CN204327082U - 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置 - Google Patents

一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置 Download PDF

Info

Publication number
CN204327082U
CN204327082U CN201420778728.2U CN201420778728U CN204327082U CN 204327082 U CN204327082 U CN 204327082U CN 201420778728 U CN201420778728 U CN 201420778728U CN 204327082 U CN204327082 U CN 204327082U
Authority
CN
China
Prior art keywords
tank body
water
pressure
model
test tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420778728.2U
Other languages
English (en)
Inventor
高喜才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201420778728.2U priority Critical patent/CN204327082U/zh
Application granted granted Critical
Publication of CN204327082U publication Critical patent/CN204327082U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本实用新型公开了一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,包括设置于支架上的试验罐体;罐体内设加装地层结构非亲水性相似材料的地层结构模型,模型内腔贯穿一预制裂隙结构体,模型通过隔水性较强塑料膜包裹,模型顶部设活动推力隔板,底部设隔水板底座;罐体上盖设顶板水压控制加载***、顶板轴向加载控制***和侧向围压控制加载***;下方连通一与水砂收集箱相接的水砂体收集漏斗;预制裂隙结构体设多个传感器;支架上设试验罐体旋转油缸,试验罐体旋转油缸与试验罐体底座相连。通过该装置获取或定量描述加卸载条件下煤系地层裂隙渗流相关参数,为深入研究矿井水灾害机理与防治技术提供了理论基础。

