CN1995425A - Magnesium alloy and its preparation method - Google Patents

Magnesium alloy and its preparation method Download PDF

Info

Publication number
CN1995425A
CN1995425A CN 200610169819 CN200610169819A CN1995425A CN 1995425 A CN1995425 A CN 1995425A CN 200610169819 CN200610169819 CN 200610169819 CN 200610169819 A CN200610169819 A CN 200610169819A CN 1995425 A CN1995425 A CN 1995425A
Authority
CN
China
Prior art keywords
magnesium
alloy
magnesium alloy
thermal treatment
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610169819
Other languages
Chinese (zh)
Other versions
CN100469929C (en
Inventor
张敏
张文征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2006101698196A priority Critical patent/CN100469929C/en
Publication of CN1995425A publication Critical patent/CN1995425A/en
Application granted granted Critical
Publication of CN100469929C publication Critical patent/CN100469929C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The invention discloses a magnesium alloy and making method in the metal structural material making technical domain, which comprises the following parts: 1. 0-15. 0% Sn,0.1-1. 5% Mn,1. 0-5. 0% Si and Mg and trace impurity. The making method comprises the following steps: preparing alloy blank; evening; heating timely.

Description

A kind of magnesium alloy and preparation method thereof
Technical field:
A kind of magnesium alloy and preparation method thereof belongs to the preparing technical field of structural metallic materials.
Background technology:
Magnesium alloy has excellent specific tenacity, specific rigidity, vibration resistance and manufacturability, and Mg Alloy Research is causing the attention of domestic and international material circle, and becoming 21 century has the metallic substance of development potentiality most.China is magnesium resource big country, and to export crude magnesiums at a low price in a large number, country takes much count of this situation at present.Carry out magnesium alloy design, smelting and heat treated research,, the production of China's magnesium alloy and the development of related industries are had profound significance for development high-quality magnesium alloy provides experimental basis.Mg-Al system is the basis of the cast magnesium alloys of widespread use, but the use temperature of alloy is on the low side, can not satisfy the requirement of many members.The commercial magnesium alloy that can improve hot strength and creep property at present mainly all is to be main alloy element with the rare earth element, but the structure stability problem remains the important factor that limits these alloy use temperatures, and price has then restricted these alloys popularizing on the product for civilian use.In the high strength at high temperature magnesium alloy design that does not contain rare earth element, existing work mainly is divided into both direction: 1, and be to add trace element in the alloy at the Mg-Al that obtains widespread use; 2, be main alloy element with Ca, Si etc.The former can obtain performance change in various degree with the difference of trace element, but the relative needed index of practical application does not have the improvement of essence; The latter mainly relies on eutectic phase stable on the crystal boundary to play strengthening effect, but these crystal boundary eutectics are often thicker, and matrix inside can not get the strengthening phase of small and dispersed.Alloy about Mg-Sn series, because the relative Mg-Al of the performance of Mg-Sn two component system system does not have advantage, the research of this respect is less, about on the basis of Mg-Sn two component system, adding the research of alloying element, report less at present in the world, main adding elements is Si, Ca and rare earth element, and can see from the result that they provide, Sn is very easy to reunite at crystal boundary in the alloy, does not obtain satisfactory performance.
Summary of the invention:
The purpose of this invention is to provide a kind of magnesium alloy that does not contain rare earth and smelting and thermal treatment process to enlarge Application of Magnesium scope and value-added content of product.Main developing direction is a wrought magnesium alloys.
Magnesium alloy proposed by the invention is characterised in that, contains the component of following mass percent:
Tin: 1.0~15.0%
Manganese: 0.1~1.5%
Silicon: 0.1~5.0%
All the other are magnesium and trace impurity.
The preparation method of the magnesium alloy that the present invention proposes is characterized in that, contains following steps successively:
1) alloy billet preparation
Prepare burden by following mass percentage content: 1.0~15.0% tin, 0.1~1.5% manganese, 0.1~5.0% silicon, all the other are magnesium; Use the smelting furnace melting, put into magnesium successively, magnesium manganese master alloy, magnesium silicon master alloy and tin, smelting temperature is 680~800 ℃, stirs, and leaves standstill, last cold mould cast obtains the magnesium alloy blank;
