CN202622793U - 一种新型的全驱动复合吸附式爬壁机器人 - Google Patents

一种新型的全驱动复合吸附式爬壁机器人 Download PDF

Info

Publication number
CN202622793U
CN202622793U CN 201220265845 CN201220265845U CN202622793U CN 202622793 U CN202622793 U CN 202622793U CN 201220265845 CN201220265845 CN 201220265845 CN 201220265845 U CN201220265845 U CN 201220265845U CN 202622793 U CN202622793 U CN 202622793U
Authority
CN
China
Prior art keywords
wheel
steering
turntable
driving
installing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201220265845
Other languages
English (en)
Inventor
桂仲成
陈博翁
张帆
李永龙
肖唐杰
姜周
徐立强
冯涛
吴建东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Corp
Original Assignee
Dongfang Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Corp filed Critical Dongfang Electric Corp
Priority to CN 201220265845 priority Critical patent/CN202622793U/zh
Application granted granted Critical
Publication of CN202622793U publication Critical patent/CN202622793U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本实用新型属于特种机器人技术领域,具体来说是一种新型的全驱动复合吸附式爬壁机器人,包括爬行机构,爬行机构包括采用驱动转向一体化磁轮的前轮模块、采用永磁间隙吸附装置的后轮模块、连接前后轮的车架和安装在车架上的电机驱动控制器;爬行机构为三轮结构,三轮均为驱动轮,采用前轮受控转向、依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向。本实用新型的优点在于爬行装置采用接触式磁轮吸附和非接触式间隙吸附的复合方式,三轮结构,所有车轮均为驱动轮,采用冗余控制转向方式,依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向,通过前轮转向角度的精确控制提高了爬壁机器人转向精度。

