CN202926757U - Load simulation and test system of engineering machine - Google Patents

Load simulation and test system of engineering machine Download PDF

Info

Publication number
CN202926757U
CN202926757U CN 201220601036 CN201220601036U CN202926757U CN 202926757 U CN202926757 U CN 202926757U CN 201220601036 CN201220601036 CN 201220601036 CN 201220601036 U CN201220601036 U CN 201220601036U CN 202926757 U CN202926757 U CN 202926757U
Authority
CN
China
Prior art keywords
hydraulic pump
oil
control valve
pressure control
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201220601036
Other languages
Chinese (zh)
Inventor
胡钟林
邓宇
唐中勇
何松泉
罗鸣
杨晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunward Intelligent Equipment Co Ltd
Original Assignee
Sunward Intelligent Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunward Intelligent Equipment Co Ltd filed Critical Sunward Intelligent Equipment Co Ltd
Priority to CN 201220601036 priority Critical patent/CN202926757U/en
Application granted granted Critical
Publication of CN202926757U publication Critical patent/CN202926757U/en
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

The utility model discloses a load simulation and test system of an engineering machine, which comprises a motive power source, an accelerator controller, a torque rotating speed sensor, a hydraulic pump, a pressure flow rate collecting unit, a proportion overflow valve, a microprocessor and a control computer, wherein the two ends of the torque rotating speed sensor are respectively connected with the motive power source and the hydraulic pump, the installing positions of the pressure sensor or the flow rate sensor comprise a hydraulic pump oil outlet and a proportion overflow valve oil inlet, and the torque rotating speed sensor, the pressure flow rate collecting unit, the accelerator controller, the proportion overflow valve and the control computer are respectively connected with the microprocessor. The oil outlet pressure or the flow rate of the hydraulic pump is controlled by the proportion overflow valve for simulating the load change of a hydraulic motive power system of the engineering machine, and the precise simulation on the transient conditions of the hydraulic pump hydraulic load and the motive power source motive power load of the engineering machine in the actual operation process is realized, so the precision, the consistency and the reproducibility of test experiments are improved.

