlet channel by electric butterfly valve, be provided with liquid level gauge in tap water tank, realized the automatic control of tap water tank by liquid level gauge and electric butterfly valve.The delivery port of tap water tank is connected with the clear water entrance of heat exchanger by pipeline, pump group and magnetic valve is connected with between described tap water tank and heat exchanger, running water in tap water tank is delivered in heat exchanger by pump group, and magnetic valve realizes the automatic control of tap water tank outlet pipe.
Wherein, according to actual needs, as preferably, heat exchanger can be the combination of one or more in plate type heat exchanger, movable tube sheets heat exchanger, fixed tube-sheet exchanger and U-tube sheet heat exchanger.
Wherein, hair filter and sand filtration cylinder is connected with by pipeline between the wastewater outlet of wastewater disposal basin and one-level heat-exchange system, hair filter is placed between the wastewater outlet of wastewater disposal basin and sand filtration cylinder, thermal wastewater was filtered by hair filter before entering sand filtration cylinder, filtered out by hair in thermal wastewater, hair can blocking pipe and the control element be connected on pipeline.And, when the cleaning in later stage, hair is than common mud and bur all difficulty cleanings, after hair filter has been installed, as long as periodic cleaning hair filter is all right, the cleaning cycle of pipeline and control element can extend to about 1 year, and, pipeline also can not block in cleaning cycle, very practical.
Wherein, the structure in source pump is identical with the structure in insulation unit.The structure of source pump is: comprise compressor, condenser and evaporimeter, evaporimeter, condenser and evaporimeter form a closed circulating heat exchange system, after liquid refrigerant in thermal wastewater and evaporimeter carries out heat exchange, cold-producing medium is by entering into condenser after compressor compresses, heat exchange is carried out within the condenser with clear water, the temperature of thermal wastewater is reduced further and is discharged by cast iron main sewer, and the temperature of clear water is raised further and is pumped in attemperater by pump group.When needed, start insulation unit, the operation principle of insulation unit is identical with the operation principle of source pump, does not repeat them here.
Wherein, the waterwater entrance place of insulation unit is connected with magnetic valve by pipeline, the thermal wastewater passage of insulation unit is entered by solenoid control, insulation unit is not long-term unlatching, but the temperature in attemperater does not reach just unlatching when requiring, therefore, passes through solenoid control, can economize energy, automatic control can be realized again.
Wherein, the clear water entrance of attemperater and clear water output are provided with thermal contacts, detect the leaving water temperature of clear water by thermal contacts and enter coolant-temperature gage, leaving water temperature with enter coolant-temperature gage and all can feed back to control system, both Data Detection was facilitated, automatic control can be realized again, reduce manual operation, practicality simple to operate.
The utility model compared with prior art has following beneficial effect: the utility model structure is simple, and compact conformation, is combined by one-level heat-exchange system and secondary heat exchange system, high to the utilization ratio of thermal wastewater, and clear water quick heating, the volume of attemperater is little.And the utility model entirety is automatically control, and manual operation is few, very practical.
Accompanying drawing explanation
Below in conjunction with accompanying drawing, the utility model is described in more detail.
Fig. 1 is structural representation of the present utility model.
Fig. 2 is system diagram of the present utility model.
In figure: 1 is wastewater disposal basin, 2 is attemperater, and 3 is one-level heat-exchange system, 4 is secondary heat exchange system, and 5 is heat exchanger, and 6 is source pump, 7 is insulation unit, and 8 is cast iron main sewer, and 9 is hair filter, 10 is sand filtration cylinder, 11 is magnetic valve, and 12 is thermal contacts, and 13 is tap water tank, 14 is tap water pipe, and 15 is water service pipe.
Detailed description of the invention
Be described in further detail the utility model by reference to the accompanying drawings now, accompanying drawing is the schematic diagram simplified, and only basic structure of the present utility model is described in a schematic way, therefore it only shows the formation relevant with the utility model.
As shown in Figure 1-2, a kind of system of publilc baths waste water reuse, the heat-exchanger rig comprising wastewater disposal basin 1, attemperater 2 and be connected between wastewater disposal basin 1 and attemperater 2, the thermal wastewater of discharging in wastewater disposal basin 1 and the clear water of attemperater 2 realize efficient heat exchange in heat-exchanger rig, reduced by the thermal wastewater temperature of heat-exchanger rig, raised by the clear water temperature of heat-exchanger rig.
Wherein, heat-exchanger rig comprises one-level heat-exchange system 3 and secondary heat exchange system 4, one-level heat-exchange system 3 is made up of one or more heat exchanger 5, multiple heat exchanger 5 is connected successively, waste water tunnel and water-dilution channel is divided in heat exchanger 5, thermal wastewater high for temperature is delivered in the waste water tunnel in heat exchanger 5 by pump group by the thermal wastewater in wastewater disposal basin 1, clear water low for temperature is delivered in the water-dilution channel in heat exchanger 5 by pump group by the water of discharging in running water pipe, thermal wastewater and clear water realize a heat exchange in heat exchanger 5, the temperature of thermal wastewater reduces, the temperature of clear water raises, multiple heat exchanger 5 can increase overall heat exchange area, the quantity of concrete heat exchanger 5 is determined according to the size at outdoor bathing place and actual needs.
