CN1985359A - 锰掺杂磁半导体 - Google Patents

锰掺杂磁半导体 Download PDF

Info

Publication number
CN1985359A
CN1985359A CNA2005800161784A CN200580016178A CN1985359A CN 1985359 A CN1985359 A CN 1985359A CN A2005800161784 A CNA2005800161784 A CN A2005800161784A CN 200580016178 A CN200580016178 A CN 200580016178A CN 1985359 A CN1985359 A CN 1985359A
Authority
CN
China
Prior art keywords
manganese
mix
doped
ferromagnetic
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800161784A
Other languages
English (en)
Inventor
文卡特·拉奥
帕马南德·沙马
阿米塔·格普塔
博杰·约翰森
雷吉夫·阿赫贾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NM Spintronics AB
Original Assignee
NM Spintronics AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NM Spintronics AB filed Critical NM Spintronics AB
Publication of CN1985359A publication Critical patent/CN1985359A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/402Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted of II-VI type, e.g. Zn1-x Crx Se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/404Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted of III-V type, e.g. In1-x Mnx As
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Glass Compositions (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种半导体材料,其是非氧化物材料或者是已经被掺杂的氧化物材料,其中所述材料被掺杂以锰Mn,且在室温和500K之间范围内的至少一温度是铁磁的。优选地,该锰掺杂材料具有5at%或以下的锰浓度。

