CN202363902U - 一种用于对微网能量进行管理的*** - Google Patents

一种用于对微网能量进行管理的*** Download PDF

Info

Publication number
CN202363902U
CN202363902U CN2011205335855U CN201120533585U CN202363902U CN 202363902 U CN202363902 U CN 202363902U CN 2011205335855 U CN2011205335855 U CN 2011205335855U CN 201120533585 U CN201120533585 U CN 201120533585U CN 202363902 U CN202363902 U CN 202363902U
Authority
CN
China
Prior art keywords
power
information
electric meter
data
intelligent electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2011205335855U
Other languages
English (en)
Inventor
郜士其
杨宇全
迟福建
杨磊
林昌年
张鹏
王庆平
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
Beijing Kedong Electric Power Control System Co Ltd
Tianjin Electric Power Corp
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
Beijing Kedong Electric Power Control System Co Ltd
Tianjin Electric Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, Beijing Kedong Electric Power Control System Co Ltd, Tianjin Electric Power Corp filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN2011205335855U priority Critical patent/CN202363902U/zh
Application granted granted Critical
Publication of CN202363902U publication Critical patent/CN202363902U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本实用新型属于配电网调度及管理领域,提供了一种用于对微网能量进行管理的***,智能电表采集微网***各负荷的电量信息,智能终端接收所述智能电表采集的电量信息数据,并实时将所采集数据利用以太网进行输出,微网***控制器接收所述智能终端输出的信息数据,对所述智能终端输出地数据信息数据进行整理,根据预先设定的微网控制策略进行逻辑判断,获得微网控制判据执行指令,并将控制指令传输到所述智能终端,实现了分布式电源优化控制、能量经济调度、可再生能源出力预测、无功优化和电压控制、需求侧响应、即插即用、并网和孤岛转换等应用功能,体现出智能电网坚强可靠、抵御攻击、经济性高的特点,具有重要的推广示范作用。