Description

一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置
技术领域
本实用新型属于室内物理相似模拟试验技术领域,涉及一种煤系地层结构大尺度裂隙渗流室内物理相似模拟试验装置,研究不同开采扰动作用下,不同产状结构裂隙变形与渗流耦合作用。
背景技术
地下煤层开采过程中,采场围岩体应力重新分布及储能释放,导致岩体变形、离层和竖向破断,形成的宏观裂隙为含水层中的水(砂)体运动提供有效的储存空间和运移通道,采动裂隙在地下水渗流作用下的进一步扩展、连通导致采动岩体渗流场演化加剧甚至造成局部失稳,影响岩体应力场分布的同时将其涉及到的含水层(体)中的水引入采场,从而导致矿井涌水量突变增加甚至突水,成为近年来矿井生产中的主要动力灾害之一。
煤系地层内部缺陷和裂隙结构与渗流行为异常复杂,煤岩体裂隙渗流机制与定量描述一直是岩土、矿业、地质、石油及天然气工程高度关注的难点问题。开采条件下采动裂隙渗流涉及采动卸荷条件下煤岩体裂隙宏观变形、饱和渗流及其相互耦合作用、煤岩体渗流特性突变等多种复杂机理与影响因素,深刻认识和揭示开挖卸荷作用下煤岩体裂隙结构演化与渗流动力学特性是研究特殊地质条件下煤层顶板突水灾害发生机理的基础科学问题与关键。
由于裂隙介质非均质性、各向异性的特征,在室内建立相应的物理模型实现起来非常困难,开展裂隙介质物理模型模拟试验的研究相对较少。目前的物理模型模拟试验集中在单个平行板裂隙、多组平行或交叉裂隙上,地下水在裂隙中的流动往往呈现优势流或沟槽流,显示出相似模型试验在研究裂隙岩体渗流特性方面具有不可替代的作用,且需要进行更多的模拟实际岩体裂隙的试验方法。考虑裂隙面不规则和填充物的存在,研究地下煤系地层粗糙裂隙的渗流突变机制和裂隙结构的影响,将会为进一步深入研究矿井水灾害机理与防治技术提供理论基础。
实用新型内容
本实用新型提供一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,目的在于通过在试验罐体内填充煤系地层物理相似模拟材料和大尺度混凝土块体结构裂隙的方法,在顶板载荷、顶板水压力、可调节围压的条件下进行加卸载作用下煤系地层大尺度结构裂隙变形与渗流耦合作用过程物理模拟试验,实时采集压力、位移以及水体渗流压力、流量等试验数据,并存储试验数据,分析认识和揭示开采扰动作用下煤系地层裂隙结构变形与渗流动力学特性,该套试验装置可实现多种试验条件,总体操作简单、方便。
为实现上述目的,本实用新型采用了以下技术方案:
一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,包括支架,及设置于支架上的试验罐体;
所述试验罐体内设有加装地层结构非亲水性相似材料的地层结构模型,沿地层结构模型内腔中心轴向贯穿一至模型底部的预制裂隙结构体,加装地层结构非亲水性相似材料的模型通过隔水性较强的塑料膜包裹,地层结构模型顶部设有活动推力隔板,地层结构模型底部设有隔水板底座;所述试验罐体顶部的试验罐体上盖上设有顶板水压控制加载***,试验罐体上部设有顶板轴向加载控制***,试验罐体底部设有侧向围压控制加载***;所述隔水板底座下方连通一水砂体收集漏斗,水砂体收集漏斗与水砂收集箱相接;沿所述预制裂隙结构体自上而下设置有若干个与传感器数据采集与显示装置连接的裂隙结构体环形法向压力传感器、位移计;地层结构模型不同水平位置设置若干水压力和流量传感器水压力和流量传感器;
进一步地,所述试验罐体为圆柱形刚性罐体,耐压强度为12-15MPa,罐体的上盖设有进水阀门和排气阀门,罐体底座上设有进气和排气阀门。
进一步地,所述活动推力隔板和隔水板底座均布有上下连通的透水孔。
进一步地,所述顶板水压控制加载***由水箱、泵组与水压稳压罐体串联构成,水压稳压罐体压力信号变化经压力流量控制器转换分别控制泵、水压稳压罐体输出水流至试验罐体进水阀门。
进一步地,所述试验罐体的上部设有与顶板轴向加载控制***相连的顶板轴向加载气囊,试验罐体的内侧壁与地层结构模型之间设有与侧向围压控制加载***相连的侧向围压加载气囊。
进一步地,所述顶板轴向加载控制***和侧向围压控制加载***,分别由承压气囊、空气压缩设备和压力参数采集与显示装置组成,构成单独控制的加压***。
进一步地,所述地层结构模型通过试验模型模具制作两块混凝土块体,组装形成大尺度结构裂隙,裂隙结构面倾角为0°-45°,上下两个块体上设置锚固点,锚固点通过接入测杆,在裂隙结构内部分阶段布置2~3个小型环形法向应力传感器和水压力和流量传感器,传感器经密封装置连接数据采集器,并接入计算机;所述测杆上还设有预制裂隙结构体变形位移计。