Description

一种新型的全驱动复合吸附式爬壁机器人
技术领域
本实用新型属于特种机器人技术领域,具体来说是一种新型的全驱动复合吸附式爬壁机器人。
背景技术
磁吸附爬壁机器人是特种机器人的一种,是设计用来在恶劣、危险、极限情况下、在导磁壁面上进行特定作业如焊接、打磨、检查、检测等的一种自动化机械装置,并且越来越受到人们的重视。目前磁吸附爬壁机器人已在核工业、石化工业、建筑工业、消防部门、造船业等铁磁性结构的生产施工中得到了广泛的应用。
爬壁机器人必须具有两个基本功能:壁面吸附功能和移动功能。但是,这两者又是矛盾的:机器人的负载能力越强,要求爬壁机器人和导磁壁面间的吸附力越大,但这也造成了爬壁机器人在运动时的阻力越大,爬壁机器人的吸附能力和移动性能是矛盾的。
现有的磁吸附爬壁机器人主要有磁足式爬壁机器人,磁轮式爬壁机器人,履带式磁吸附爬壁机器人,间隙吸附式爬壁机器人。
磁足式爬壁机器人是靠磁足提供的吸附力吸附在壁面上,由于其行走特点决定了其吸附力必须可调,多采用电磁铁提供吸附力,如日本日立公司研制的八足磁吸附爬壁机器人。但是,磁足式爬壁机器人步法控制比较复杂,运动灵活性不好;另外,采用电磁铁提供吸附力,不仅需要消耗电能,还存在意外断电造成的安全隐患。
磁轮式爬壁机器人是靠磁轮的吸附力吸附在导磁壁面上。申请日为2004年1月5日、申请号为200410016429.6的专利文献涉及的“磁轮吸附式爬壁机器人”,其技术方案为:包括左轮结构、支承架、检测结构、滚轮、码盘、位置校正结构、右轮结构,左轮结构和右轮结构相同,对称固定在支承架的两侧,检测结构固定在支承架的前边,滚轮和码盘固定在支承架的中间,位置校正结构连接在支承架最右侧,其可适应壁面的曲率,绕支承架作一定角度的转动,在机器人运动过程中校正机器人的位姿。本发明可完成石油筒壁等危险环境中的焊缝检测。上述发明的特点是运动灵活性较好,但是由于磁轮的有效吸附面积小,磁能利用率不高,负载能力较差。
履带式磁吸附爬壁机器人是靠安装在履带式移动机构上的吸块吸附在导磁壁面上。申请日为2000年1月26日、申请号为00200795.9的专利文献涉及的“履带式永磁爬壁机构”,其主要技术方案为:本爬行机构由车体,动力部分和行走机构三部分组成,车体是一个箱形柔性结构,在内部安装动力部分,动力部分是两个电动机及其减速机构,其输出轴分别带动车体两侧的主动链轮。行走机构安置在车体两侧,由主动链轮,导轮,永磁铁及链条张紧机构组成,每一主动链轮带动三根封闭式链条,在三根链条之间的两个间隙处,沿链条全长视负重均匀布置永磁铁。其特点是负载能力强,但是其运动灵活性较差,特别是在进行转向运动时,由于履带和导磁壁面之间接触面积大,转向阻力大,转向半径大,转向灵活性差。
间隙吸附式爬壁机器人是靠安装在底盘上的与导磁壁面间具有一定间隙的永磁体吸附在导磁壁面上。申请日为2005年10月8日、申请号为200510086383.X的专利文献涉及的“轮式非接触磁吸附爬壁机器人”,其技术方案为:包括轮式移动机构和永磁吸附装置,轮式移动机构包括底盘、安装在底盘上的驱动机构、由驱动机构驱动的驱动轮。所述驱动轮对称布置,采用差动驱动方式,依靠驱动轮的差速实现在导磁壁面上的转向;永磁吸附装置安装在所述底盘上,所述永磁吸附装置和导磁壁面间是非接触的,磁能利用率高,吸附能力强。上述专利特点是吸附力大,但是由于所有的驱动轮都是不能相对车体转向的圆柱轮,转向阻力大,转向灵活性差。
综上所述,现有的爬壁机器人或者是运动灵活性较好而负载能力差,或者是负载能力强而运动灵活性差,未能较好地解决爬壁机器人移动和吸附的矛盾,综合性能不好。