2) homogenizing thermal treatment
With the 1st) the magnesium alloy blank for preparing of step puts into heat treatment furnace, heats under air atmosphere, and Heating temperature is 420~520 ℃, and soaking time is more than or equal to 8 hours, cold-water quench;
3) timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and treatment temp is 150~350 ℃, and soaking time is 1~100 hour, and cold-water quench obtains final magnesium alloy.
The described the 1st) step in, described smelting furnace is a resistance furnace.
The described the 2nd) step in, described magnesium alloy blank is imbedded in the magnesium oxide powder, on magnesium oxide powder, spill carbon dust, and then carry out homogenizing thermal treatment.
Evidence, magnesium alloy proposed by the invention does not contain rare earth, has higher hardness, also has simple, the low cost and other advantages of preparation method.
Description of drawings:
Fig. 1 is the organization chart of the magnesium alloy that embodiment 1 prepares under the transmission electron microscope.
Embodiment:
Magnesium alloy proposed by the invention contains the component of following mass percent:
Tin: 1.0~15.0%
Manganese: 0.1~1.5%
Silicon: 0.1~5.0%
All the other are magnesium and trace impurity.
Its preparation method, contain following steps successively:
1) alloy billet preparation
Prepare burden by following mass percentage content: 1.0~15.0% tin, 0.1~1.5% manganese, 0.1~5.0% silicon, all the other are magnesium; Use the smelting furnace melting, put into magnesium successively, magnesium manganese master alloy, magnesium silicon master alloy and tin, smelting temperature is 680~800 ℃, stirs, and leaves standstill then, last cold mould cast obtains the magnesium alloy blank;
2) homogenizing thermal treatment
With the 1st) the magnesium alloy blank for preparing of step puts into heat treatment furnace, heats under air atmosphere, and Heating temperature is 420~520 ℃, and soaking time is more than or equal to 8 hours, cold-water quench;
3) timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and treatment temp is 150~350 ℃, and soaking time is 1~100 hour, and cold-water quench obtains final magnesium alloy.
The present invention will be further described by following embodiment:
Embodiment 1:
Step 1: alloy billet preparation
Press following component and mass percentage content batching: 15.0% tin, 1.5% manganese (form with the Mg-Mn master alloy adds), 5.0% silicon (form with the Mg-Si master alloy adds), all the other are magnesium and inevitable trace impurity; Wherein the mass percent of Mn is 10% in the magnesium manganese master alloy, and the mass percent of Si is 10% in the magnesium silicon master alloy.Use the resistance furnace melting.Use iron crucible in the fusion process, be heated to 800 ℃, put into magnesium successively, magnesium manganese master alloy and magnesium silicon master alloy, molten for liquid after about 20 minutes, adding Sn stirred two minutes, left standstill 15 minutes, and restir two minutes left standstill 15 minutes, cold mould cast.
Step 2: homogenizing thermal treatment
Under the air atmosphere magnesium alloy blank is heated in heat treatment furnace, 520 ℃ of Heating temperatures, soaking time are 20 hours.For preventing the material scaling loss, blank can be embedded in the magnesium oxide powder in the specific operation process, and around magnesium oxide powder, spill some carbon dusts.
Step 3: timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and the temperature of using in the ag(e)ing process is 250 ℃, and soaking time is 10 hours, obtains magnesium alloy of the present invention.Recording its hardness value is 77Hv.Accompanying drawing 1 is this embodiment alloy organizing under the transmission electron microscope, second phase that has a large amount of disperses to separate out in this alloy, and these second phases are reinforced alloys effectively.
Embodiment 2:
Step 1: alloy billet preparation
Prepare burden by following component and mass percentage content: 9.0% tin, 0.5% manganese, 1.0% silicon, all the other are magnesium and inevitable trace impurity; Wherein manganese adds with the form of magnesium manganese master alloy, and the mass percent of Mn is 10% in this master alloy; Silicon adds with the form of magnesium silicon master alloy, and the mass percent of Si is 10% in this master alloy.Use the resistance furnace melting.Use iron crucible in the fusion process, be heated to 750 ℃, put into magnesium successively, magnesium manganese master alloy and magnesium silicon master alloy, molten for liquid after about 20 minutes, adding Sn stirred two minutes, left standstill 15 minutes, and restir two minutes left standstill 15 minutes, cold mould cast.
Step 2: homogenizing thermal treatment
Under the air atmosphere magnesium alloy blank is heated in heat treatment furnace, 500 ℃ of Heating temperatures, soaking time are 16 hours.For preventing the material scaling loss, blank can be embedded in the magnesium oxide powder in the specific operation process, and around magnesium oxide powder, spill some carbon dusts.