进一步地,所述试验模型模具为三组可拆卸的两块半圆弧形有机玻璃板构成,半圆弧形有机玻璃板外侧设有试验模型模具连接部件。
进一步地,所述试验罐体底座呈椎体状,椎体两端连接在一通过轴承连接的转轴上,罐体椎体底座两侧的一端与试验罐体旋转油缸相连,试验罐体旋转油缸的另一端连接在支架的底座上。
进一步地,所述支架上设有能够使试验罐体做侧向旋转的试验罐体旋转油缸,试验罐体旋转油缸与试验罐体底座相连。
与现有技术比较,本实用新型的优点在于采用在试验箱体内填充煤系地层模拟材料和大尺度结构裂隙方式,在高水压、垂直应力和侧向围压条件下密闭地进行煤系地层大尺度结构裂隙渗流耦合作用物理模拟试验,获取或定量描述加卸载条件下不同粗糙结构裂隙宏观变形、饱和渗流及其相互耦合作用、裂隙渗流特性突变等多种机理与关键参数,能够实现较大尺寸、不同裂隙结构和充填程度的密闭裂隙渗流模拟试验;试验加载***具有水压、载荷各自独立的控制***,更精确、稳定性更优;测试***实现了对应力、孔隙水压力,流量,变形参数的实时监测;能有效认识和揭示开采扰动作用下采动裂隙结构演化与渗流动力学特性,将会为进一步深入研究矿井水灾害机理与防治技术提供理论基础。
下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。
附图说明
图1为本实用新型试验装置结构示意图。
图2为图1的侧视结构示意图。
图3为本实用新型模型结构示意图。
图4为本实用新型试验装置俯视结构示意图。
图中:1-试验罐体上盖;2-顶板轴向加载气囊;3-活动推力隔板;4-试验罐体;5-侧向围压加载气囊;6-隔水板底座;7-支架;8-水砂体收集箱体;9-试验罐体旋转油缸;10-预制裂隙结构体;11-地层结构非亲水性相似材料;12-顶板水压控制加载***;13-顶板轴向加载控制***;14-侧向围压控制加载***;15-试验模型模具连接部件;16-试验模型模具;17-预制裂隙结构体变形位移计;18-裂隙结构体环形法向压力传感器;19-水压力和流量传感器;20-传感器数据采集与显示装置;21-支架底部水砂体收集漏斗。
具体实施方式
下面结合附图及实施例对本实用新型具体实施方法做进一步详细说明。
如图1所示,一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,包括支架7,及设置于支架7上的试验罐体4;
其中,地层结构模拟试验罐体为***的主体结构,整体圆柱形刚性的耐高压、耐腐蚀的刚性罐体,设计的罐体直径为800mm,罐体耐压强度为12-15Mpa。试验罐体顶部的试验罐体上盖1上设有顶板水压控制加载***12,试验罐体上部设有顶板轴向加载控制***13,试验罐体底部设有侧向围压控制加载***14;其上部为试验罐体上盖1和轴向加载气囊2,密封上盖设置有三个进水阀门和排气阀门;中部为试验罐体内腔,内腔上部为活动推力隔板3,下部为隔水板底座6,活动推力隔板3和隔水板底座6均布置有上下连通的透水孔,中间部分为组合体;组合体分为内外两层,内层为可拆卸圆柱体地层结构模型,用来充填地层结构非亲水性相似材料11和埋设若干个通过电缆与传感器数据采集与显示装置20连接的裂隙结构体环形法向压力传感器18和水压力和流量传感器19,并且地层结构模型外设置隔水性较强的塑料膜;地层结构模型***为环形侧向围压加载气囊5,进气和排气阀门位于试验罐体4底座;隔水板底座设有水砂收集漏斗21,下部为水(砂)收集箱8,见图2所示;试验罐体整体结构位于支架7上,下设试验罐体旋转油缸9,试验罐体旋转油缸9与试验罐体4底座相连,能够使整体结构顺时针倾斜0°-90°。
顶板水压控制加载***12由水箱、泵组与水压稳压罐体串联构成,水压稳压罐体压力信号变化经压力流量控制器转换分别控制泵、水压稳压罐体输出水流至试验罐体进水阀门。进水阀门与裂隙结构体端部相连接,对其分级施加水压力,每级压力下均达到稳定的流态,根据现场钻孔高压压水资料及数值分析采场围岩水压力分布特征确定最小水压力数值。
顶板轴向加载控制***13属单独控制的加压***,顶板轴向加载气囊2和侧向围压加载气囊5分别与由加载气囊相连的空气压缩设备和压力参数采集与显示装置构成。在试验中模拟上部垂直荷载,由空气压缩设备输出空气进入顶部轴向加载气囊2,再由活动推力隔板2将载荷均匀分配到圆形试验岩体物理相似材料上,压力加载是通过空气压缩设备上的调压阀分级控制,最大可达15MPa。