Description

一种用于对微网能量进行管理的***
技术领域
本实用新型属于配电网调度及管理领域,尤其涉及一种用于对微网能量进行管理的***。
背景技术
分布式电源接入配电***之后,使配电网从原来的单一受电结构变为多电源结构,给电力***的电压波动、谐波、继电保护等带来很大影响。分布式电源对电网而言是个不可控源,微网***将负荷和分布式电源看作一个整体,在外网故障的时候转到孤岛运行模式,提高供电可靠性,尤其在电网发生严重故障时可向重要负荷独立供电。
目前的微网管理技术没有实现分布式电源优化控制、能量经济调度、可再生能源出力预测、需求侧响应和即插即用等功能,严重削弱了微网***带来的环境效益和经济效益。
发明内容
本实用新型提供了一种用于对微网能量进行管理的***,旨在解决目前的微网管理技术没有实现分布式电源优化控制、能量经济调度、可再生能源出力预测、需求侧响应和即插即用等功能,严重削弱了微网***带来的环境效益和经济效益的问题。
本实用新型的目的在于提供一种用于对微网能量进行管理的***,该***包括:
用于采集照明负荷、重要负荷、无功补偿装置、少量动力负荷、市电并网的电量信息,利用Modbus RTU协议将实时数据进行输出的智能电表;
用于将直流电转换为微网***母线的交流电,并将其工作信息数据进行输出的逆变器;
用于接收所述智能电表采集的电量信息数据、所述逆变器输出的工作信息数据、母线运行数据及二次设备保护信息实时数据,并实时将所采集数据利用以太网进行输出的智能终端;
用于接收所述智能终端输出的信息数据,对所述智能终端输出地数据信息数据进行整理,根据预先设定的微网控制策略进行逻辑判断,获得微网控制判据执行指令,并将控制指令传输到所述智能终端的微网***控制器;
用于根据接收到的实时数据全面监视整个微网***设备的运行情况的后台微网能量管理***。
进一步,所述***进一步包括:
用于接收所述智能终端输出的微网***控制器的控制指令,控制接触器、断路器、二次设备保护装置进行相应动作的动作执行模块。
进一步,所述智能电表包括:
用于采集照明负荷的电量信息的照明负荷智能电表;
用于采集重要负荷的电量信息的重要负荷智能电表;
用于采集无功补偿装置的电量信息的无功补偿智能电表;
用于采集少量动力负荷的电量信息的少量动力智能电表;
用于采集市电并网的电量信息的市电并网智能电表;
用于采集蓄电池储能的电量信息的储能智能电表;
用于采集光伏发电的电量信息的光伏智能电表;
用于采集风力发电的电量信息的风力智能电表。
进一步,所述逆变器包括:
用于将蓄电池的直流电转换为微网***母线上的交流电的储能并网逆变器;
用于将光伏产生的直流电转换为微网***母线的交流电的光伏发电逆变器;
用于将风力产生的直流电转换为微网***母线的交流电的风力发电逆变器。
进一步,所述智能终端进一步包括:
用于接收所述储能并网逆变器、光伏发电逆变器及风力发电逆变器输出的工作信息数据,并对所述工作信息数据进行输出的第一智能终端;
用于接收所述照明负荷智能电表、重要负荷智能电表、无功补偿智能电表、少量动力智能电表、市电并网智能电表输出的电量信息数据,并对所述电量信息数据进行输出的第二智能终端;
用于接收所述储能智能电表、光伏智能电表、风力智能电表输出的电量信息数据,并对所述电量信息数据进行输出的第三智能终端;
进一步,所述储能并网逆变器采用可实现对蓄电池充放电管理及具有动态无功补偿功能双向储能逆变器。
本实用新型提供的用于对微网能量进行管理的***,智能电表采集电量信息,利用RS485总线Modbus RTU协议将实时数据上传至智能终端,智能终端一方面循环采集智能电表数据、逆变器数据、母线运行、二次设备保护信息实时数据等,并实时将所采集数据利用以太网上传到微网***控制器,另一方面接收微网***控制器通过以太网TCP/IP协议下发的微网控制策略指令信息,解析指令信息获取控制指令,控制由接触器、断路器、二次设备保护装置构成动作执行模块进行相应动作,微网***控制器一方面接收所连接的各个智能终端上传数据,整理数据,并根据预先设定的微网控制策略进行逻辑判断,得到微网控制判据执行指令后,返回控制指令给相应智能终端,使分布式电源及微网成为电网接纳、利用可再生能源的有效载体,进一步促进能源的梯级利用,优化能源结构,提升电网在发展低碳经济中的功能及作用,实现了分布式电源优化控制、能量经济调度、可再生能源出力预测、无功优化和电压控制、需求侧响应、即插即用、并网和孤岛转换等应用功能,体现出智能电网坚强可靠、抵御攻击、经济性高的特点,具有重要的推广示范作用。