Description

锰掺杂磁半导体
技术领域
本发明涉及用于在其功能中使用铁磁性的电子部件的材料。此类部件影响或调整玻色子和费米子例如电子的自旋取向。近年来对稀磁半导体(dilutemagnetic semiconductor)中室温以上铁磁性的探索已经成为追求,尤其是为了开发探索电子自旋态即自旋电子学(spintronics)的全新类型的未来器件。用于这些器件的部件的类型包括例如磁存储器(例如硬盘)、半导体磁存储器(例如MRAM)、自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、量子计算机、光学隔离器、传感器和超快光学开关。稀磁半导体还能用在电子和磁基产品中。
背景技术
电子部件技术日益趋向于使用铁磁材料用于新部件设计和功能。常规铁磁材料为例如铁、镍、钴及其合金。用于实施它们的新颖科学活动或新建议在技术和科学期刊上被频繁报导。具有基本部件设计的材料预期的一些示例可以在Physics World(1999年4月)和IEEE Spectrum(2001年12月)近期的评论文章中发现。所有这些文献描述了设计能在产业、汽车和军事温度范围(通常-55℃至125℃)运行的铁磁材料的问题和需要。
现在已知的大多数感兴趣的材料需要低温。然而,Klaus H.Ploog在Physical Review Letters,July 2001中描述了利用在砷化镓(GaAs)上生长的铁膜来极化诸如到半导体GaAs中的电子的自旋。此实验在室温下进行。
自旋电子器件例如自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、光学隔离器和超快光学开关是两篇参考文献(参考文献6-7)中描述的在半导体中引入室温下的铁磁属性的非常感兴趣的领域的一部分。
近年来,已经对掺杂稀磁半导体(DMS)中表现铁磁有序的材料进行了深入研究,如下面的五篇文献(参考文献1-5)中描述的,着重于可能的自旋传输属性,其具有许多潜在感兴趣的器件应用。
在目前报导的材料中,已发现Mn掺杂GaAs是铁磁性的,具有最高的报导居里温度(见参考文献1),Tc~110K。随此之后,Dietl等人(见参考文献2)在理论上预言ZnO和GaN在掺杂Mn时将表现室温之上的铁磁性。此预言引起了对多种掺杂稀磁半导体的广泛实验工作。近来,分别报导了在Co掺杂TiO2、ZnO和GaN中室温以上的Tc(见参考文献3、8和9)。然而,在Ti1-xCoxO样品中发现了Co的非均质团簇(见参考文献10)。Kim等人(见参考文献11)表明,在Zn1-xCoxO的均质膜表现出自旋玻璃性质的同时,在非均质膜中发现室温的铁磁性,将此发现归因于Co团簇的存在。清楚地,对于器件应用,我们需要均质膜。申请人已经有一个基于锰掺杂氧化锌的发明申请。
发明内容
本发明基于通过掺杂锰(Mn)到非氧化物的材料或到是氧化物且已被掺杂另一掺杂剂的材料中来在掺杂稀磁半导体中产生铁磁性的概念。这些两组材料在下面仅称为材料。块或膜层中室温上铁磁性的剪裁已经被实现。在此状态下,发现Mn带有磁矩。这些样品的铁磁共振(FMR)数据证实在高达500K的温度下铁磁有序的存在。在顺磁态,顺磁共振数据显示Mn在2+态。我们的ab initio计算证实了上述发现。在500K退火温度以上烧结块体时,室温附近的铁磁完全被抑制,在40K以下产生经常报导的显著的“类铁磁”有序态。该材料还显示在利用相同块材料作为靶通过脉冲激光沉积在不同衬底上沉积的数微米厚透明膜中的室温铁磁有序。铁磁稀释Mn掺杂材料还可以作为透明纳米颗粒获得。
所证明的新性能使用于自旋电子器件和其他部件的复杂元件的实现变得可能。在特定温度范围内具有铁磁属性的锰掺杂材料也可用溅镀***制造,其中多个金属(例如锰和铜)靶同时使用,或者含有材料和适当浓度的掺杂剂的一个烧结靶被使用。
附图说明
图1示出计算的Mn掺杂Cd23S24的态密度(DOS),其中费米能级设置为零;
图2示出减去线性项之后CdS:Mn 5%在300K的磁滞回线,其中Ms~1.61×10-3emu/g,且下面的图示出在高场下带有线性项的回线;
图3a示出在1000Oe下CdS:Mn 5%磁化的温度相关性;以及
图3b示出图3a的材料在1000Oe下磁化系数的倒数1/χ的温度相关性。
具体实施方式
本发明基于通过掺杂锰(Mn)到材料中(非氧化物材料或者到是氧化物且已被掺杂另一掺杂剂的材料中)来在掺杂稀磁半导体中产生铁磁性的概念。被掺杂以锰的材料的示例是硫化镉、硒化镉、硫化锌、硒化锌、磷化镓、铜掺杂氮化镓、铜掺杂磷化镓、铜掺杂氧化锌、铜掺杂砷化镓。
我们的实验显示块体的Mn掺杂材料中室温以上铁磁性的成功剪裁。对于块体材料,Mn掺杂水平应小于6at%(原子百分比)。理论上我们发现对于铁磁性的上限是约5at%的Mn。实验上我们已经发现由于材料问题,4at%以上的Mn时对于Mn原子有清楚的形成团簇的趋势,其是反铁磁性的且抑制了铁磁有序。SEM观察显示,对于2at%以上的样品,局部团簇化且样品变得非均质,这影响了材料,使得在室温附近在4-5at%铁磁效应几乎被抑制。
铁磁共振(FMR)数据证实在小球和薄膜中在高达425K的温度下铁磁有序的存在。在顺磁状态,EPR谱显示Mn在2+态(Mn2+)。此外,还在煅烧(500℃以下)粉末中观察到室温以上的铁磁性。我们的ab initio计算证实了上述发现。如果Mn掺杂材料的烧结在更高温度下进行,掺杂材料在室温下显示出额外大的顺磁贡献,而铁磁分量变得可忽略。在700℃以上温度烧结块体时,室温附近的铁磁性完全被抑制,在40K以下发生经常报导的显著的“类铁磁”有序态。700℃、800℃和900℃烧结温度的实验已经证实了此事实。
利用相同块体材料作为靶,通过脉冲激光沉积或溅镀,在600℃以下的温度在熔凝石英衬底上沉积的2-3μm厚的膜中也已经获得了室温铁磁有序。这些膜材料中的掺杂浓度应小于6at%,以获得可控的均质化。实验已经显示,2at%以下的样品可以被剪裁为在成分上均质的,有轻微的变化,但是不含有团簇。在激光熔蚀中,衬底温度影响膜中的Mn浓度。发现在较高温度下沉积的膜与在较低温度沉积的膜相比具有高浓度的Mn。这意味着可以利用温度来控制Mn浓度。
研究了烧结温度对标称2at%Mn掺杂材料的磁属性的影响。我们发现了室温以上的铁磁有序(Tc>420℃)。室温铁磁相作为烧结温度的函数,如M(H)测量所示。在500℃烧结的小球的元素绘图(elemental mapping)显示出Mn在样品中的均匀分布。然而,发现局部Mn浓度远低于(~0.3at%)标称成分。考虑到此事实,我们估计铁磁相的饱和磁化并确定每Mn原子磁矩为0.16μB。有时候在600℃-700℃的温度范围中烧结小球时,除了铁磁分量之外,我们在高场磁滞回线中发现线性顺磁贡献。然而,在700℃以上烧结小球完全抑制了室温附近的铁磁性。掺杂稀磁半导体还能通过颗粒尺寸选择被处理为透明且铁磁的纳米颗粒。