Description

A kind of engineering machinery load simulation and test system
Technical field
The utility model relates to technical field of engineering machinery, particularly a kind of engineering machinery load simulation and test system.
Background technique
With the performance of the power source of the working efficiency of the engineering machinery of hydraulic pump drive and fuel economy and driving oil hydraulic pump and mate closely related.In the engineer operation of reality, oil hydraulic pump driven force source obtains mechanical energy and is converted into hydraulic pressure potential energy on the one hand; Power source has its different best transition operation point, line or interval when completing transformation of energy from oil hydraulic pump on the other hand.For the service behaviour of betterment works machinery, reach best coupling work, the real work situation of power source and oil hydraulic pump need to be carried out the test of power character and economic testing and matching optimization.Traditional testing experiment method is mainly taked the entrucking actual measurement or is tested by the power measurer fictitious load, workload is large, test is difficult, the cycle is long, cost is high and entrucking is surveyed not only, optimize improving cost high, and due to the variation of manipulating object and the difference of operator's level, make the comparativity of test result and stability all relatively poor; By electric dynamometer or electromotor simulation load owing to having changed the load transfer mode, its poor accuracy, distortion is serious, especially almost can't test the TRANSIENT DYNAMIC RESPONSE situation that affects the engineering machinery working efficiency.
The model utility content
The purpose of this utility model is to provide a kind of engineering machinery load simulation and test system, realize that oil hydraulic pump and power source load on and simulate on test room's stand and matching optimization test, overcome the problem that in entrucking test or other conventionally tests, conformity is poor, precision is low, can not reproduce.
A kind of engineering machinery load simulation and test system, this system comprises power source, throttle control, torque speed sensor, oil hydraulic pump, pressure flow collecting unit, proportional pressure control valve, microprocessor and controls computer;
Described pressure flow collecting unit comprises one or both in pressure transducer or flow transducer at least;
Described torque speed sensor two ends connect with power source and oil hydraulic pump respectively; The mounting point of described pressure transducer comprises arbitrary position between the filler opening of oil hydraulic pump oil outlet and proportional pressure control valve, and the mounting point of described flow transducer comprises between the filler opening of oil hydraulic pump oil outlet and proportional pressure control valve and arbitrary position between proportional pressure control valve and fuel tank;
Described proportional pressure control valve filler opening is connected by the first hydraulic oil pipe with the oil hydraulic pump oil outlet;
Described proportional pressure control valve oil outlet and oil hydraulic pump filler opening respectively by the 3rd hydraulic oil pipe be connected hydraulic oil pipe and be connected with fuel tank;
Described microprocessor all is connected with rotary speed torque sensor, pressure flow collecting unit, throttle control and proportional pressure control valve;
Described control computer is connected with microprocessor.
Described oil hydraulic pump comprises M pump unit, and described pump unit comprises N main pump and/or pioneer pump, and M and N are the integer more than or equal to 1.
Described power source comprises a kind of in the middle of diesel engine, petrol engine and motor at least.
Beneficial effect
A kind of engineering machinery load simulation of the utility model and test system, this system comprises power source, throttle control, torque speed sensor, oil hydraulic pump, pressure flow collecting unit, proportional pressure control valve, microprocessor and controls computer; System architecture is simple, and is reliable and stable; The passing ratio relief valve is controlled the load variations that oil pressure or flow come model engineering mechanical-hydraulic power system that of oil hydraulic pump, not only realized the accurate simulation of the power source dynamic load in the actual job process and oil hydraulic pump fluid power load transient situation to engineering machinery, also can realize simultaneously the accurate simulation of multiple special operation operating mode and work pattern, thereby improve precision, conformity and the reproducibility of testing experiment.
Description of drawings
Fig. 1 is principle schematic of the present utility model;
Fig. 2 is system construction drawing of the present utility model;
Fig. 3 is the simulation of the utility model job load and test result figure;
Fig. 4 is that the utility model is at load impact and prominent simulation and the test result figure that unloads.
Embodiment
The utility model is described in further detail below in conjunction with the drawings and specific embodiments.
Fig. 1 is system principle knot schematic diagram of the present utility model.
Be of the present utility model for concrete application example of excavator as shown in Figure 2, this system comprises throttle control 1, motor 2, torque speed sensor 3, oil hydraulic pump (comprising two main pumps and a pioneer pump) the 4, first hydraulic oil pipe 5, pressure transducer 6, proportional pressure control valve 7, fuel tank 8, the second hydraulic oil pipe 9, the 3rd hydraulic oil pipe 13, microprocessor 10, controls computer 11 and connecting line 12; Wherein the flywheel output terminal of motor 2 is connected with torque sensor 3, the oil hydraulic pump 4 of integrated two main pumps and a pioneer pump is connected with torque sensor 3, two main pumps of oil hydraulic pump 4 with is connected the oil outlet of a pioneer pump and is connected with proportional pressure control valve with pressure transducer 6 by the first hydraulic oil pipe 5 and is connected successively, microprocessor 10 passes through connecting line 12 and is connected with throttle control 1, torque speed sensor 3, pressure transducer 6 and proportional pressure control valve 7.
The working principle that this application example is used is described as follows:
Hydraulic circuit: hydraulic oil after the second hydraulic oil pipe 9 enters oil hydraulic pump 4, enters proportional pressure control valve 7 through oil hydraulic pump 4 superchargings by the first hydraulic oil pipe 5 from fuel tank 8, then flows back to fuel tank 8 through proportional pressure control valve 7 by the 3rd hydraulic oil pipe 13; Can carry out cooling to hydraulic oil at increase condenser between the first hydraulic oil pipe 9 and fuel tank 8 according to the test needs.
working procedure: the instruction of sending according to microprocessor 10, operation by throttle control 1 control engine 2, and drive oil hydraulic pump 4 through torque speed sensor 3, oil hydraulic pump 4 sucks hydraulic oil by the second hydraulic oil pipe 9 from fuel tank 8, hydraulic oil after oil hydraulic pump 4 pressurization from its oil outlet first hydraulic oil pipe 5 of flowing through successively, enter proportional pressure control valve 7 after pressure transducer 6, instruction control ratio relief valve 7 apertures that proportional pressure control valve 7 sends according to controller 10, thereby change the power that oil pressure and oil hydraulic pump 4 absorption motor 2 outputs of oil hydraulic pump 4, simultaneously, microprocessor 10 is by torque speed sensor 3, pressure transducer 6 obtains respectively the power output information of motor 2 and the hydraulic oil output information of oil hydraulic pump 4, feed back to and control computer 11, the load simulation of realization to engineering machinery, moment of torsion and rotating speed that described power output information is power source, hydraulic pressure output information are the pressure of the oil outlet of oil hydraulic pump,
This system can arrange different test parameters and simulate various working.Operating mode has heavy duty, economy and three kinds of operating modes of underloading according to the excavator operation pattern; Test parameters mainly refers to oil pressure, the flow parameter from the Engine torque that gathers in the excavator actual job, rotating speed or oil hydraulic pump output, and for verification experimental verification motor or hydraulic pump works ability and artificial above-mentioned each parameter that arranges; By microprocessor and control computer system is controlled, realize the accurate simulation to the fluid power load of the dynamic load of motor 2 and oil hydraulic pump 4.
As shown in Figure 3, be the analog result of the utility model job load, as can be seen from the figure the sampling of this bench simulation curve and real vehicle is basically identical, and effectively having proved should simulation and validity and the accuracy of test system and method.
this application example has realized that not only test room's stand of the engine power load in the actual job process and oil hydraulic pump fluid power loading condition to engineering machinery accurately simulates, also realized simultaneously the accurate simulation of multiple special operation operating mode and work pattern, as shown in Figure 4, be the utility model impact and prominent analog result figure when unloading situation in loading process, as can be seen from the figure, this bench simulation load curve is basically identical with the actual curve of setting load, except fictitious load except slightly having time-delay, loading procedure with load be set be close to consistent, its loading error rate is less than 0.5%, illustrate that this system and method has improved the precision of testing experiment, conformity, reproducibility and test efficiency and Economy.
Should be noted that, just an application example major component of the present utility model being described of above example explanation all do not explain as the complementary parts as system such as the correlation engine running state in the example practical application and environment information acquisition.Simultaneously, this application example is a case of the present utility model, rather than limits application area of the present utility model or field.