侧向围压环形围压加载***14,属单独控制的加压***,分别由环形侧向围压加载气囊5、空气压缩设备和压力参数采集与显示装置组成;在试验模型侧向环形施加荷载,由空气压缩设备输出空气进入环形侧向围压加载气囊5,将载荷均匀分配到圆形试验岩体物理相似材料周围,压力加载是通过空气压缩设备上的调压阀控制,最大可达15MPa。
预制裂隙结构体10,根据采场围岩采动裂隙几何形态、充填结构特征,首先制作具有不同粗糙度表面(1~20)的钢板模具16,试验模型模具16为三组可拆卸的半圆弧形有机玻璃板构成,半圆弧形有机玻璃板外侧设有试验模型模具连接部件15。利用模具在混凝土箱体上制作两块混凝土块体,组装形成大尺度(延展长度1.0m*宽度0.2m)结构裂隙,法向隙宽0.02m~0.10m范围内,裂隙结构面倾角为0°~30°。
裂隙结构体应力变形采集***,由法向压力传感器18、变形位移计17、水压力和流量传感器19连接电缆和传感器数据采集与显示装置20共同组成,首先在上下两个混凝土块体上设置锚固点,锚固点通过接入测杆,再接入位移计;在裂隙结构内部分阶段布置2~3个小型环形法向应力传感器,然后将位移计、传感器连接线经封堵接头导孔中引出连接数据采集器,并接入计算机;数据采集器由一台数字控制转换仪和一个多通道接口组成,用以连接模型内各个压力、位移传感器信号,并保证压力记录与模拟同时同步开始,可以全程完整地记录每一次试验过程中压力位移变化情况。
渗流特性参数采集***,由水压力和流量传感器19、传感器连接电缆和传感器数据采集与显示装置20共同组成,在裂隙结构面不同层位、顶板水压进水口、底板排水口设置水压、水流量传感器,传感器连接线经封堵接头导孔中引出连接数据采集器,并接入计算机,计算机连续记录显示实时压力、流量等关键渗透特性参数信号;为地层结构内部裂隙结构渗流特性与模型外在水压力、不同加卸载条件下的耦合作用分析提供试验数据基础。
如图3、图4所示,试验罐体4底座呈椎体状,椎体两端连接在一通过轴承连接的转轴上,罐体椎体底座两侧的一端与试验罐体旋转油缸9相连,试验罐体旋转油缸9的另一端连接在支架7的底座上。
采用本实用新型加卸载条件下煤系地层裂隙渗流模拟试验装置的试验过程,包括下述步骤:
1)建立模拟试验模型:
根据地质和采矿条件抽象地层组合和构造特征和相似准则,在试验模型模具16内分层地层结构加装地层结构非亲水性相似材料11构成地层结构模型,同时在地层结构模型内部安装一定粗糙度、充填结构和裂隙宽度的预制裂隙结构体,设置通过隔水性较强的塑料膜包裹的预制裂隙结构体10;然后在预制裂隙结构体10中通过锚固点接入测杆,在结构体上若干设置变形位移计17、裂隙结构体内部设置环形法向压力传感器18;在地层结构模型不同水平上设置水压力和流量传感器19,传感器经密封装置连接数据采集器,并接入计算机;
2)卸去地层结构模具,养护地层结构模型,待地层结构模型自然干燥后在地层结构模型外表面增加隔水膜,外层添加环形侧向围压加载气囊5,并接入侧向围压加载控制***14;
3)在地层结构模型上安装试验罐体4,关闭试验罐体4上下所有阀门,排气阀门打开,通过顶板水压控制加载***12自试验罐体上盖1向罐内注水;关闭排气阀门,密闭试压,各传感器测试、监测设备处于工作状态;
4)施加顶板垂直荷载:关闭试验罐体上盖1,打开顶板轴向加载气囊2,启动顶板轴向加载控制***13,逐级施加顶板垂直荷载,直至需要荷载,监测应力、应变数据;
5)施加侧向围压:根据地下煤层开采实际情况估算裂隙结构体周围地应力变化特征,打开侧向围压加载气囊5,启动侧向围压加载控制***14;
6)施加稳定水压力和流量:在控制器上设置好需要的水压力和流量,通过试验控制器启动水压水量控制泵组,直至达到设置水压;
7)数据采集:逐步启闭侧向围压至设定值,同时采集记录罐体内部岩层应力、裂隙结构表面位移、压力以及水渗流压力、流量变化数据的时间历程;
8)模型拆卸和现象观测:打开地层结构模型,按层序拆除模型,分步拍照,记录实验现象;
9)修改试验参数,重复步骤4)~7);
10)数据分析与提炼:将试验过程及采集不同试验数据和信息,建立不同时刻的应力场、位移场和水压力场等,定量描述和分析加卸载条件下不同粗糙结构裂隙宏观变形、饱和渗流及其相互耦合作用、裂隙渗流特性突变多种机理与关键参数的数据库,认识和揭示开采扰动作用下采动裂隙结构演化与渗流动力学特性。
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。