锰掺杂材料可以利用溅镀***制造,其中或者同时使用两个金属(材料和锰)靶,或者如前所述使用一个烧结陶瓷靶。当使用两个金属靶时,材料和锰靶上的溅射能(sputtering energy)被调节,使所得锰含量在1-6at%的范围。确切参数需要针对所使用的溅镀设备调节且取决于能量、几何构型和气体。沉积衬底的衬底温度与使用激光沉积时在同样的范围。
X射线衍射以及SEM高分辨率元素绘图分析发现我们获得的块体以及薄膜Mn掺杂材料是均质的,其中没有团簇形成或分布的迹象。
附带地,在块体和透明薄膜中,我们获得了它们的铁磁共振谱,其提供了铁磁性存在的令人信服的证据。经证实的新性能使用于自旋电子器件的复杂元件的实现变得可能。这些类型的膜材料是透明的且可用于磁光部件。这些类型的材料具有大的机电耦合系数且因此也可用于压电应用以及光学、磁和机械传感器或部件方案的结合。
下表示出CdS:Mn样品磁测量的结果。研究了掺杂以Mn的CdS样品,标注为样品-1(5%)和样品-2(4%)。对每个样品进行下面的测量:
1.在1000 Oe的测量场下磁化的温度相关性,M(T)。
2.在300K和5K,磁化的场相关性,M(H)。
减去M(H)曲线中在较高磁场显露的线性部分之后获得的饱和磁化Ms和对应的矫顽力值Hc示出在下面给出的表中。
样品 在300K的Ms(emu/g) 在5K的Ms(emu/g) 在300K的Hc(Oe) 在5K的Hc(Oe)
1 ~1.61×10-3 ~1.59×10-2 ~105 ~250
2 ~3.07×10-3 ~3.84×10-2 ~100 ~98
图1示出计算的锰掺杂硫化镉的态密度。
图2在300K的M(H)示出在从所获得的数据减去线性项之后获得的锰掺杂硫化锌的铁磁相。矫顽力是~130 Oe且饱和磁化是~7.45E-4emu/g。
小插图示出所获得的数据,在高场具有顺磁项。
图3示出掺杂有5%锰的硫化镉。图3(a)是在1000 Oe的M(T),图3(b)是在1000 Oe的1/χ。
参考文献
1.Ohno,H.Making Nonmagnetic semiconductors frromagnetic.Science281,951-956(1998);还可参见近来的评论:S.J.Pearton et al JAP 93,1(2003)
2.Dietl,T.et al.Zener model description of ferromagnetism in zinc-blendemagnetic semiconductors.Science 287,1019-1022(2000)
3.Matsumoto,Y.et al.Room-temperature ferromagnetism in transparenttransition metal-doped titanium dioxide.Science 291,854-856(2001)
4.Ando,K.et al.Magneto-optical properties of ZnO-based dilute magneticsemiconductors.J.Appl.Phys.89(11),7284-7286(2001)
5.Takamura,K.et al.Magnetic propenies of(Al,Ga,Mn)As.Appl.Phys.Letts 81(14),2590-2592(2002)
6.Chambers,S.A.A potential role in spintronics.Materials Today,34-39(april 2002)
7.Ohno,H.Matsukura,F.&Ohno,Y.Semiconductor spin electronics.JSAPinternational 5,4-13(2002)
8.Ueda,K.Tabata,H.& Kawai,T.Magnetic and electric properties oftransition-metal-doped ZnO films.Appl.Phys.Letts 79(7),988-990(2001)
9.Thaler,G.T.et al.Magnetic properties of n-GaMnN thin films.Appl.Phys.Letts.80(21),3964-3966(2002)
10.Stampe,P.A.et al.Investigation of the cobalt distribution in TiO2:Cothin films.J.Appl.Phys.92(12),7114-7121(2002)
11.Kim,J.H.et al.Magnetic properties of epitaxially grownsemiconducting Znl-x CoxO thin film by pulsed laser deposition.J.Appl.Phys.92(10),6066-6071(2002)
12.Fukumura,T.et al.An oxide-diluted magnetic semiconductor:Mn-doped ZnO.Appl.Phys.Letts 75(21),3366-3368(1999)
13.Fukumura,T.et al.Magnetic properties of Mn doped ZnO.Appl.Phys.Letts.78(7),958-960(2001)
14.Jung.S.W et al.Ferromagnetic properties of Znl-xMnxO epitaxial thinfilms.Appl.Phys.Letts.80(24),4561-4563(2002)
15.Tiwari,A.et al.Structural,optical and magnetic properties of dilutedmagnetic semiconducting Znl-xMnxO films.Solid State Commun.121,371-374(2002)
16.全部能量计算基于梯度归纳近似(generalized-gradient approximation,GGA)利用VASP程序包调用的投影放大波(projector augmented-wave,PAW)法进行。采用了Perdew等人提出的交换和对比电位的参数化。在计算中,我们使用PAW势,其价态对于Mn是3p、3d和4s,对于Zn是3d和4s,对于O是2s和2p。采用了周期超晶胞逼近,能量截止(energy cutoff)为600eV。利用对原子的Hellmann-Feynman力和对每个体积的超晶胞的应力进行了几何优化(离子座标和c/a比)。为了取样Brillouin区的不可约楔,对于几何优化我们使用4×4×2的k点栅格,对于在平衡体积的最后计算采用8×8×4。

