CN202421353U - 配电网故障检测*** - Google Patents

配电网故障检测*** Download PDF

Info

Publication number
CN202421353U
CN202421353U CN 201120493761 CN201120493761U CN202421353U CN 202421353 U CN202421353 U CN 202421353U CN 201120493761 CN201120493761 CN 201120493761 CN 201120493761 U CN201120493761 U CN 201120493761U CN 202421353 U CN202421353 U CN 202421353U
Authority
CN
China
Prior art keywords
voltage
phase high
phase
distribution network
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201120493761
Other languages
English (en)
Inventor
刘玉平
吴保锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN TECHRISE ELECTRONICS CO Ltd
Original Assignee
SHENZHEN TECHRISE ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN TECHRISE ELECTRONICS CO Ltd filed Critical SHENZHEN TECHRISE ELECTRONICS CO Ltd
Priority to CN 201120493761 priority Critical patent/CN202421353U/zh
Application granted granted Critical
Publication of CN202421353U publication Critical patent/CN202421353U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

本实用新型提供一种配电网故障检测***,该配电网故障检测***包括分别用于对A、B、C相高压线路进行实时电流信号采样的A、B、C相高压电网检测仪及一个低压检测终端。每个高压电网检测仪中均包括一个2.4G无线通信模块,A、C相高压电网检测仪通过2.4G无线通信模块将电流采样数据分别传输至B相高压电网检测仪,该B相高压电网检测仪通过比较前后多次电流有效值检测出该A、B、C三相高压线路的故障状况,进而将该电流有效值及故障状况通过微功率无线信号进行传输。该低压检测终端将三相高压线路的电流有效值与该低压检测终端测量的低压侧的电流有效值进行比对,从而检测出低压侧的用户是否存在窃电行为,进而上报该检测结果。