附图说明
图1是本实用新型实施例提供的用于对微网能量进行管理的***的结构框图;
图2是本实用新型实施例提供的用于对微网能量进行管理的方法的流程图;
图3是利用本实用新型实施例进行充电管理的实现方法的流程图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定发明。
图1示出了本实用新型实施例提供的用于对微网能量进行管理的***的结构。为了便于说明,仅示出了与本实用新型相关的部分。
该***包括:
智能电表11,用于采集照明负荷、重要负荷、无功补偿装置、少量动力负荷、市电并网的电量信息,利用RS485总线Modbus RTU协议将实时数据进行输出;
逆变器12,用于将直流电转换为微网***母线的交流电,并将其工作信息数据进行输出;
智能终端13,用于接收智能电表11采集的电量信息数据、逆变器12输出的工作信息数据、母线运行数据及二次设备保护信息实时数据,并实时将所采集数据利用以太网进行输出;
微网***控制器14,用于接收智能终端13输出的信息数据,对智能终端13输出地数据信息数据进行整理,根据预先设定的微网控制策略进行逻辑判断,获得微网控制判据执行指令,并将控制指令传输到智能终端13;
后台微网能量管理***15,用于根据接收到的实时数据全面监视整个微网***设备的运行情况,满足运行人员操作时直观、便捷、安全、可靠的需要。
在本实用新型实施例中,该***进一步包括:
动作执行模块16,用于接收智能终端13输出的微网***控制器14的控制指令,控制接触器、断路器、二次设备保护装置进行相应动作。
在本实用新型实施例中,智能电表11包括:
照明负荷智能电表111,用于采集照明负荷的电量信息;
重要负荷智能电表112,用于采集重要负荷的电量信息;
无功补偿智能电表113,用于采集无功补偿装置的电量信息;
少量动力智能电表114,用于采集少量动力负荷的电量信息;
市电并网智能电表115,用于采集市电并网的电量信息;
储能智能电表116,用于采集蓄电池储能的电量信息;
光伏智能电表117,用于采集光伏发电的电量信息;
风力智能电表118,用于采集风力发电的电量信息。
在本实用新型实施例中,逆变器12包括:
储能并网逆变器121,用于将蓄电池的直流电转换为微网***母线上的交流电;
光伏发电逆变器122,用于将光伏产生的直流电转换为微网***母线的交流电;
风力发电逆变器123,用于将风力产生的直流电转换为微网***母线的交流电。
在本实用新型实施例中,智能终端13进一步包括:
第一智能终端131,用于接收储能并网逆变器121、光伏发电逆变器122及风力发电逆变器123输出的工作信息数据,并对工作信息数据进行输出;
第二智能终端132,用于接收照明负荷智能电表111、重要负荷智能电表112、无功补偿智能电表113、少量动力智能电表114、市电并网智能电表115输出的电量信息数据,并对电量信息数据进行输出;
第三智能终端133,用于接收储能智能电表116、光伏智能电表117、风力智能电表118输出的电量信息数据,并对电量信息数据进行输出;
在本实用新型实施例中,储能并网逆变器121采用可实现对蓄电池充放电管理及具有动态无功补偿功能双向储能逆变器。
图2示出了本实用新型实施例提供的用于对微网能量进行管理的方法的流程。该方法包括以下步骤:
在步骤S201中,智能电表11采集照明负荷、重要负荷、无功补偿装置、少量动力负荷、市电并网的电量信息,利用RS485总线Modbus RTU协议将实时数据进行输出;
在步骤S202中,逆变器12将直流电转换为微网***母线的交流电,并将其工作信息数据进行输出;
在步骤S203中,智能终端13接收智能电表11采集的电量信息数据、逆变器12输出的工作信息数据、母线运行数据及二次设备保护信息实时数据,并实时将所采集数据利用以太网进行输出;
在步骤S204中,微网***控制器14接收智能终端13输出的信息数据,对智能终端13输出地数据信息数据进行整理,根据预先设定的微网控制策略进行逻辑判断,获得微网控制判据执行指令,并将控制指令传输到智能终端13;
在步骤S205中,后台微网能量管理***15根据接收到的实时数据全面监视整个微网***设备的运行情况,满足运行人员操作时直观、便捷、安全、可靠的需要。
在本实用新型实施例中,该方法进一步包括:
动作执行模块16接收智能终端13输出的微网***控制器14的控制指令,控制接触器、断路器、二次设备保护装置进行相应动作。