实用新型内容
本实用新型的目的是为克服已有技术在运动灵活性和负载能力两方面综合性能的不足,解决爬壁机器人吸附和移动的矛盾,设计一种全驱动复合吸附式爬壁机器人,使其在具有强负载能力的同时能在壁面上灵活运动,综合性能较好,从而解决现有技术中存在的问题。
为实现上述目的,本实用新型的技术方案如下:
一种新型的全驱动复合吸附式爬壁机器人,包括爬行机构,其特征在于:所述爬行机构包括采用驱动转向一体化磁轮的前轮模块、采用永磁间隙吸附装置的后轮模块、连接前后轮的车架和安装在车架上的电机驱动控制器;爬行机构为三轮结构,三轮均为驱动轮,采用前轮受控转向、依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向。
后轮模块包括底盘、环绕车轮安装在后轮底盘上的永磁体、穿过底盘的两后轮、带动车轮的减速器、驱动减速器的直流电机,后轮模块的两后轮对称布置。 
前轮模块为驱动转向一体化磁轮,包括永磁体和车轮,前轮的永磁体采用沿厚度方向磁化的环形永磁体。
进一步的,驱动转向一体化磁轮装置具体包括车体固定框架、转台框架、转向驱动机构、车轮驱动机构和滚轮;所述车体固定框架和转台框架之间设置有一个被动的侧倾转动结构,转台框架和磁轮之间设置有独立转向结构;所述侧倾转动结构包括在转台框架前、后安装的侧倾转轴,以及在车体固定框架安装的自润滑滑动轴承;所述转台框架包括依次相连的转台下支撑板、转台支撑立柱、转台盖板和转台上支撑板;所述转向驱动机构包括转向电机安装板和安装在其上的转向驱动电机,转向驱动电机采用直流无刷盘式电机,电机输出轴接行星齿轮减速器,再通过一级锥齿轮传动和一级圆柱齿轮传动带动转向轴;所述车轮驱动机构包括驱动电机安装板和安装在其上的车轮滚动驱动减速电机,电机输出轴接行星齿轮减速器,通过同步带传动带动磁轮滚动;所述滚轮为磁轮,所述转向驱动电机和车轮滚动驱动减速电机互为独立的驱动结构;侧倾转轴一端安装在车体固定框架上,另一端转台下支撑板连接,转台上支撑板、转台支撑立柱和转台下支撑板连接,转台盖板与转台上支撑板连接,圆锥滚子轴承安装在两个支撑板上,转向轴支承在圆锥滚子轴承上,转向轴与60齿直齿齿轮连接,角度传感器输入轴与转向轴固接,角度传感器支撑杆与转台上支撑板连接,角度传感器与角度传感器支撑杆连接,转向电机安装板与转台上支撑板连接,转向减速电机与转向电机安装板连接,20齿直齿锥齿轮固接在转向减速电机输出轴上,与之相啮合的40齿直齿锥齿轮连接安装在锥齿轮轴上,锥齿轮轴由安装在转台上支撑板的第一深沟球轴承支承,锥齿轮轴的另一侧与19齿直齿齿轮通过平键联接,19齿直齿齿轮与60齿直齿齿轮啮合,转向轴的下端与转向基板连接,车轮左侧安装板、车轮右侧安装板、驱动电机安装板与转向基板连接,驱动减速电机与驱动电机安装板连接,小同步带轮轴与驱动减速电机的输出轴固接,小同步带轮通过平键联接安装在小同步带轮轴上,前轮模块永磁体和车轮轭铁通过平键联接安装在车轮轴上,车轮轴通过第一深沟球轴承和第二深沟球轴承支承在车轮左侧安装板和车轮右侧安装板之间,大同步带轮通过平键联接安装在车轮轴的另一侧,大同步带轮和小同步带轮之间由同步带联接,张紧辊轮与张紧辊轮支撑杆之间通过螺钉连接,张紧辊轮支撑杆通过螺钉安装在车轮左侧安装板上,驱动减速电机与车轮轴之间通过同步带传动;转向驱动机构还包括转向轴,转向轴下部安装有车轮驱动机构及滚轮;所述转向轴线与车轮轴线垂直正交;所述驱动减速电机为直流有刷电机。
进一步的,所述的永磁间隙吸附装置环绕后轮安装在底盘上,所述永磁间隙吸附装置和导磁壁面间是非接触式的,通过调节底盘和导磁壁面之间的距离设定所述永磁吸附装置和导磁壁面间的气隙。