Description

配电网故障检测***
技术领域
本实用新型涉及电学领域,具体涉及一种对电力***配电网进行故障检测的***。
背景技术
目前,我国的配电网是小电流接地***,单相接地故障是配电网发生频率最高的故障,为提高供电的可靠性,一般在发生单相接地故障后允许***继续运行一两个小时。但这种故障发生后,另外两相电压就要升高,将严重影响其绝缘状况。因此快速判断单相接地区段并排除故障显得尤为重要。
目前常见的判断单相接地故障的方法很多,例如,中国发明公开号为CN1349103A的专利申请揭示一种通过检测零序电流突变来检测单相接地故障的方法。具体而言,其是在单相接地故障发生后通过追忆故障发生前后各检测点的数据记录,迅速完成故障前后的零序电流的数据记录工作,通过故障前后是否有零序电流的突变来判断是否发生单相接地故障。
在该专利申请所揭示的检测方法中,各检测点的数据是通过追忆的方法提取的,因此难以及时判断当前线路是否发生异常,从而容易导致故障上报延误。
实用新型内容
有鉴于此,提供一种配电网故障检测***,其可实时采集配电网的电流信号进行综合分析获悉配电网的工作状况,并及时上报故障状况以进行检修。
为实现上述实用新型目的,提供一种配电网故障检测***,该配电网包括A、B、C三相高压线路、变压器、低压用户线路,该配电网故障检测***包括:
一个用于对A相高压线路进行实时电流信号采样,并通过2.4G无线通信模块将采样信号传输给B相高压电网检测仪的A相高压电网检测仪,该A相高压电网检测仪安装在A相高压线路上;
一个用于对B相高压线路进行实时电流信号采样,并通过2.4G无线通信模块接收A、C相高压电网检测仪的电流采样信号的B相高压电网检测仪,该B相高压电网检测仪根据A、B、C三相的电流采样信号计算出A、B、C三相高压线路的电流有效值及零序电流,并通过比较前后多次电流有效值检测出该A、B、C三相高压线路的故障状况,进而将电流有效值及故障状况通过微功率无线数据传输给低压检测终端,该B相高压电网检测仪安装在B相高压线路上;
一个用于对C相高压线路进行实时电流信号采样,并通过2.4G无线通信模块将采样信号传输给B相高压电网检测仪的C相高压电网检测仪,该C相高压电网检测仪安装在C相高压线路上;
一个用于对低压用户线路进行实时电流信号进行采样,通过微功率无线信号接收该三相高压线路的电流有效值及故障状况,并通过多次比较低压用户侧电流有效值及高压线路电流有效值,进而检测出低压侧用户是否存在窃电行为,进而将该检测结果通过GPRS无线通信网络上报给主站的低压检测终端,该低压检测终端安装在低压用户进线前端。
进一步地,该A、B、C相高压电网检测仪分别包括一个用于传输电流采样数据的2.4G无线通信模块,该2.4G无线通信模块的传输速率为2Mbit/s。
进一步地,该B相高压电网检测仪及该低压检测终端分别包括一个用于传输微功率无线数据的微功率无线数据传输模块。
进一步地,该微功率无线数据传输模块的工作频率为470MHz~510MHz,可根据需要配置为不同的频率。
进一步地,该低压检测终端包括一个用于收发GPRS无线通信信号的GPRS无线通信模块。
进一步地,该A、B、C三相高压线路的故障状况包括单相接地故障、两相短路故障、三相不平衡故障。
进一步地,该低压检测终端通过比较高压电网检测仪测量的电流与其自身检测到的电流信号,以判断低压侧是否有窃电行为。
相对于现有技术,所提供的电网故障检测***通过A、B、C三相高压电网检测仪分别对A、B、C三相高压线路进行电流信号采样并计算电流有效值,进而通过比较前后多次电流有效值,可检测出该A、B、C三相高压线路的故障状况;另外,由于A、C相高压电网检测仪的电流采样数据通过2.4G无线通信模块传输至该B相高压电网检测仪,而电流有效值通过微功率无线信号传输至低压检测终端,并且低压检测终端的检测结果通过无线通信网络进行上报,因此,通过该电网故障检测***可及时判断当前高压线路是否发生异常,并及时上报故障情况以调动人力物力进行维修。
附图说明
图1是本实用新型实施例提供的配电网故障检测***的结构示意图;
图2是图1所述的配电网故障检测***在实际应用环境中的连接示意图。
具体实施方式
下面将结合附图,以对本实用新型实施例作进一步的详细说明。
请一起参阅图1及图2,本实用新型实施例提供一种配电网故障检测***100,用于对配电网的故障进行检测,并将检测结果上报至主站15。本实施例中,配电网包括A、B、C三相高压线路。
如图1所示,该配电网故障检测***100包括一个A相高压电网检测仪11、一个B相高压电网检测仪12、一个C相高压电网检测仪13、一个低压检测终端14、以及三个2.4G无线通信模块21、22、23,其中,A相高压电网检测仪11安装在A相高压线路上,B相高压电网检测仪12安装在B相高压线路上,C相高压电网检测仪13安装在C相高压线路上,该三个2.4G无线通信模块21、22、23分别连接该A、B、C相高压电网检测仪11、12、13。具体地,在本实施例中,该2.4G无线通信模块21、22、23(即工作频率在2.4G且收发为一体的数据传输模块)的传输速率为2Mbit/s。
另外,在本实施例中,该配电网故障检测***100还包括二个微功率无线数据传输模块120、140,其中,微功率无线数据传输模块120连接该B相高压电网检测仪12,另外,微功率无线数据传输模块140连接该低压检测终端14,该两个微功率无线数据传输模块120、140的工作频率分别为470MHz~510MHz。
本实施例中的A、B、C相高压电网检测仪11、12、13组成一个三相高压电网检测仪***,且该三相高压电网检测仪***为一主二从模式,即以安装在B相高压线路上的B相高压电网检测仪12为主模式,以分别安装在A、C相高压线路上的A、C相高压电网检测仪11、13为从模式。
图2示意出配电网故障检测***100的实际应用,本实施例的实际应用环境包括两个配电网(每个配电网包括A、B、C三相高压线路)。可以理解的是,在其它变更实施方式中,该电网故障检测***100的应用环境可包括多个电网故障检测***100,如三个、四个等,并不局限于具体实施例。
工作时,该低压检测终端14通常安装在低压用户进线前端,A、B、C相高压电网检测仪11、12、13分别对A、B、C相高压线路上的电流进行实时采样,其中,A、C相高压电网检测仪11、13将其电流采样数据分别通过2.4G无线通信模块21、22、23传输至B相高压电网检测仪12。本实施例中,为了避免数据冲突,A、C相高压电网检测仪11、13分别在各自的过零点(电流信号是一个带正负的正弦波,过零点即电流经过零点的时候示出的值)将上一周期的电流采样数据发送给B相高压电网检测仪12,在此过程中,2.4G无线通信模块21、23分别用作电流采样数据发送模块,2.4G无线通信模块22用作电流采样数据的接收模块。
进一步地,B相高压电网检测仪12综合其所获得的B相电流采样数据以及A、C相电流采样数据进行分析(如进行波形处理)计算出A、B、C三相的实时电流有效值(或进一步包括零序电流有效值),并通过比较前后多次电流有效值检测出该A、B、C三相高压线路的故障状况,如判断是否发生单相接地故障、两相短路故障、三相不平衡等异常事件,并将该电流有效值(或进一步包括零序电流有效值)及异常事件通过该微功率无线数据传输模块120传输至该低压检测终端14。
该低压检测终端14用于对低压用户线路进行实时电流信号进行采样,通过微功率无线数据传输模块140接收该A、B、C三相高压线路的电流有效值及故障状况,并多次比较低压用户侧电流有效值及高压线路电流有效值,进而检测出低压侧(即低端检测终端位置)用户是否存在窃电行为,进而将该检测结果及时上报给主站15。本实施例中,该低压检测终端14可通过一个与其相连接的GPRS(通用分组无线服务技术(General Packet Radio Service))无线通信模块24上报给主站15。
本实用新型所提供的电网故障检测***100通过A、B、C三相高压电网检测仪11、12、13分别对A、B、C三相高压线路进行电流信号采样并计算电流有效值,进而通过比较前后多次电流有效值,可检测出该A、B、C三相高压线路的故障状况;另外,由于A、C相高压电网检测仪11、13的电流采样数据通过2.4G无线通信模块21、22、23传输至该B相高压电网检测仪12,而电流有效值通过微功率无线信号120、140传输至低压检测终端14,并且低压检测终端14的检测结果通过无线通信网络进行上报,因此,通过该电网故障检测***100可及时判断当前高压线路是否发生异常,并及时上报故障情况以调动人力物力进行维修。
另外,本领域技术人员还可在本实用新型精神内作其它变化,当然,这些依照本实用新型精神所作的变化,都应包含在本实用新型所要求保护的范围之内。