Claims (10)

1.一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,包括支架(7),及设置于支架(7)上的试验罐体(4);
所述试验罐体(4)内设有加装地层结构非亲水性相似材料(11)的地层结构模型,沿地层结构模型内腔中心轴向贯穿一至模型底部的预制裂隙结构体(10),加装地层结构非亲水性相似材料(11)的模型通过隔水性较强的塑料膜包裹,地层结构模型顶部设有活动推力隔板(3),地层结构模型底部设有隔水板底座(6);所述试验罐体顶部的试验罐体上盖(1)上设有顶板水压控制加载***(12),试验罐体上部设有顶板轴向加载控制***(13),试验罐体底部设有侧向围压控制加载***(14);所述隔水板底座(6)下方连通一水砂体收集漏斗(21),水砂体收集漏斗(21)与水砂收集箱(8)相接;沿所述预制裂隙结构体(10)自上而下设置有若干个与传感器数据采集与显示装置(20)连接的裂隙结构体环形法向压力传感器(18)和水压力和流量传感器(19)。
2.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述试验罐体(4)为圆柱形刚性罐体,耐压强度为12-15MPa,罐体的上盖设有进水阀门和排气阀门,罐体底座上设有进气和排气阀门。
3.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述活动推力隔板(3)和隔水板底座(6)均布有上下连通的透水孔。
4.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述顶板水压控制加载***(12)由水箱、泵组与水压稳压罐体串联构成,水压稳压罐体压力信号变化经压力流量控制器转换分别控制泵、水压稳压罐体输出水流至试验罐体进水阀门。
5.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述试验罐体(4)的上部设有与顶板轴向加载控制***(13)相连的顶板轴向加载气囊(2),试验罐体(4)的内侧壁与地层结构模型之间设有与侧向围压控制加载***(14)相连的侧向围压加载气囊(5)。
6.根据权利要求5所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述顶板轴向加载控制***(13)和侧向围压控制加载***(14),分别由承压气囊、空气压缩设备和压力参数采集与显示装置组成,构成单独控制的加压***。
7.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述地层结构模型内部裂隙结构体(10)由两块不同粗糙度表面的混凝土块体组装形成大尺度结构裂隙体,裂隙结构面倾角为0°-45°,上下两个块体上设置锚固点,锚固点通过接入测杆在裂隙结构内部分阶段布置2~3个小型环形法向应力传感器(18)和水压力和流量传感器(19),传感器经密封装置连接数据采集器,并接入计算机;所述测杆上还设有预制裂隙结构体变形位移计(17)。
8.根据权利要求7所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述试验模型模具(16)为三组可拆卸的两块半圆弧形有机玻璃板构成,半圆弧形有机玻璃板外侧设有试验模型模具连接部件(15)。
9.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述试验罐体(4)底座呈椎体状,椎体两端连接在一通过轴承连接的转轴上,罐体椎体底座两侧的一端与试验罐体旋转油缸(9)相连,试验罐体旋转油缸(9)的另一端连接在支架(7)的底座上。
10.根据权利要求1所述的煤系地层结构大尺度裂隙渗流物理相似模拟试验装置,其特征在于,所述支架(7)上设有能够使试验罐体(4)做侧向旋转的试验罐体旋转油缸(9),试验罐体旋转油缸(9)与试验罐体(4)底座相连。
CN201420778728.2U 2014-12-10 2014-12-10 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置 Expired - Fee Related CN204327082U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420778728.2U CN204327082U (zh) 2014-12-10 2014-12-10 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420778728.2U CN204327082U (zh) 2014-12-10 2014-12-10 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置

Publications (1)

Publication Number Publication Date
CN204327082U true CN204327082U (zh) 2015-05-13

Family

ID=53163454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420778728.2U Expired - Fee Related CN204327082U (zh) 2014-12-10 2014-12-10 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置

Country Status (1)