Claims (3)

1. an engineering machinery load is simulated and test system, it is characterized in that: this system comprises power source, throttle control, torque speed sensor, oil hydraulic pump, pressure flow collecting unit, proportional pressure control valve, microprocessor and controls computer;
Described pressure flow collecting unit comprises a kind of in pressure transducer or flow transducer at least;
Described torque speed sensor two ends connect with power source and oil hydraulic pump respectively;
The mounting point of described pressure transducer is arbitrary position between the filler opening of oil hydraulic pump oil outlet and proportional pressure control valve, and the mounting point of described flow transducer is in arbitrary position between the filler opening of oil hydraulic pump oil outlet and proportional pressure control valve or between proportional pressure control valve oil outlet and tank drainback mouth;
Described proportional pressure control valve filler opening is connected by the first hydraulic oil pipe with the oil hydraulic pump oil outlet;
Described proportional pressure control valve oil outlet and oil hydraulic pump filler opening respectively by the 3rd hydraulic oil pipe be connected hydraulic oil pipe and be connected with fuel tank;
Described microprocessor all is connected with rotary speed torque sensor, pressure flow collecting unit, throttle control and proportional pressure control valve;
Described control computer is connected with microprocessor.
2. engineering machinery load according to claim 1 simulation and test system, is characterized in that, described oil hydraulic pump comprises M pump unit, and described pump unit comprises N main pump and/or pioneer pump, and M and N are the integer more than or equal to 1.
3. the simulation of the described engineering machinery load of any one and test system according to claim 1 and 2, is characterized in that, described power source comprises a kind of in the middle of diesel engine, petrol engine and motor at least.
CN 201220601036 2012-11-14 2012-11-14 Load simulation and test system of engineering machine Withdrawn - After Issue CN202926757U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220601036 CN202926757U (en) 2012-11-14 2012-11-14 Load simulation and test system of engineering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220601036 CN202926757U (en) 2012-11-14 2012-11-14 Load simulation and test system of engineering machine

Publications (1)

Publication Number Publication Date
CN202926757U true CN202926757U (en) 2013-05-08