Multiple source pump 6 is provided with in secondary heat exchange system 4, multiple source pump 6 can carry out parallel connection or series connection according to actual needs, concrete selection mode can according to overall structure and heat exchange need determine, in source pump 6, realize secondary heat exchange by the thermal wastewater of one-level heat-exchange system 3 and clear water, improve the utilization rate of thermal wastewater heat.Insulation unit 7 is also provided with in secondary heat exchange system 4, when clear water is after the heat exchange of a heat-exchange system and source pump 6, clear water temperature does not reach temperature required, namely insulation unit 7 is started, clear water in insulation unit 7 pairs of attemperaters 2 heats, the temperature entered before insulation unit 7 due to the water in attemperater 2 is just higher, general and rated temperature is more or less the same, therefore the heat exchange efficiency being incubated unit 7 is inevitable lower than source pump 6, under normal circumstances, the negligible amounts of insulation unit 7, the low unit of heat exchange efficiency can be reduced like this use, reduce the waste of the energy, if attemperater 2 volume is larger, quantity by the power and increase insulation unit 7 that increase insulation unit 7 solves.
Wherein, water system comprises tap water tank 13 and tap water pipe 14, tap water pipe 14 is arranged two delivery ports, a delivery port is connected with water service pipe 15, meet domestic water, another delivery port is connected by the water inlet of electric butterfly valve with tap water tank 13, is controlled logical the closing of tap water tank 13 inlet channel by electric butterfly valve, be provided with liquid level gauge in tap water tank 13, realized the automatic control of tap water tank 13 by liquid level gauge and electric butterfly valve.The delivery port of tap water tank 13 is connected with the clear water entrance of heat exchanger 5 by pipeline, pump group and magnetic valve is connected with between described tap water tank 13 and heat exchanger 5, running water in tap water tank 13 is delivered in heat exchanger 5 by pump group, and magnetic valve realizes the automatic control of tap water tank 13 outlet pipe.
Wherein, according to actual needs, as preferably, heat exchanger 5 can be the combination of one or more in plate type heat exchanger, movable tube sheets heat exchanger, fixed tube-sheet exchanger and U-tube sheet heat exchanger.
Wherein, hair filter 9 and sand filtration cylinder 10 is connected with by pipeline between the wastewater outlet of wastewater disposal basin 1 and one-level heat-exchange system 3, hair filter 9 is placed between the wastewater outlet of wastewater disposal basin 1 and sand filtration cylinder 10, thermal wastewater was filtered by hair filter 9 before entering sand filtration cylinder 10, filtered out by hair in thermal wastewater, hair can blocking pipe and the control element be connected on pipeline.And, when the cleaning in later stage, hair is than common mud and bur all difficulty cleanings, after hair filter 9 has been installed, as long as periodic cleaning hair filter 9 is all right, the cleaning cycle of pipeline and control element can extend to about 1 year, and, pipeline also can not block in cleaning cycle, very practical.
Wherein, the structure in source pump 6 is identical with the structure in insulation unit 7.The structure of source pump 6 is: comprise compressor, condenser and evaporimeter, evaporimeter, condenser and evaporimeter form a closed circulating heat exchange system, after liquid refrigerant in thermal wastewater and evaporimeter carries out heat exchange, cold-producing medium is by entering into condenser after compressor compresses, heat exchange is carried out within the condenser with clear water, the temperature of thermal wastewater is reduced further and is discharged by cast iron main sewer 8, and the temperature of clear water is raised further and is pumped in attemperater 2 by pump group.When needed, start insulation unit 7, the operation principle of insulation unit 7 is identical with the operation principle of source pump 6, does not repeat them here.
Wherein, the waterwater entrance place of insulation unit 7 is connected with magnetic valve 11 by pipeline, the thermal wastewater passage entering insulation unit 7 is controlled by magnetic valve 11, insulation unit 7 is not long-term unlatching, but the temperature in attemperater 2 does not reach just unlatching when requiring, therefore, is controlled by magnetic valve 11, can economize energy, automatic control can be realized again.
Wherein, the clear water entrance of attemperater 2 and clear water output are provided with thermal contacts 12, detect the leaving water temperature of clear water by thermal contacts 12 and enter coolant-temperature gage, leaving water temperature with enter coolant-temperature gage and all can feed back to control system, both Data Detection was facilitated, automatic control can be realized again, reduce manual operation, practicality simple to operate.
The utility model structure is simple, and compact conformation, is combined by one-level heat-exchange system 3 and secondary heat exchange system 4, high to the utilization ratio of thermal wastewater, and clear water quick heating, the volume of attemperater 2 is little.And the utility model entirety is automatically control, and manual operation is few, very practical, relative to traditional waste heat utilization system, efficiency can be improved 2 ~ 3 times.
By reference to the accompanying drawings embodiment of the present utility model is explained in detail above, but the utility model is not limited to above-described embodiment, in the ken that those of ordinary skill in the art possess, can also make a variety of changes under the prerequisite not departing from the utility model aim.