Country Link
CN (1) CN204327082U (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458534A (zh) * 2014-12-10 2015-03-25 西安科技大学 一种加卸载条件下煤系地层裂隙渗流模拟试验装置及方法
CN105181463A (zh) * 2015-10-23 2015-12-23 山东科技大学 一种含水矸石压缩试验装置及其试验方法
CN105259045A (zh) * 2015-11-05 2016-01-20 安徽理工大学 一种承压水下采煤的相似模拟试验装置
CN105319337A (zh) * 2015-11-05 2016-02-10 天地科技股份有限公司 尺寸与倾角可调节式煤矿采场相似模型试验***及方法
CN105738255A (zh) * 2016-02-04 2016-07-06 上海隧道工程有限公司 泥浆在土层中渗透的测试装置及测试方法
CN106018755A (zh) * 2016-07-29 2016-10-12 江苏省地质调查研究院 一种大型地裂缝物理模型的实验***
CN108318345A (zh) * 2018-04-25 2018-07-24 中国石油大学(北京) 多方位角井眼破裂压力测试装置
CN108414417A (zh) * 2018-01-30 2018-08-17 山东科技大学 模拟多孔介质岩体渗透通道流体运移试验***
CN112198080A (zh) * 2020-09-30 2021-01-08 长沙理工大学 考虑动载和侧限的快速测量土水特征曲线的装置及方法
CN115126468A (zh) * 2022-04-19 2022-09-30 中国矿业大学 一种模拟深部煤层高温高压煤炭地下气化实验方法和装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458534A (zh) * 2014-12-10 2015-03-25 西安科技大学 一种加卸载条件下煤系地层裂隙渗流模拟试验装置及方法
CN105181463A (zh) * 2015-10-23 2015-12-23 山东科技大学 一种含水矸石压缩试验装置及其试验方法
CN105259045A (zh) * 2015-11-05 2016-01-20 安徽理工大学 一种承压水下采煤的相似模拟试验装置
CN105319337A (zh) * 2015-11-05 2016-02-10 天地科技股份有限公司 尺寸与倾角可调节式煤矿采场相似模型试验***及方法
CN105319337B (zh) * 2015-11-05 2019-01-04 天地科技股份有限公司 尺寸与倾角可调节式煤矿采场相似模型试验***及方法
CN105738255A (zh) * 2016-02-04 2016-07-06 上海隧道工程有限公司 泥浆在土层中渗透的测试装置及测试方法
CN106018755B (zh) * 2016-07-29 2018-10-23 江苏省地质调查研究院 一种大型地裂缝物理模型的实验***
CN106018755A (zh) * 2016-07-29 2016-10-12 江苏省地质调查研究院 一种大型地裂缝物理模型的实验***
CN108414417A (zh) * 2018-01-30 2018-08-17 山东科技大学 模拟多孔介质岩体渗透通道流体运移试验***
CN108414417B (zh) * 2018-01-30 2020-07-24 山东科技大学 模拟多孔介质岩体渗透通道流体运移试验***
CN108318345A (zh) * 2018-04-25 2018-07-24 中国石油大学(北京) 多方位角井眼破裂压力测试装置
CN108318345B (zh) * 2018-04-25 2024-02-06 中国石油大学(北京) 多方位角井眼破裂压力测试装置
CN112198080A (zh) * 2020-09-30 2021-01-08 长沙理工大学 考虑动载和侧限的快速测量土水特征曲线的装置及方法
CN112198080B (zh) * 2020-09-30 2022-11-29 长沙理工大学 考虑动载和侧限的快速测量土水特征曲线的装置及方法
CN115126468A (zh) * 2022-04-19 2022-09-30 中国矿业大学 一种模拟深部煤层高温高压煤炭地下气化实验方法和装置
CN115126468B (zh) * 2022-04-19 2024-03-05 中国矿业大学 一种模拟深部煤层高温高压煤炭地下气化实验方法和装置

Similar Documents

Publication Publication Date Title
CN204327082U (zh) 一种煤系地层结构大尺度裂隙渗流物理相似模拟试验装置
CN104458534B (zh) 一种加卸载条件下煤系地层裂隙渗流模拟试验装置及方法
WO2022088454A1 (zh) 模拟复杂地质条件下隧道开挖渗流变化的试验***及方法
CN100390357C (zh) 隧道结构、围岩及地下水相互作用的模拟试验台
CN102400714B (zh) 一种高水压、高应力和自动开采的矿井水害综合模拟***及试验方法
CN103995097B (zh) 一种模拟顶管施工引发地层变形的试验方法及装置
CN103089295B (zh) 多煤层联合开采过程中煤层气抽采试验方法
CN106908365A (zh) 一种采动断裂岩体裂隙动态闭合渗流模拟试验装置及方法
CN103114870B (zh) 多场耦合煤层气开采物理模拟试验***
CN102735549B (zh) 多功能真三轴流固耦合压力室
CN102797458B (zh) 用于边底水油藏的三维模拟装置
CN108412472B (zh) 缝洞型碳酸盐岩油藏立体注采模型、模拟***及实验方法
CN103089254B (zh) 多场耦合煤层气开采物理模拟试验管
CN201273190Y (zh) 三轴应力多测压点岩心油藏模拟装置
CN104237025A (zh) 一种封闭钻孔采动破坏模拟试验方法
CN103114827A (zh) 多场耦合煤层气抽采模拟试验方法
CN103711480B (zh) 水平钻进试验装置
CN110593811B (zh) 一种水泥环初始应力状态监测实验方法
CN108571313A (zh) 一种井下套管形变模拟装置及方法
CN107269263A (zh) 一种蠕变地层定向井筒力学行为模拟实验装置与方法
CN202718673U (zh) 用于底水油藏的可视化物理模拟装置
CN208888099U (zh) 一种模拟水砂运移对煤层开采地表沉陷影响的实验装置
CN110082220A (zh) 一种真三轴多孔导向压裂实验装置
CN110578494B (zh) 一种水泥环初始应力状态监测实验装置
CN208473837U (zh) 一种井下套管形变模拟装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150513

Termination date: 20211210