在本实用新型实施例中,双向储能逆变器12对蓄电池进行管理的实现方法为:
当蓄电池向电网回馈电能时,调节回馈的有功功率,电池电压值低于标幺值90%时,电池停止放电;
当蓄电池吸收电能时,通过接口对蓄电池预充、快充、均充、浮充的电压进行控制。
如图3所示,在本实用新型实施例中,双向储能逆变器12对蓄电池进行充电管理的实现方法为:
在步骤S301中,设置充电参数电压U1、电压U2、电压U3、电流I、时间T,且电压U1<电压U2,电压U2<电压U3;
在步骤S302中,根据***运行情况对充电参数电压U1、电压U2、电压U3、电流I、时间T进行动态控制和修改;
在步骤S303中,蓄电池长期不用导致电压低于电压U1时,进入预充阶段,按照小电流恒流充电;
在步骤S304中,蓄电池电压高于电压U2且低于电压U3时,进入快充阶段,按照大电流恒流限压充电;
在步骤S305中,蓄电池电压高于电压U3时,进入均充阶段,按照恒压限流方式进行充电;
在步骤S306中,在均充阶段,当充电电流低于电流I时,进入浮充阶段,按照小电流进行恒流限压充电;
在步骤S307中,当浮充过程达到设定时间T时,蓄电池充满,转入待机状态。
下面结合附图及具体实施例对本实用新型的应用原理作进一步描述。
本实用新型提供的用于对微网能量进行管理的***,光伏发电逆变器122、风力发电逆变器123、储能并网逆变器121均有相应的模式控制器实现就地控制;
智能电表11采集电量信息,利用RS485总线Modbus RTU协议将实时数据上传至智能终端13;
智能终端13一方面循环采集智能电表11上传的数据、逆变器12输出的数据、母线运行、二次设备保护信息实时数据,并实时将所采集数据利用以太网上传到微网***控制器14,另一方面接收微网***控制器14通过以太网TCP/IP协议下发的微网控制策略指令信息,解析指令信息获取控制指令,控制所连接的由接触器、断路器、二次设备保护装置等构成动作执行模块16进行相应动作;
微网***控制器14一方面接收所连接的智能终端13上传数据,整理数据,并根据预先设定的微网控制策略进行逻辑判断,得到微网控制判据执行指令后,返回控制指令给相应智能终端13。
微网控制策略通过特定算法实现了分布式电源优化控制、能量经济调度、可再生能源出力预测、无功优化和电压控制、需求侧响应、即插即用、并网和孤岛转换等应用功能。另一方面,采用以太网接入服务器主机,利用TCP/IP协议上传微网实时数据给服务器主机,同时实现微网重要数据的实时存储,可将数据上传至配电自动化***,同时预留与调度自动化***通信的接口。操作员站是微网***的主要人机界面,根据服务器主机的实时数据全面监视整个微网设备的运行情况,满足运行人员操作时直观、便捷、安全、可靠的需要。
具体实现过程如下:
1、控制策略和基本原则
(1)构建完整的微网能量技术管理方法
I、微网能量技术管理方法除了具有采集电表信息、对接触器进行控制功能外,还实现与所有微网分布式电源、储能、充电桩等设备进行通讯。
II、微网能量技术管理方法具有采集并显示光伏电源、储能、充电桩的运行信息的功能,如当前的出力情况,双向储能逆变器12的运行状态;
III、微网能量技术管理方法实现对分布式电源的出力状况进行有效控制。
(2)双向储能逆变器
目前采用的双向储能逆变器可以实现对于蓄电池的充放电管理功能:一方面当蓄电池通过双向储能逆变器向电网回馈电能的时候,可以调节回馈的有功功率,当电池电压值低于标幺值90%的时候,电池停止放电,否则会对电池造成不可逆转的损坏;另一方面当蓄电池通过双向储能逆变器12吸收电能的时候,预充、快充、均充、浮充的电压可以通过接口进行控制,从而优化电池的充电过程。
对双向储能逆变器功能进行扩展,除双模式运行能力外,还应增加动态无功补偿功能,在并网运行时,实现经济运行调度等高级应用功能。
(3)多种能源综合利用的经济运行调度
微网***包括光伏电池板、蓄电池、充电桩和家用负荷等设备。微网向电网提供的电力来自于风力、太阳能等清洁能源。通过合理的能源管理和综合利用可以达到经济和环境的双重利益。
2、分布式电源独立控制策略
(1)光伏发电独立控制
光伏电池输出伏安特性曲线为非线性特性,其输出功率曲线也为非线性。其中电流与电压乘积为最大时的工作点为最大功率点。负载特性一般也为非线性,负载使用时应尽可能让负载工作点与电池阵列最大功率工作点相接近,这样光伏阵列将输出最大功率。负载或变换器工作点偏离光伏电池最大功率工作点将降低光伏电池输出效率,浪费电池板容量。