Claims (6)

1. the system of a publilc baths waste water reuse, comprise wastewater disposal basin (1), attemperater (2) and the heat-exchanger rig be connected between wastewater disposal basin (1) and attemperater (2), it is characterized in that, described heat-exchanger rig comprises one-level heat-exchange system (3) and secondary heat exchange system (4), described one-level heat-exchange system (3) is made up of multiple heat exchanger (5), described multiple heat exchanger (5) is connected successively, described secondary heat exchange system (4) comprises multiple source pump (6) and insulation unit (7), the wastewater outlet of described wastewater disposal basin (1) is connected by the waterwater entrance of pipeline with the heat exchanger (5) being positioned at head end, heat exchanger (5) wastewater outlet being positioned at end is connected by the waterwater entrance of pipeline with multiple source pump (6), the wastewater outlet of multiple source pump (6) is connected with cast iron main sewer (8) by pipeline, the wastewater outlet of described wastewater disposal basin (1) is also connected by pipeline with the waterwater entrance of insulation unit (7), the wastewater outlet of described insulation unit (7) is connected with cast iron main sewer (8) by pipeline, the clear water output of water system is connected by the clear water entrance of pipeline with the heat exchanger (5) being positioned at head end, the clear water output being positioned at the heat exchanger (5) of end is connected by the clear water entrance of pipeline with multiple source pump (6), the clear water output of described multiple source pump (6) is connected with the clear water entrance of attemperater (2), the clear water output of described attemperater (2) is connected with the clear water entrance of insulation unit (7), the clear water output of described insulation unit (7) is also connected with the clear water entrance of attemperater (2), the hot water outlet of described attemperater (2) is connected with the water inlet of shower water tank,
Described water system comprises tap water tank (13) and tap water pipe (14), described tap water pipe (14) arranges two delivery ports, a delivery port is connected with water service pipe (15), another delivery port is connected by the water inlet of electric butterfly valve with tap water tank (13), the delivery port of tap water tank (13) is connected with heat exchanger (5) the clear water entrance being positioned at means by pipeline, is connected with pump group and magnetic valve between described tap water tank (13) and heat exchanger (5).
2. the system of a kind of publilc baths waste water reuse according to claim 1, is characterized in that, described heat exchanger (5) is plate type heat exchanger, or is movable tube sheets heat exchanger, or is fixed tube-sheet exchanger, or is U-tube sheet heat exchanger.
3. the system of a kind of publilc baths waste water reuse according to claim 1, it is characterized in that, be connected with hair filter (9) and sand filtration cylinder (10) by pipeline between the wastewater outlet of described wastewater disposal basin (1) and one-level heat-exchange system (3), described hair filter (9) is placed between the wastewater outlet of wastewater disposal basin (1) and sand filtration cylinder (10).
4. the system of a kind of publilc baths waste water reuse according to claim 1, it is characterized in that, described source pump (6) is identical with the structure of insulation unit (7), the structure of described source pump (6) is: comprise compressor, condenser and evaporimeter, described evaporimeter, condenser and evaporimeter form a closed circulating heat exchange system, the wastewater outlet of one-level heat-exchange system (3) is connected with the waterwater entrance of evaporimeter, the wastewater outlet of evaporimeter is connected with cast iron main sewer (8), clear water is connected with the clear water entrance of attemperater (2) with after condenser heat exchange.
5. the system of a kind of publilc baths waste water reuse according to claim 1, is characterized in that, the waterwater entrance place of described insulation unit (7) is connected with magnetic valve (11) by pipeline.
6. the system of a kind of publilc baths waste water reuse according to claim 1, is characterized in that, the clear water entrance of described attemperater (2) and clear water output are provided with thermal contacts (12).
CN201520198627.2U 2015-04-03 2015-04-03 A kind of system of publilc baths waste water reuse Expired - Fee Related CN204574237U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520198627.2U CN204574237U (en) 2015-04-03 2015-04-03 A kind of system of publilc baths waste water reuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520198627.2U CN204574237U (en) 2015-04-03 2015-04-03 A kind of system of publilc baths waste water reuse