进一步的,所述底盘为低碳钢,作为轭铁与环绕车轮安装在后轮底盘上的永磁体一起构成磁路。
进一步的,减速器包括第一级行星齿轮减速器和第二级涡轮蜗杆减速器,直流电机后接二级减速器带动车轮,第二级涡轮蜗杆减速器通过螺钉连接安装在后轮底盘上。
所述驱动转向一体化磁轮具体结构为:侧倾转轴一端安装在车体固定框架上,另一端转台下支撑板连接,转台上支撑板、转台支撑立柱和转台下支撑板连接,转台盖板与转台上支撑板连接,圆锥滚子轴承安装在两个支撑板上,转向轴支承在圆锥滚子轴承上,转向轴与60齿直齿齿轮连接,角度传感器输入轴与转向轴固接,角度传感器支撑杆与转台上支撑板连接,角度传感器与角度传感器支撑杆连接,转向电机安装板与转台上支撑板连接,转向减速电机与转向电机安装板连接,20齿直齿锥齿轮固接在转向减速电机输出轴上,与之相啮合的40齿直齿锥齿轮连接安装在锥齿轮轴上,锥齿轮轴由安装在转台上支撑板的第一深沟球轴承支承,锥齿轮轴的另一侧与19齿直齿齿轮通过平键联接,19齿直齿齿轮与60齿直齿齿轮啮合,转向轴的下端与转向基板连接,车轮左侧安装板、车轮右侧安装板、驱动电机安装板与转向基板连接,驱动减速电机与驱动电机安装板连接,小同步带轮轴与驱动减速电机的输出轴固接,小同步带轮通过平键联接安装在小同步带轮轴上,前轮模块永磁体和车轮轭铁通过平键联接安装在车轮轴上,车轮轴通过第一深沟球轴承和第二深沟球轴承支承在车轮左侧安装板和车轮右侧安装板之间,大同步带轮通过平键联接安装在车轮轴的另一侧,大同步带轮和小同步带轮之间由同步带联接,张紧辊轮与张紧辊轮支撑杆之间通过螺钉连接,张紧辊轮支撑杆通过螺钉安装在车轮左侧安装板上,驱动减速电机与车轮轴之间通过同步带传动,转向驱动机构还包括转向轴,转向轴下部安装有车轮驱动机构及滚轮,所述转向轴线与车轮轴线垂直正交。
 本实用新型的优点在于:
1、本实用新型所述爬行装置采用接触式磁轮吸附(即驱动转向一体化磁轮)和非接触式间隙吸附(即包括永磁间隙吸附装置)的复合方式,三轮结构,所有车轮均为驱动轮,采用冗余控制转向方式,依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向,通过前轮转向角度的精确控制提高了爬壁机器人转向精度,运动灵活性好,可绕车体中心转向,最小转向半径为0,机器人可在导磁壁面可靠吸附并实现自主灵活移动。
2、转向机构引入冗余控制方式,依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向,通过前轮转向角度的精确控制提高了爬壁机器人转向精度。
3、本实用新型同时采用了磁轮和永磁间隙吸附装置,前轮采用磁轮,在保证吸附力的同时提高了结构的紧凑性,同时环绕后轮在底盘上安装了永磁间隙吸附装置,保证爬壁机器人具有强负载能力。   
4、驱动转向一体化磁轮设置了独立的转向自由度且使转向轴线与车轮轴线垂直正交,可以实现车轮的独立转向,提高爬壁机器人运动灵活性。
5、驱动转向一体化磁轮设置了被动的侧倾自由度且通过侧倾限制块限制侧倾转角在正负10度以内,使爬壁机器人具有了较好的曲面适应能力。
6、驱动转向一体化磁轮的侧倾限制块通过机械限位实现限制侧倾角度的功能。
7、驱动转向一体化磁轮的转向结构和车轮滚动都设置有独立的驱动机构。
附图说明
图1是本实用新型的整体结构示意图。
图2是本实用新型的后轮的结构示意图。
图3为永磁间隙吸附装置结构示意图。
图4为驱动转向一体化磁轮结构示意图。
图5为前轮过转向轴和锥齿轮轴的剖视图。