根据以上光伏发电的基本原理,所以微网无论是孤岛运行状态,还是并网运行状态,光伏发电都作为恒功率电源进行处理,不参与到调节微网电压和频率的工作当中。
(2)储能设备充放电独立控制
I、并网运行充放电策略
A、并网充电控制
蓄电池在并网状态下,可以通过双向逆变器由母线充电,蓄电池的充电过程分为四个阶段:第一阶段,当蓄电池电压低于标幺值电压0.9的时候,蓄电池进入预充状态,在这个状态下蓄电池采取小电流充电方式;第二阶段,蓄电池进入快充阶段,蓄电池采取恒电流限压充电方式;第三阶段,蓄电池进入均充阶段,蓄电池采取恒电压限流充电方式;第四阶段。蓄电池进入浮充方式,蓄电池采取小电流限压充电方式。
蓄电池以上四个阶段的电压判定条件可以根据实际的电网进行设定,使得蓄电池并网充电更加灵活,自动实现充电模式的转换,控制双向逆变器实现储能设备的充放电优化控制。
B、并网放电控制
蓄电池处在并网状态下,采取恒功率控制,按照当前微网和电网的功率交换,决定蓄电池的放电控制策略。平抑微网的频率和电压的波动,但是当蓄电池电压低于标幺值0.9的时候,应该停止放电,否则会对电池造成不可逆转的损坏。
II、离网运行充放电策略
电池处于离网运行状态,起到平衡节点的作用,决定了微网孤岛运行时的电压和频率,以满足负荷用电需要为主要目的。
3、平抑功率波动
根据负荷预测,调节光伏发电、风力发电和蓄电池的出力维持微网的功率处于平衡的状态。一方面,在并网状态下,可以根据电网与微网的交换功率,在分布式电源发电功率有冗余的情况下,将多余的电能回馈给电网;另一方面,在离网状态下,结合蓄电池的快速调节和光伏发电、风力发电可以保证微网长时间运行的特点,使得微网在一个良好的电压和频率下长时间运行。
4、经济调度
微网***包含光伏发电、储能、负荷等设备。微网与外部的主要能源交换形式是电能,微网能量管理技术方法通过对微网内多种能源的统一调度,即能够满足用户对电能的需求,又可以实现微网的高效经济运行,***协调考虑光伏发电、储能、负荷,达到最佳的能源利用和经济性。
5、发电/负荷预测
微网能量管理技术方法实现发电和负荷预测是***优化控制和经济调度的重要基础,主要包含以下几部分内容:
伏发电预测:根据天气、温度等自然情况变化规律和运行时间段的历史数据,结合天气预报对光伏发电短期和超短期出力进行预测。
(2)储能设备负荷/发电预测:根据储能设备并网和离网的不同工作模式,通过分析储能电池荷电状态,结合储能设备自身充放电约束条件,对储能设备负荷和发电进行预测。
(3)电动汽车充电机负荷预测:根据电动汽车充放电状态设定和运行时间段,结合电动汽车充电机优化运行策略,对电动汽车充电机负荷进行预测。
(4)其他家电负荷预测:根据家庭用电的历史曲线,对家电负荷进行预测。
6、考虑分布式电源的需求侧响应
在实时电价基础上进行需求侧响应的研究。通过峰谷电价调节,实现需求侧响应调节负荷和分布式电源达到削峰填谷的目的。分布式电源对于电网而言本身具有一定的正调峰特性。而对于微网中的储能***而言,在参与消峰填谷时,通常根据负荷的高峰和低谷区域作为电池工作方式切换的边界点。
7、并网和孤岛模式切换控制
微网能量管理技术方法实现了并网和孤岛运行模式转换的自动控制。
本实用新型实施例提供的用于对微网能量进行管理的***,智能电表11采集电量信息,利用RS485总线Modbus RTU协议将实时数据上传至智能终端13,智能终端13一方面循环采集智能电表11的数据、逆变器12的数据、母线运行、二次设备保护信息实时数据等,并实时将所采集数据利用以太网上传到微网***控制器14,另一方面接收微网***控制器14通过以太网TCP/IP协议下发的微网控制策略指令信息,解析指令信息获取控制指令,控制由接触器、断路器、二次设备保护装置构成动作执行模块16进行相应动作,微网***控制器14一方面接收所连接的各个智能终端13上传数据,整理数据,并根据预先设定的微网控制策略进行逻辑判断,得到微网控制判据执行指令后,返回控制指令给相应智能终端13,使分布式电源及微网成为电网接纳、利用可再生能源的有效载体,进一步促进能源的梯级利用,优化能源结构,提升电网在发展低碳经济中的功能及作用,实现了分布式电源优化控制、能量经济调度、可再生能源出力预测、无功优化和电压控制、需求侧响应、即插即用、并网和孤岛转换等应用功能,体现出智能电网坚强可靠、抵御攻击、经济性高的特点,具有重要的推广示范作用。
以上仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