Claims (7)

1.一种配电网故障检测***,该配电网包括A、B、C三相高压线路、变压器、低压用户线路,该配电网故障检测***包括:
一个用于对A相高压线路进行实时电流信号采样,并通过2.4G无线通信模块将采样信号传输给B相高压电网检测仪的A相高压电网检测仪,该A相高压电网检测仪安装在A相高压线路上;
一个用于对B相高压线路进行实时电流信号采样,并通过2.4G无线通信模块接收A、C相高压电网检测仪的电流采样信号的B相高压电网检测仪,该B相高压电网检测仪根据A、B、C三相的电流采样信号计算出A、B、C三相高压线路的电流有效值及零序电流,并通过比较前后多次电流有效值检测出该A、B、C三相高压线路的故障状况,进而将电流有效值及故障状况通过微功率无线数据传输给低压检测终端,该B相高压电网检测仪安装在B相高压线路上;
一个用于对C相高压线路进行实时电流信号采样,并通过2.4G无线通信模块将采样信号传输给B相高压电网检测仪的C相高压电网检测仪,该C相高压电网检测仪安装在C相高压线路上;
一个用于对低压用户线路进行实时电流信号进行采样,通过微功率无线信号接收该三相高压线路的电流有效值及故障状况,并通过多次比较低压用户侧电流有效值及高压线路电流有效值,进而检测出低压侧用户是否存在窃电行为,进而将该检测结果通过GPRS无线通信网络上报给主站的低压检测终端,该低压检测终端安装在低压用户进线前端。
2.如权利要求1所述的配电网故障检测***,其特征在于,该B相高压电网检测仪及该低压检测终端分别包括一个用于传输微功率无线数据的微功率无线数据传输模块。
3.如权利要求2所述的配电网故障检测***,其特征在于,该微功率无线数据传输模块的工作频率为470MHz~510MHz。
4.如权利要求1所述的配电网故障检测***,其特征在于,该A、B、C相高压电网检测仪分别包括一个用于传输电流采样数据的2.4G无线通信模块,该2.4G无线通信模块的传输速率为2Mbit/s。
5.如权利要求1所述的配电网故障检测***,其特征在于,该低压检测终端包括一个用于收发GPRS无线通信信号的GPRS无线通信模块。
6.如权利要求1所述的配电网故障检测***,其特征在于,该A、B、C三相高压线路的故障状况包括单相接地故障、两相短路故障、三相不平衡故障。
7.如权利要求1所述的配电网故障检测***,其特征在于,该低压检测终端通过比较高压电网检测仪测量的电流与其自身检测到的电流信号,以判断低压侧是否有窃电行为。
CN 201120493761 2011-12-01 2011-12-01 配电网故障检测*** Expired - Fee Related CN202421353U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201120493761 CN202421353U (zh) 2011-12-01 2011-12-01 配电网故障检测***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201120493761 CN202421353U (zh) 2011-12-01 2011-12-01 配电网故障检测***