图6为过前轮车轮轴剖视图。
附图中:前轮模块1,车架2,驱动控制器3,后轮模块4,永磁体5,底盘6,车轮7,涡轮蜗杆减速器8,行星齿轮减速器9,直流电机10,同步带11,减速器12,转向基础板13,20齿直齿锥齿轮14,电机16,转向轴17,60齿圆柱齿轮18,19齿圆柱齿轮19,锥齿轮轴20,40齿直齿锥齿轮21,前轮模块永磁体22,和车轮轭铁23。
具体实施方式
一种新型的全驱动复合吸附式爬壁机器人包括爬行机构,所述爬行机构包括采用驱动转向一体化磁轮的前轮模块、采用永磁间隙吸附装置的后轮模块、连接前后轮的车架和安装在车架上的电机驱动控制器;爬行机构为三轮结构,三轮均为驱动轮,采用前轮受控转向、依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向。后轮模块包括底盘、环绕车轮安装在后轮底盘上的永磁体、穿过底盘的两后轮、带动车轮的减速器、驱动减速器的直流电机,后轮模块的两后轮对称布置。前轮模块为驱动转向一体化磁轮,包括永磁体和车轮,前轮的永磁体采用沿厚度方向磁化的环形永磁体。
驱动转向一体化磁轮装置具体包括车体固定框架、转台框架、转向驱动机构、车轮驱动机构和滚轮;所述车体固定框架和转台框架之间设置有一个被动的侧倾转动结构,转台框架和磁轮之间设置有独立转向结构;所述侧倾转动结构包括在转台框架前、后安装的侧倾转轴,以及在车体固定框架安装的自润滑滑动轴承;所述转台框架包括依次相连的转台下支撑板、转台支撑立柱、转台盖板和转台上支撑板;所述转向驱动机构包括转向电机安装板和安装在其上的转向驱动电机,转向驱动电机采用直流无刷盘式电机,电机输出轴接行星齿轮减速器,再通过一级锥齿轮传动和一级圆柱齿轮传动带动转向轴;所述车轮驱动机构包括驱动电机安装板和安装在其上的车轮滚动驱动减速电机,电机输出轴接行星齿轮减速器,通过同步带传动带动磁轮滚动;所述滚轮为磁轮,所述转向驱动电机和车轮滚动驱动减速电机互为独立的驱动结构;侧倾转轴一端安装在车体固定框架上,另一端转台下支撑板连接,转台上支撑板、转台支撑立柱和转台下支撑板连接,转台盖板与转台上支撑板连接,圆锥滚子轴承安装在两个支撑板上,转向轴支承在圆锥滚子轴承上,转向轴与60齿直齿齿轮连接,角度传感器输入轴与转向轴固接,角度传感器支撑杆与转台上支撑板连接,角度传感器与角度传感器支撑杆连接,转向电机安装板与转台上支撑板连接,转向减速电机与转向电机安装板连接,20齿直齿锥齿轮固接在转向减速电机输出轴上,与之相啮合的40齿直齿锥齿轮连接安装在锥齿轮轴上,锥齿轮轴由安装在转台上支撑板的第一深沟球轴承支承,锥齿轮轴的另一侧与19齿直齿齿轮通过平键联接,19齿直齿齿轮与60齿直齿齿轮啮合,转向轴的下端与转向基板连接,车轮左侧安装板、车轮右侧安装板、驱动电机安装板与转向基板连接,驱动减速电机与驱动电机安装板连接,小同步带轮轴与驱动减速电机的输出轴固接,小同步带轮通过平键联接安装在小同步带轮轴上,前轮模块永磁体和车轮轭铁通过平键联接安装在车轮轴上,车轮轴通过第一深沟球轴承和第二深沟球轴承支承在车轮左侧安装板和车轮右侧安装板之间,大同步带轮通过平键联接安装在车轮轴的另一侧,大同步带轮和小同步带轮之间由同步带联接,张紧辊轮与张紧辊轮支撑杆之间通过螺钉连接,张紧辊轮支撑杆通过螺钉安装在车轮左侧安装板上,驱动减速电机与车轮轴之间通过同步带传动;转向驱动机构还包括转向轴,转向轴下部安装有车轮驱动机构及滚轮;所述转向轴线与车轮轴线垂直正交;所述驱动减速电机为直流有刷电机。