Claims (6)

1.一种用于对微网能量进行管理的***,其特征在于,该***包括:
用于采集照明负荷、重要负荷、无功补偿装置、少量动力负荷、市电并网的电量信息,利用Modbus RTU协议将实时数据进行输出的智能电表;
用于将直流电转换为微网***母线的交流电,并将其工作信息数据进行输出的逆变器;
用于接收所述智能电表采集的电量信息数据、所述逆变器输出的工作信息数据、母线运行数据及二次设备保护信息实时数据,并实时将所采集数据利用以太网进行输出的智能终端;
用于接收所述智能终端输出的信息数据,对所述智能终端输出地数据信息数据进行整理,根据预先设定的微网控制策略进行逻辑判断,获得微网控制判据执行指令,并将控制指令传输到所述智能终端的微网***控制器;
用于根据接收到的实时数据全面监视整个微网***设备的运行情况的后台微网能量管理***。
2.如权利要求1所述的***,其特征在于,所述***进一步包括:
用于接收所述智能终端输出的微网***控制器的控制指令,控制接触器、断路器、二次设备保护装置进行相应动作的动作执行模块。
3.如权利要求1所述的***,其特征在于,所述智能电表包括:
用于采集照明负荷的电量信息的照明负荷智能电表;
用于采集重要负荷的电量信息的重要负荷智能电表;
用于采集无功补偿装置的电量信息的无功补偿智能电表;
用于采集少量动力负荷的电量信息的少量动力智能电表;
用于采集市电并网的电量信息的市电并网智能电表; 
用于采集蓄电池储能的电量信息的储能智能电表;
用于采集光伏发电的电量信息的光伏智能电表;
用于采集风力发电的电量信息的风力智能电表。
4.如权利要求1所述的***,其特征在于,所述逆变器包括:
用于将蓄电池的直流电转换为微网***母线上的交流电的储能并网逆变器;
用于将光伏产生的直流电转换为微网***母线的交流电的光伏发电逆变器;
用于将风力产生的直流电转换为微网***母线的交流电的风力发电逆变器。
5.如权利要求1所述的***,其特征在于,所述智能终端进一步包括:
用于接收所述储能并网逆变器、光伏发电逆变器及风力发电逆变器输出的工作信息数据,并对所述工作信息数据进行输出的第一智能终端;
用于接收所述照明负荷智能电表、重要负荷智能电表、无功补偿智能电表、少量动力智能电表、市电并网智能电表输出的电量信息数据,并对所述电量信息数据进行输出的第二智能终端;
用于接收所述储能智能电表、光伏智能电表、风力智能电表输出的电量信息数据,并对所述电量信息数据进行输出的第三智能终端。
6.如权利要求1所述的***,其特征在于,所述储能并网逆变器采用可实现对蓄电池充放电管理及具有动态无功补偿功能双向储能逆变器。 
CN2011205335855U 2011-12-19 2011-12-19 一种用于对微网能量进行管理的*** Expired - Lifetime CN202363902U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011205335855U CN202363902U (zh) 2011-12-19 2011-12-19 一种用于对微网能量进行管理的***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011205335855U CN202363902U (zh) 2011-12-19 2011-12-19 一种用于对微网能量进行管理的***