Step 3: timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and the temperature of using in the ag(e)ing process is 350 ℃, and soaking time is 1 hour, obtains magnesium alloy of the present invention.Recording its hardness value is 72Hv.Observe second phase that has a large amount of disperses to separate out in this alloy under its transmission electron microscope through measuring, these second phases are reinforced alloys effectively.
Embodiment 3:
Step 1: alloy billet preparation
Prepare burden by following component and mass percentage content: 1.0% tin, 1.5% manganese, 5.0% silicon, all the other are magnesium and inevitable trace impurity; Wherein manganese adds with the form of magnesium manganese master alloy, and the mass percent of Mn is 10% in this master alloy; Silicon adds with the form of magnesium silicon master alloy, and the mass percent of Si is 10% in this master alloy.Use the resistance furnace melting, use iron crucible in the fusion process, be heated to 680 ℃, put into magnesium successively, magnesium manganese master alloy and magnesium silicon master alloy, molten for liquid after about 20 minutes, adding Sn stirred two minutes, left standstill 15 minutes, restir two minutes left standstill 15 minutes, cold mould cast.
Step 2: homogenizing thermal treatment
Under the air atmosphere magnesium alloy blank is heated in heat treatment furnace, 420 ℃ of Heating temperatures, soaking time are 8 hours.For preventing the material scaling loss, blank can be embedded in the magnesium oxide powder in the specific operation process, and around magnesium oxide powder, spill some carbon dusts.
Step 3: timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and the temperature of using in the ag(e)ing process is 150 ℃, and soaking time is 100 hours, obtains magnesium alloy of the present invention.Recording its hardness value is 70Hv.Transmission electron microscope is observed second phase that has a large amount of disperses to separate out in this alloy down, and these second phases are reinforced alloys effectively.
Embodiment 4:
Step 1: alloy billet preparation
Prepare burden by following component and mass percentage content: 6.0% tin, 0.1% manganese, 0.1% silicon, all the other are magnesium and inevitable trace impurity; Wherein manganese adds with the form of magnesium manganese master alloy, and the mass percent of Mn is 10% in this master alloy; Silicon adds with the form of magnesium silicon master alloy, and the mass percent of Si is 10% in this master alloy.Use the resistance furnace melting.Use iron crucible in the fusion process, be heated to 750 ℃, put into magnesium successively, magnesium manganese master alloy, molten for liquid after about 20 minutes, adding Sn stirred two minutes, left standstill 15 minutes, and restir two minutes left standstill 15 minutes, cold mould cast.
Step 2: homogenizing thermal treatment
Under the air atmosphere magnesium alloy blank is heated in heat treatment furnace, 450 ℃ of Heating temperatures, soaking time are 20 hours.For preventing the material scaling loss, blank can be embedded in the magnesium oxide powder in the specific operation process, and around magnesium oxide powder, spill some carbon dusts.
Step 3: timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and the temperature of using in the ag(e)ing process is 250 ℃, and soaking time is 10 hours, obtains magnesium alloy of the present invention.Recording its hardness value is 73Hv.Transmission electron microscope is observed second phase that has a large amount of disperses to separate out in this alloy down, and these second phases are reinforced alloys effectively.
The present invention compared with prior art has following advantage:
1, the element that adds in the alloy that the present invention proposes does not contain rare earth and other expensive elements, so relative cost reduces greatly.
2, the prepared material microhardness value of the present invention surpasses 70HV (such as embodiment 1), and intracrystalline has the strong of a large amount of disperse educts Change phase, can compare with the Mg-Zn-Y alloy phase that obtains extensive use, relative cost is then much lower.
3, the prepared material eutectic temperature (560 ℃) of the present invention far above conventional magnesium alloys such as magnalium, magnesium zinc, possesses very Big heat treatment reinforcement potentiality.
4, the alloy of the present invention's design can carry out melting by conventional resistance furnace, need not the gas shields such as argon gas in the fusion process, Need not additionally to increase special installation, can save equipment cost when using in enterprise.
5, the present invention adopts magnesium manganese intermediate alloy, and smelting temperature is 680~800 ℃, need not too high smelting temperature, has both reduced burning Decrease, again the using electricity wisely cost.
6, the alloy main development direction of the present invention's design is wrought magnesium alloy.