永磁间隙吸附装置环绕后轮安装在底盘上,所述永磁间隙吸附装置和导磁壁面间是非接触式的,通过调节底盘和导磁壁面之间的距离设定所述永磁吸附装置和导磁壁面间的气隙。底盘为低碳钢,作为轭铁与环绕车轮安装在后轮底盘上的永磁体一起构成磁路。减速器包括第一级行星齿轮减速器和第二级涡轮蜗杆减速器,直流电机后接二级减速器带动车轮,第二级涡轮蜗杆减速器通过螺钉连接安装在后轮底盘上。
下面结合附图进一步详细描述本实用新型。
图1是全驱动复合吸附式爬壁机器人的整体三维模型图。图1所示全驱动复合吸附式爬壁机器人由四部分构成,包括采用驱动转向一体化磁轮的前轮模块1、采用永磁间隙吸附装置的后轮模块4、连接前后轮的车架2和安装在车架上的电机驱动控制器3。
图2是后轮的三维模型图。其中,后轮底盘6采用低碳钢(如Q235)制造,除作为支撑后轮结构的功能外,作为轭铁与环绕车轮安装在后轮底盘6上的永磁体5一起构成磁路的一部分。直流电机10后接二级减速器带动车轮7,第一级为行星齿轮减速器9,第二级为涡轮蜗杆减速器8,涡轮蜗杆减速器通过螺钉连接安装在后轮底盘6上。
永磁间隙吸附装置如图3所示,由12块厚度方向充磁的钕铁硼永磁体组成,每个后轮各布置6块永磁体, N极和S极交错排列构成磁路,环绕后轮安装在底盘上,所述永磁间隙吸附装置和导磁壁面间是非接触的,通过调节底盘和导磁壁面之间的距离设定所述永磁吸附装置和导磁壁面间的气隙。
图4是前轮的三维模型图,图5是前轮过转向轴和锥齿轮轴的剖视图,图6是过前轮车轮轴的剖视图。其中,直流无刷电机及行星齿轮减速器9经过20齿直齿锥齿轮14和40齿直齿锥齿轮21传动带动锥齿轮轴20旋转,锥齿轮轴20再通过19齿圆柱齿轮19和60齿圆柱齿轮18传动带动转向轴17旋转,转向轴17与转向基础板13通过螺钉联接固定。前轮驱动电机及减速器12采用直流有刷电机和行星齿轮减速器,通过同步带11传动带动前轮。前轮为磁轮,结构见图6。磁轮由1块永磁体和2块轭铁构成。所述永磁体采用沿厚度方向磁化的环形永磁体,永磁体可采用高性能永磁材料如NdFeB等制造,轭铁采用低碳钢(如Q235等)制造。
驱动转向一体化磁轮的一种实施方式为,侧倾转轴一端由安装在车体固定框架上的滑动轴承支承,另一端与转台下支撑板通过螺纹联接固接,转台上支撑板、转台支撑立柱和转台下支撑板通过螺钉连接,转台盖板与转台上支撑板通过螺钉连接,两个圆锥滚子轴承面对面安装在两个支撑板上,转向轴支承在这两个圆锥滚子轴承上,转向轴与60齿直齿齿轮通过平键连接,角度传感器输入轴与转向轴固接,角度传感器支撑杆与转台上支撑板通过螺钉连接,角度传感器与角度传感器支撑杆通过螺钉连接,转向电机安装板与转台上支撑板通过螺钉连接,转向减速电机与转向电机安装板通过螺钉连接,20齿直齿锥齿轮固接在转向减速电机输出轴上,与之相啮合的40齿直齿锥齿轮通过平键联接安装在锥齿轮轴上,锥齿轮轴由安装在转台上支撑板的第一深沟球轴承支承,锥齿轮轴的另一侧与19齿直齿齿轮通过平键联接,19齿直齿齿轮与60齿直齿齿轮啮合,转向轴的下端与转向基板通过螺钉连接,车轮左侧安装板、车轮右侧安装板、驱动电机安装板与转向基板通过螺钉连接,驱动减速电机与驱动电机安装板通过螺钉连接,小同步带轮轴与驱动减速电机的输出轴固接,小同步带轮通过平键联接安装在小同步带轮轴上,前轮模块永磁体和车轮轭铁通过平键联接安装在车轮轴上,车轮轴通过第一深沟球轴承和第二深沟球轴承支承在车轮左侧安装板和车轮右侧安装板之间,大同步带轮通过平键联接安装在车轮轴的另一侧,大同步带轮和小同步带轮之间由同步带联接,张紧辊轮与张紧辊轮支撑杆之间通过螺钉连接,张紧辊轮支撑杆通过螺钉安装在车轮左侧安装板上。磁轮包括前轮模块永磁体和车轮轭铁。