Publications (1)

Publication Number Publication Date
CN202363902U true CN202363902U (zh) 2012-08-01

Family

ID=46575058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011205335855U Expired - Lifetime CN202363902U (zh) 2011-12-19 2011-12-19 一种用于对微网能量进行管理的***

Country Status (1)

Country Link
CN (1) CN202363902U (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420428A (zh) * 2011-12-19 2012-04-18 天津市电力公司 一种用于对微网能量进行管理的方法及***
CN103559655A (zh) * 2013-11-15 2014-02-05 哈尔滨工业大学 基于数据挖掘的微网新型馈线负荷的预测方法
CN103683498A (zh) * 2013-11-26 2014-03-26 国家电网公司 电网调度***
CN104065101A (zh) * 2014-06-26 2014-09-24 华电电力科学研究院 分布式微网能量管理***
TWI478459B (zh) * 2013-01-25 2015-03-21
CN105306216A (zh) * 2015-11-02 2016-02-03 国网冀北电力有限公司张家口供电公司 基于移动网络安全认证的配电网设备维护***
CN105321050A (zh) * 2015-11-24 2016-02-10 西安交通大学 智能电网中动态微网划分的假数据注入攻击危害衡量方法
CN109713712A (zh) * 2018-10-10 2019-05-03 北京天势新能源技术有限公司 光储荷智能化管理一体机及光储荷智能化管理方法
CN112953386A (zh) * 2021-03-17 2021-06-11 中国科学院微小卫星创新研究院 一种卫星的太阳电池阵的伏安特性的测量方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420428A (zh) * 2011-12-19 2012-04-18 天津市电力公司 一种用于对微网能量进行管理的方法及***
TWI478459B (zh) * 2013-01-25 2015-03-21
CN103559655A (zh) * 2013-11-15 2014-02-05 哈尔滨工业大学 基于数据挖掘的微网新型馈线负荷的预测方法
CN103559655B (zh) * 2013-11-15 2016-05-25 哈尔滨工业大学 基于数据挖掘的微网新型馈线负荷的预测方法
CN103683498A (zh) * 2013-11-26 2014-03-26 国家电网公司 电网调度***
CN104065101A (zh) * 2014-06-26 2014-09-24 华电电力科学研究院 分布式微网能量管理***
CN105306216A (zh) * 2015-11-02 2016-02-03 国网冀北电力有限公司张家口供电公司 基于移动网络安全认证的配电网设备维护***
CN105321050A (zh) * 2015-11-24 2016-02-10 西安交通大学 智能电网中动态微网划分的假数据注入攻击危害衡量方法
CN109713712A (zh) * 2018-10-10 2019-05-03 北京天势新能源技术有限公司 光储荷智能化管理一体机及光储荷智能化管理方法
CN109713712B (zh) * 2018-10-10 2023-08-29 国电投天启(广东)智慧能源科技有限责任公司 光储荷智能化管理一体机及光储荷智能化管理方法
CN112953386A (zh) * 2021-03-17 2021-06-11 中国科学院微小卫星创新研究院 一种卫星的太阳电池阵的伏安特性的测量方法
CN112953386B (zh) * 2021-03-17 2024-01-26 中国科学院微小卫星创新研究院 一种卫星的太阳电池阵的伏安特性的测量方法

Similar Documents

Publication Publication Date Title
CN102420428A (zh) 一种用于对微网能量进行管理的方法及***
CN202363902U (zh) 一种用于对微网能量进行管理的***
Shivashankar et al. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review
Sufyan et al. Sizing and applications of battery energy storage technologies in smart grid system: A review
CN102427230B (zh) 用于分布式微网孤岛运行风光储联合调度的方法及***
Luo et al. Optimal sizing and control strategy of isolated grid with wind power and energy storage system
Beaudin et al. Energy storage for mitigating the variability of renewable electricity sources: An updated review
Beaudin et al. Energy storage for mitigating the variability of renewable electricity sources
CN202586481U (zh) 微电网智能平衡充电供电***
CN103390900A (zh) 一种分布式光伏储能***及能量管理方法
CN104281977A (zh) 一种混合型微电网应用平台及其控制方法
CN104102178A (zh) 基于物联网技术的智能家用微网***
CN110783959B (zh) 一种新能源发电***的稳定状态控制***
CN103296754A (zh) 一种主动配电网分布式电源资源控制方法
CN103107579A (zh) 一种兼顾能量型与功率型的电池储能***的控制方法
CN205212447U (zh) 一种含复合储能微电网的多目标优化***
Eluri et al. Challenges of res with integration of power grids, control strategies, optimization techniques of microgrids: a review
CN105608635A (zh) 一种基于峰谷电价的区域电网经济调度***及方法
CN202798010U (zh) 一种微电网分布式电源分层协调控制***
CN103560533A (zh) 基于变化率控制储能电站平滑风光发电波动的方法及***
CN204458217U (zh) 一种风电储能、输出***
Zhu et al. Design and development of a microgrid project at rural area
CN104281984A (zh) 一种用于微电网经济运行的供电方法
CN202633970U (zh) 一种分布式电网***
CN104564532A (zh) 一种风电储能、输出***

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20120801