Claims (4)

1, a kind of magnesium alloy is characterized in that, contains the component of following mass percent:
Tin: 1.0~15.0%
Manganese: 0.1~1.5%
Silicon: 0.1~5.0%
All the other are magnesium and trace impurity.
2, the preparation method of magnesium alloy as claimed in claim 1 is characterized in that, contains following steps successively:
1) alloy billet preparation
Prepare burden by following mass percentage content: 1.0~15.0% tin, 0.1~1.5% manganese, 0.1~5.0% silicon, all the other are magnesium; Use the smelting furnace melting, put into magnesium successively, magnesium manganese master alloy, magnesium silicon master alloy and tin, smelting temperature is 680~800 ℃, stirs, and leaves standstill, last cold mould cast obtains the magnesium alloy blank;
2) homogenizing thermal treatment
With the 1st) the magnesium alloy blank for preparing of step puts into heat treatment furnace, heats under air atmosphere, and Heating temperature is 420~520 ℃, and soaking time is more than or equal to 8 hours, cold-water quench;
3) timeliness thermal treatment
The alloy to homogenizing carries out timeliness thermal treatment under the air atmosphere in heat treatment furnace, and treatment temp is 150~350 ℃, and soaking time is 1~100 hour, and cold-water quench obtains final magnesium alloy.
3, the preparation method of magnesium alloy as claimed in claim 2 is characterized in that, the described the 1st) in the step, described smelting furnace is a resistance furnace.
4, the preparation method of magnesium alloy as claimed in claim 2 is characterized in that, the described the 2nd) in the step, described magnesium alloy blank is imbedded in the magnesium oxide powder, on magnesium oxide powder, spill carbon dust, and then carry out homogenizing thermal treatment.
CNB2006101698196A 2006-12-29 2006-12-29 Magnesium alloy and its preparation method Expired - Fee Related CN100469929C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101698196A CN100469929C (en) 2006-12-29 2006-12-29 Magnesium alloy and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101698196A CN100469929C (en) 2006-12-29 2006-12-29 Magnesium alloy and its preparation method

Publications (2)

Publication Number Publication Date
CN1995425A true CN1995425A (en) 2007-07-11
CN100469929C CN100469929C (en) 2009-03-18

Family

ID=38250626

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101698196A Expired - Fee Related CN100469929C (en) 2006-12-29 2006-12-29 Magnesium alloy and its preparation method

Country Status (1)