Claims (5)

1.一种新型的全驱动复合吸附式爬壁机器人,包括爬行机构,其特征在于:所述爬行机构包括采用驱动转向一体化磁轮的前轮模块(1)、采用永磁间隙吸附装置的后轮模块(4)、连接前后轮的车架(2)和安装在车架(2)上的电机(16)驱动控制器(3);爬行机构为三轮结构,三轮均为驱动轮,采用前轮受控转向、依靠两后轮的差速及前轮的受控转向实现在导磁壁面上的转向;
后轮模块(4)包括底盘(6)、环绕车轮(7)安装在后轮底盘(6)上的永磁体(5)、穿过底盘(6)的两后轮、带动车轮(7)的减速器(12)、驱动减速器(12)的直流电机(10),后轮模块(4)的两后轮对称布置;
前轮模块(1)为驱动转向一体化磁轮,包括永磁体(5)和车轮(7),前轮的永磁体(5)采用沿厚度方向磁化的环形永磁体(5)。
2.根据权利要求1所述的一种新型的全驱动复合吸附式爬壁机器人,其特征在于:驱动转向一体化磁轮装置具体包括车体固定框架、转台框架、转向驱动机构、车轮驱动机构和滚轮;所述车体固定框架和转台框架之间设置有一个被动的侧倾转动结构,转台框架和磁轮之间设置有独立转向结构;所述侧倾转动结构包括在转台框架前、后安装的侧倾转轴,以及在车体固定框架安装的自润滑滑动轴承;所述转台框架包括依次相连的转台下支撑板、转台支撑立柱、转台盖板和转台上支撑板;所述转向驱动机构包括转向电机安装板和安装在其上的转向驱动电机,转向驱动电机采用直流无刷盘式电机,电机输出轴接行星齿轮减速器(9),再通过一级锥齿轮传动和一级圆柱齿轮传动带动转向轴(17);所述车轮驱动机构包括驱动电机安装板和安装在其上的车轮滚动驱动减速电机,电机输出轴接行星齿轮减速器(9),通过同步带(11)传动带动磁轮滚动;所述滚轮为磁轮,所述转向驱动电机和车轮滚动驱动减速电机互为独立的驱动结构;侧倾转轴一端安装在车体固定框架上,另一端转台下支撑板连接,转台上支撑板、转台支撑立柱和转台下支撑板连接,转台盖板与转台上支撑板连接,圆锥滚子轴承安装在两个支撑板上,转向轴(17)支承在圆锥滚子轴承上,转向轴(17)与60齿直齿齿轮连接,角度传感器输入轴与转向轴(17)固接,角度传感器支撑杆与转台上支撑板连接,角度传感器与角度传感器支撑杆连接,转向电机安装板与转台上支撑板连接,转向减速电机与转向电机安装板连接,20齿直齿锥齿轮(14)固接在转向减速电机输出轴上,与之相啮合的40齿直齿锥齿轮(21)连接安装在锥齿轮轴(20)上,锥齿轮轴(20)由安装在转台上支撑板的第一深沟球轴承支承,锥齿轮轴(20)的另一侧与19齿直齿齿轮通过平键联接,19齿直齿齿轮与60齿直齿齿轮啮合,转向轴(17)的下端与转向基板连接,车轮左侧安装板、车轮右侧安装板、驱动电机安装板与转向基板连接,驱动减速电机与驱动电机安装板连接,小同步带轮轴与驱动减速电机的输出轴固接,小同步带轮通过平键联接安装在小同步带轮轴上,前轮模块永磁体(22)和车轮轭铁(23)通过平键联接安装在车轮轴上,车轮轴通过第一深沟球轴承和第二深沟球轴承支承在车轮左侧安装板和车轮右侧安装板之间,大同步带轮通过平键联接安装在车轮轴的另一侧,大同步带轮和小同步带轮之间由同步带联接,张紧辊轮与张紧辊轮支撑杆之间通过螺钉连接,张紧辊轮支撑杆通过螺钉安装在车轮左侧安装板上,驱动减速电机与车轮轴之间通过同步带(11)传动;转向驱动机构还包括转向轴(17),转向轴(17)下部安装有车轮驱动机构及滚轮;所述转向轴(17)线与车轮轴线垂直正交;所述驱动减速电机为直流有刷电机。
3.根据权利要求1所述的一种新型的全驱动复合吸附式爬壁机器人,其特征在于:所述的永磁间隙吸附装置环绕后轮安装在底盘(6)上,所述永磁间隙吸附装置和导磁壁面间是非接触式的,通过调节底盘(6)和导磁壁面之间的距离设定所述永磁吸附装置和导磁壁面间的气隙。
4.根据权利要求3所述的一种新型的全驱动复合吸附式爬壁机器人,其特征在于:所述底盘(6)为低碳钢,作为轭铁与环绕车轮安装在后轮底盘(6)上的永磁体(5)一起构成磁路。
5.根据权利要求4所述的一种新型的全驱动复合吸附式爬壁机器人,其特征在于:减速器包括第一级行星齿轮减速器(9)和第二级涡轮蜗杆减速器(8),直流电机(10)后接二级减速器带动车轮,第二级涡轮蜗杆减速器(8)通过螺钉连接安装在后轮底盘(6)上。
CN 201220265845 2012-06-07 2012-06-07 一种新型的全驱动复合吸附式爬壁机器人 Expired - Lifetime CN202622793U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220265845 CN202622793U (zh) 2012-06-07 2012-06-07 一种新型的全驱动复合吸附式爬壁机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220265845 CN202622793U (zh) 2012-06-07 2012-06-07 一种新型的全驱动复合吸附式爬壁机器人