Publications (1)

Publication Number Publication Date
CN204574237U true CN204574237U (en) 2015-08-19

Family

ID=53866863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520198627.2U Expired - Fee Related CN204574237U (en) 2015-04-03 2015-04-03 A kind of system of publilc baths waste water reuse

Country Status (1)

Country Link
CN (1) CN204574237U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196601A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of energy-conservation waste water reclamation hot water constant temperature supply system
CN106196259A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of campus hot water split type constant temperature supply system
CN106196627A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of campus split type supply system of hot water
CN106196598A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of high-effect waste water reclamation hot water constant temperature supply system
CN106247691A (en) * 2016-07-30 2016-12-21 董超超 Heat circulation unit
CN109798696A (en) * 2019-01-23 2019-05-24 江苏科技大学 A kind of recycling of industrial wastewater waste heat is the high temperature heat pump system and its control method of working medium to water
CN114251967A (en) * 2021-12-13 2022-03-29 绍兴高新技术产业开发区迪荡新城投资发展有限公司 Housing and building integrated sewage treatment system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247691A (en) * 2016-07-30 2016-12-21 董超超 Heat circulation unit
CN106196601A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of energy-conservation waste water reclamation hot water constant temperature supply system
CN106196259A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of campus hot water split type constant temperature supply system
CN106196627A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of campus split type supply system of hot water
CN106196598A (en) * 2016-08-29 2016-12-07 广西天涌节能科技股份有限公司 A kind of high-effect waste water reclamation hot water constant temperature supply system
CN106196601B (en) * 2016-08-29 2022-06-10 广西天涌节能科技股份有限公司 Energy-conserving waste water recovery hot water constant temperature supply system
CN106196627B (en) * 2016-08-29 2022-06-10 广西天涌节能科技股份有限公司 Split type hot water supply system for campus
CN106196598B (en) * 2016-08-29 2022-06-10 广西天涌节能科技股份有限公司 High-effect waste water recovery hot water constant temperature supply system
CN106196259B (en) * 2016-08-29 2022-06-10 广西天涌节能科技股份有限公司 Split type constant temperature supply system of campus hot water
CN109798696A (en) * 2019-01-23 2019-05-24 江苏科技大学 A kind of recycling of industrial wastewater waste heat is the high temperature heat pump system and its control method of working medium to water
CN114251967A (en) * 2021-12-13 2022-03-29 绍兴高新技术产业开发区迪荡新城投资发展有限公司 Housing and building integrated sewage treatment system
CN114251967B (en) * 2021-12-13 2024-03-22 绍兴高新技术产业开发区迪荡新城投资发展有限公司 Housing building integrated sewage treatment system