Family

ID=48216721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220601036 Withdrawn - After Issue CN202926757U (en) 2012-11-14 2012-11-14 Load simulation and test system of engineering machine

Country Status (1)

Country Link
CN (1) CN202926757U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966628A (en) * 2012-11-14 2013-03-13 山河智能装备股份有限公司 Load simulating and testing system and method for engineering machinery
CN103759946A (en) * 2013-12-30 2014-04-30 天津雷沃动力有限公司 Testing device for testing PTO output capacity of engine
CN104500469A (en) * 2015-01-05 2015-04-08 戴纳派克(中国)压实摊铺设备有限公司 Engineering machine engine loading system and engineering machine
CN104563856A (en) * 2015-01-15 2015-04-29 山河智能装备股份有限公司 Quick soil throwing control system for rotary drilling rig
CN109883744A (en) * 2019-02-22 2019-06-14 柳州北斗星液压科技有限公司 A kind of device and method for excavator thermal equilibrium analysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966628A (en) * 2012-11-14 2013-03-13 山河智能装备股份有限公司 Load simulating and testing system and method for engineering machinery
CN102966628B (en) * 2012-11-14 2015-01-21 山河智能装备股份有限公司 Load simulating and testing system and method for engineering machinery
CN103759946A (en) * 2013-12-30 2014-04-30 天津雷沃动力有限公司 Testing device for testing PTO output capacity of engine
CN104500469A (en) * 2015-01-05 2015-04-08 戴纳派克(中国)压实摊铺设备有限公司 Engineering machine engine loading system and engineering machine
CN104563856A (en) * 2015-01-15 2015-04-29 山河智能装备股份有限公司 Quick soil throwing control system for rotary drilling rig
CN109883744A (en) * 2019-02-22 2019-06-14 柳州北斗星液压科技有限公司 A kind of device and method for excavator thermal equilibrium analysis
CN109883744B (en) * 2019-02-22 2021-05-07 柳州北斗星液压科技有限公司 Device and method for analyzing thermal balance of excavator

Similar Documents

Publication Publication Date Title
CN102966628B (en) Load simulating and testing system and method for engineering machinery
CN202926757U (en) Load simulation and test system of engineering machine
CN103308325B (en) Drive system of electric automobile semi-physical emulation platform
CN105022383B (en) Marine Medium-speed Diesel Engine high pressure co-rail system hardware-in-loop simulation test platform and test method
CN105697353A (en) Comprehensive testing device for fault simulation and state detection for hydraulic pump under variable working condition
CN204405336U (en) Hybrid electric vehicle complete vehicle simulation table
CN104535337B (en) Hydraulic hybrid vehicle simulation test bed
CN109058234B (en) Performance test system and detection method for hydraulic system of electric proportional control valve compensation excavator
CN101487501B (en) Semi-physical real-time hybrid simulation platform and simulation method for single-PC wet-type dual-clutch transmission
CN101995337A (en) System and method for testing acceleration performance of turbocharger
CN113864289A (en) Simulation platform of hydraulic system of hybrid electric vehicle and implementation method thereof
CN104481971B (en) Torque-type hydraulic pump and hydraulic motor power recovery test platform
CN201251505Y (en) MATLAB/SIMULINK-based function test system of AMT electronic control unit
CN100533100C (en) Device for testing cooling performance of liquid controlled stepless speed changer
CN103064404B (en) Power matching controlling simulation testing system of automobile crane
CN102156232B (en) System and method for testing electromagnetic valve of automatic transmission
CN204403051U (en) A kind of torsion type oil hydraulic pump and oil hydraulic motor Power Recovery test platform
CN114483563B (en) Four-quadrant hydraulic pump performance optimization test system and method
CN109556875B (en) Testing platform for marine low-speed diesel engine cylinder oiling system
CN103759946A (en) Testing device for testing PTO output capacity of engine
CN207894596U (en) A kind of Reservoir Charge-Up valve reliability test system
CN112945593B (en) Hydraulic simulation test system and test method for non-road mechanical working conditions
CN102052365A (en) Test bench for hydraulic excavator pump valve
CN204612947U (en) Excavator simulation loading test macro
CN202382943U (en) Comprehensive testing system for hydraulic equipment

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130508

Effective date of abandoning: 20150121

RGAV Abandon patent right to avoid regrant