Publications (1)

Publication Number Publication Date
CN202622793U true CN202622793U (zh) 2012-12-26

Family

ID=47376032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220265845 Expired - Lifetime CN202622793U (zh) 2012-06-07 2012-06-07 一种新型的全驱动复合吸附式爬壁机器人

Country Status (1)

Country Link
CN (1) CN202622793U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673670A (zh) * 2012-06-07 2012-09-19 中国东方电气集团有限公司 一种新型的全驱动复合吸附式爬壁机器人
CN104791578A (zh) * 2015-04-13 2015-07-22 浙江大学 具有变螺距螺线型爬行能力的管道机器车
CN108481301A (zh) * 2018-06-11 2018-09-04 东北大学 一种基于五自由度机械臂的真空检漏机器人

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673670A (zh) * 2012-06-07 2012-09-19 中国东方电气集团有限公司 一种新型的全驱动复合吸附式爬壁机器人
CN102673670B (zh) * 2012-06-07 2013-12-25 中国东方电气集团有限公司 一种新型的全驱动复合吸附式爬壁机器人
CN104791578A (zh) * 2015-04-13 2015-07-22 浙江大学 具有变螺距螺线型爬行能力的管道机器车
CN108481301A (zh) * 2018-06-11 2018-09-04 东北大学 一种基于五自由度机械臂的真空检漏机器人

Similar Documents

Publication Publication Date Title
CN102673670B (zh) 一种新型的全驱动复合吸附式爬壁机器人
CN102689296B (zh) 一种新型的差动驱动复合吸附式爬壁机器人
CN202622792U (zh) 一种新型的差动驱动复合吸附式爬壁机器人
CN202624434U (zh) 具有小折叠尺寸机械手臂的全驱动磁吸附式多功能爬壁机器人
CN102672704B (zh) 具有小折叠尺寸机械手臂的差动驱动磁吸附式多功能爬壁机器人
CN102699893B (zh) 具有多自由度机械手臂的差动驱动磁吸附式多功能爬壁机器人
CN102689295B (zh) 具有多自由度机械手臂的全驱动磁吸附式多功能爬壁机器人
CN102673671A (zh) 一种复合磁吸附式视频检测爬壁机器人
CN102700646B (zh) 具有小折叠尺寸机械手臂的全驱动磁吸附式爬壁机器人
CN102673672B (zh) 一种用于磁吸附爬壁机器人的驱动转向一体化磁轮装置
CN107600214B (zh) 一种适用于变曲率壁面移动的爬壁作业机器人
CN202608930U (zh) 一种复合磁吸附式视频检测爬壁机器人
CN202243767U (zh) 磁吸附式爬壁机器人
CN205971575U (zh) 可直角壁面自主过渡的磁吸附轮式爬壁机器人
CN202686557U (zh) 一种用于磁吸附爬壁机器人的驱动转向一体化磁轮装置
CN102672315A (zh) 一种自主移动式双面双弧焊接机器人***
WO2014043841A1 (zh) 履带式全方位移动平台
US20220289405A1 (en) Multi-purpose planet rover
CN202805181U (zh) 具有多自由度机械手臂的全驱动磁吸附式多功能爬壁机器人
CN106608306A (zh) 一种爬壁机器人
CN202622793U (zh) 一种新型的全驱动复合吸附式爬壁机器人
CN202753150U (zh) 具有多自由度机械手臂的差动驱动磁吸附式多功能爬壁机器人
CN106428281B (zh) 磁吸附爬壁机器人
CN202686558U (zh) 一种用于磁吸附爬壁机器人的磁吸附万向轮装置
CN103495968B (zh) 一种移动焊接机器人底盘机构

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20121226

Effective date of abandoning: 20131225

RGAV Abandon patent right to avoid regrant