Similar Documents

Publication Publication Date Title
CN204574237U (en) A kind of system of publilc baths waste water reuse
CN2926914Y (en) Waste heat recovery type heat pump water heater
CN204574617U (en) A kind of publilc baths waste water recycling system with Self-cleaning system
CN203704343U (en) Energy-saving bathing waste heat recovery water heater unit
CN204574616U (en) A kind of heat pump of efficiency utilization publilc baths waste water residual heat
CN204574236U (en) A kind of secondary publilc baths waste water recycling system with Self-cleaning system
CN201110594Y (en) Coupled type energy-saving heating system special for plateau
CN202008184U (en) Instant electric heating type solar heat supply system
CN207893830U (en) A kind of solar energy and burnt gas wall hanging furnace combine hot-water central heating system
CN204574619U (en) A kind of publilc baths waste water recycling system with ancillary heating equipment
CN103528265A (en) Sewage source directly-draining type heat pump system
CN206398983U (en) A kind of publilc baths efficient water-heating device
CN203349574U (en) Heat recovery heat-pump water heater
CN210799287U (en) Novel high-efficient scale control thermostatic type air compressor machine waste heat recovery system
CN104456689A (en) Replaceable phase change heat storage device and waste heat recycling device thereof
CN103591686A (en) Special hot water supply device of air source heat pump energy-saving unit
CN204665664U (en) The publilc baths waste water recycling system that a kind of shower and bathing pool share
CN103528187A (en) Sewage source directly-draining type air conditioning heat pump system
CN203533876U (en) Sewage source direct drainage type air conditioning heat pump system
CN202902612U (en) Two-stage bathing wastewater recovery device
CN203489495U (en) Solar energy and ground source heat pump combined hot water supplying system
CN203010921U (en) Recovery unit for waste heat from waste water
CN204574618U (en) A kind of system of the publilc baths waste water reuse with secondary recovery system
CN204665665U (en) A kind of secondary publilc baths waste water recycling system with ancillary heating equipment
CN203907724U (en) System for using steam condensate to preheat domestic hot water

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 030024, No. 1, No. 1, Chang 2001 Business Plaza, 100 West Street, Wan Berlin District, Shanxi, Taiyuan, Yingze

Patentee after: Shanxi Wen long Sino American ring Polytron Technologies Inc

Address before: 030024, No. 1, No. 1, Chang 2001 Business Plaza, 100 West Street, Wan Berlin District, Shanxi, Taiyuan, Yingze

Patentee before: Shanxi literary composition imperial colliery engineering design Co., Ltd

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of utility model: System for bathhouse waste water reuse

Effective date of registration: 20170913

Granted publication date: 20150819

Pledgee: Taiyuan high tech Zone Science and Technology Branch

Pledgor: Shanxi Wen long Sino American ring Polytron Technologies Inc

Registration number: 2017140000016

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20181220

Granted publication date: 20150819

Pledgee: Taiyuan high tech Zone Science and Technology Branch

Pledgor: Shanxi Wen long Sino American ring Polytron Technologies Inc

Registration number: 2017140000016

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20190403