Publications (1)

Publication Number Publication Date
CN202421353U true CN202421353U (zh) 2012-09-05

Family

ID=46746106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201120493761 Expired - Fee Related CN202421353U (zh) 2011-12-01 2011-12-01 配电网故障检测***

Country Status (1)

Country Link
CN (1) CN202421353U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944804A (zh) * 2012-11-13 2013-02-27 航天科工深圳(集团)有限公司 一种架空线路故障检测***
CN103235235A (zh) * 2013-03-28 2013-08-07 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103439625A (zh) * 2013-09-03 2013-12-11 北京豪锐达科技有限公司 一种电缆***故障定位及负荷监控方法
CN104569628A (zh) * 2014-12-30 2015-04-29 国家电网公司 配电变压器高压缺相远方报警装置
CN106546858A (zh) * 2016-11-29 2017-03-29 国网湖北省电力公司黄石供电公司 一种基于暂态分量的配电网故障类型的检测方法和装置
CN107677933A (zh) * 2017-11-21 2018-02-09 桂林师范高等专科学校 配电网故障检测装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944804A (zh) * 2012-11-13 2013-02-27 航天科工深圳(集团)有限公司 一种架空线路故障检测***
CN103235235A (zh) * 2013-03-28 2013-08-07 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103235235B (zh) * 2013-03-28 2015-09-09 北京昊创瑞通电气设备有限公司 一种架空线路接地故障监测的方法及装置
CN103439625A (zh) * 2013-09-03 2013-12-11 北京豪锐达科技有限公司 一种电缆***故障定位及负荷监控方法
CN104569628A (zh) * 2014-12-30 2015-04-29 国家电网公司 配电变压器高压缺相远方报警装置
CN106546858A (zh) * 2016-11-29 2017-03-29 国网湖北省电力公司黄石供电公司 一种基于暂态分量的配电网故障类型的检测方法和装置
CN106546858B (zh) * 2016-11-29 2020-02-18 国网湖北省电力公司黄石供电公司 一种基于暂态分量的配电网故障类型的检测方法
CN107677933A (zh) * 2017-11-21 2018-02-09 桂林师范高等专科学校 配电网故障检测装置

Similar Documents

Publication Publication Date Title
Farughian et al. Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks
CN202421353U (zh) 配电网故障检测***
US10910826B2 (en) Voltage derivative and zero-sequence broken conductor detection
CN106771870A (zh) 一种配电网接地故障定位方法及***
CN201408236Y (zh) 配电网故障定位装置
CN102064537B (zh) 基于电子互感器的单相接地故障判断处理方法
CN105445691A (zh) 一种用电信息采集设备故障综合诊断***
CN108303614B (zh) 一种10kV电缆网小电流接地***故障定位***及方法
CN103472425B (zh) 一种小电流选线装置性能试验平台的应用方法
CN103712551A (zh) 配电网变压器低压绕组变形在线监测装置及方法
CN202815129U (zh) 新型电压互感器二次回路多点接地检测器
CN104297628A (zh) 含dg的配电网的区段故障检测与定位方法
CN103048577A (zh) 一种无线传感避雷器在线监测***
CN102540009A (zh) 一种配电网故障定位***
CN105388355A (zh) 一种运用gps同步的地网分流矢量测试***及测试方法
CN204228885U (zh) 电力***公共回路的多点接地故障在线监测仪
CN204154848U (zh) 一种电压互感器二次回路多点接地故障在线监测装置
CN203825142U (zh) 供电线路故障定位仪
Al-Ghannam et al. Development of open (broken) conductor detection system for high resistivity areas
CN103050907A (zh) 一种直流输电***共用接地极安全检修方法
CN103675569B (zh) 架空线路接地故障的检测装置及***
CN108051693A (zh) 一种基于tas装置的提高接地故障判断准确性的方法
CN102830327A (zh) 小电流接地***单相接地故障线的判别方法和装置
CN111257691A (zh) 配网线路单相高阻接地故障检测方法、装置
CN204287384U (zh) 一种微机型小电流接地选线控制装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20151201

EXPY Termination of patent right or utility model