Country Link
CN (1) CN100469929C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781728A (en) * 2010-03-12 2010-07-21 清华大学 Magnesium-tin-based alloy and preparation method thereof
CN101831580A (en) * 2010-04-19 2010-09-15 哈尔滨工程大学 Biomedical Mg-Sn-Mn series magnesium alloy and plate rolling process thereof
CN102002618A (en) * 2010-12-20 2011-04-06 重庆研镁科技有限公司 Melt overheating treatment method for optimizing magnesium alloy as-cast structure
CN101817070B (en) * 2009-04-10 2013-04-17 兰州理工大学 Method for preparing magnesium alloy ingot
CN103938045A (en) * 2014-04-30 2014-07-23 东北大学 Calcium-containing deforming magnesium alloy and preparation method of calcium-containing deforming magnesium alloy bar
CN104109740A (en) * 2014-07-10 2014-10-22 河南科技大学 Heat treatment method and device for preventing magnesium alloy from surface oxidation
CN107587020A (en) * 2016-07-08 2018-01-16 中国科学院金属研究所 A kind of high heat conduction magnesium alloy and preparation method thereof
WO2020042745A1 (en) * 2018-08-27 2020-03-05 重庆大学 Mg-zn-sn series magnesium alloy with controllable degradation rate, preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817070B (en) * 2009-04-10 2013-04-17 兰州理工大学 Method for preparing magnesium alloy ingot
CN101781728A (en) * 2010-03-12 2010-07-21 清华大学 Magnesium-tin-based alloy and preparation method thereof
CN101831580A (en) * 2010-04-19 2010-09-15 哈尔滨工程大学 Biomedical Mg-Sn-Mn series magnesium alloy and plate rolling process thereof
CN102002618A (en) * 2010-12-20 2011-04-06 重庆研镁科技有限公司 Melt overheating treatment method for optimizing magnesium alloy as-cast structure
CN103938045A (en) * 2014-04-30 2014-07-23 东北大学 Calcium-containing deforming magnesium alloy and preparation method of calcium-containing deforming magnesium alloy bar
CN103938045B (en) * 2014-04-30 2016-04-06 东北大学 A kind of calcic wrought magnesium alloys and bar preparation method thereof
CN104109740A (en) * 2014-07-10 2014-10-22 河南科技大学 Heat treatment method and device for preventing magnesium alloy from surface oxidation
CN107587020A (en) * 2016-07-08 2018-01-16 中国科学院金属研究所 A kind of high heat conduction magnesium alloy and preparation method thereof
CN107587020B (en) * 2016-07-08 2019-10-22 中国科学院金属研究所 A kind of high thermal conductivity magnesium alloy and preparation method thereof
WO2020042745A1 (en) * 2018-08-27 2020-03-05 重庆大学 Mg-zn-sn series magnesium alloy with controllable degradation rate, preparation method and application thereof

Also Published As

Publication number Publication date
CN100469929C (en) 2009-03-18

Similar Documents

Publication Publication Date Title
CN100469929C (en) Magnesium alloy and its preparation method
CN102851575B (en) Oxidation-resistant alloying grey cast iron and preparation method thereof
CN110512116A (en) A kind of high Nb-TiAl intermetallic compound of multicomponent high-alloying
CN104313428A (en) Self-lubricating wear-resistant damping alloy and preparation method thereof
CN103074550B (en) Turbine rotor steel material resisting high temperature of 620 DEG C
CN102703802A (en) High-strength high-toughness low-temperature-resistant ferritic nodular cast iron
CN104313429A (en) Wearing-resisting damping alloy preparation method
CN113046595A (en) High-strength and high-toughness titanium alloy with good additive manufacturing forming performance and used at high temperature of 600 DEG C
CN103243236B (en) High-toughness wear-resistant zinc alloy containing fine crystalline grains and preparation process for same
CN112853190B (en) High-entropy cast iron and preparation method thereof
CN102808111B (en) Preparation method for nickel-based superalloy for exhaust valve
CN104294126A (en) Wear-resistant damping alloy
CN102936696A (en) High hardness and high abrasion-resistance ferroalloy material and preparation method thereof
CN102776427A (en) Rare earth-containing heat-resisting magnesium alloy
CN104911461B (en) Steam turbine high temperature resistant silicon molybdenum ferrite ductile cast iron and its preparation technology
CN103484713B (en) High-strength wear-resistant complex complex brass alloy extrudes bar and manufacture craft thereof
CN102994805B (en) Extruded zinc alloy and preparation method thereof
CN100532604C (en) Nd, Sr composite reinforced thermo-stable magnesium alloy and preparation method thereof
CN102851571B (en) A kind of low-temperature-resistance high-toughness spheroidal graphite cast iron and preparation method thereof
CN102660657A (en) Low-cost production process for as-cast high-elongation nodular cast iron
CN102560200B (en) Aluminum-titanium-iron-carbon-boron intermediate alloy and preparation method thereof
CN101440438B (en) Method for thinning CaMgSn phase in Mg-Sn-Ca magnesium alloy by adding Ce
CN104294130A (en) Self-lubricating damping alloy and preparation method thereof
CN107287496A (en) High tough spheroidal graphite cast-iron and its manufacturing process based on austenitic matrix
CN101781728B (en) Magnesium-tin-based alloy and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090318

Termination date: 20111229