Claims (9)

1.一种半导体材料,是非氧化物材料或者是已经被掺杂的氧化物材料,其特征在于:所述材料被掺杂以锰Mn,且在室温和500K之间范围内的至少一温度是铁磁的。
2.如权利要求1所述的半导体材料,其特征在于:所述锰掺杂材料包括下列材料的任一种:掺杂以锰的硫化镉、掺杂以锰的硒化镉、掺杂以锰的硫化锌、掺杂以锰的硒化锌、掺杂以锰的磷化镓、掺杂以锰的铜掺杂氮化镓、掺杂以锰的铜掺杂磷化镓、掺杂以锰的铜掺杂氧化锌、掺杂以锰的铜掺杂砷化镓。
3.如权利要求1或2所述的半导体材料,其特征在于:所述锰掺杂材料具有4at%以下的锰浓度。
4.如权利要求1或2所述的半导体材料,其特征在于:所述锰掺杂材料是压电的。
5.如权利要求1或2所述的半导体材料,其特征在于:所述锰掺杂材料是透明的。
6.一种沉积有薄膜的衬底,所述膜具有微米级厚度,其特征在于,所述膜包括根据权利要求1-5的任一项的材料。
7.一种用于自旋电子器件的部件,其特征在于它包括根据权利要求1-5的任一项的材料。
8.如权利要求7所述的部件,其特征在于所述部件是下列中的任一种:
磁存储器、硬盘、半导体磁存储器、MRAM、自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、光学隔离器、传感器、或光学开关。
9.一种计算机,其特征在于,它包括根据权利要求7或8的部件。
CNA2005800161784A 2004-05-18 2005-05-17 锰掺杂磁半导体 Pending CN1985359A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0401319A SE528394C2 (sv) 2004-05-18 2004-05-18 Mangandopade magnetiska halvledare
SE04013199 2004-05-18

Publications (1)

Publication Number Publication Date
CN1985359A true CN1985359A (zh) 2007-06-20

Family

ID=32589779

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800161784A Pending CN1985359A (zh) 2004-05-18 2005-05-17 锰掺杂磁半导体

Country Status (7)

Country Link
US (1) US20070190367A1 (zh)
EP (1) EP1756855A1 (zh)
JP (1) JP2007538400A (zh)
KR (1) KR20070039496A (zh)
CN (1) CN1985359A (zh)
SE (1) SE528394C2 (zh)
WO (1) WO2005112086A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956814A (zh) * 2012-11-20 2013-03-06 浙江大学 一种镧锶铜锰硫氧稀磁半导体材料及其制备方法
CN103045235A (zh) * 2012-12-18 2013-04-17 上海交通大学 乙酰丙酮酸稳定的Mn2+掺杂CdS荧光量子点的水相合成方法
CN103382100A (zh) * 2013-06-26 2013-11-06 蚌埠市高华电子有限公司 一种软磁铁氧体磁芯材料及其制备方法
CN107204225A (zh) * 2016-03-18 2017-09-26 中国科学院物理研究所 氟基铁磁半导体材料及其制备方法
CN110634639A (zh) * 2019-08-28 2019-12-31 松山湖材料实验室 调节稀磁半导体磁性能的方法及其制品
CN111809158A (zh) * 2020-07-22 2020-10-23 延安大学 一种过渡金属掺杂ZnO纳米线阵列、制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0300352D0 (sv) * 2003-02-06 2003-02-06 Winto Konsult Ab Ferromagnetism in semiconductors
KR101028907B1 (ko) 2009-02-23 2011-04-12 서울대학교산학협력단 망간이 도핑된 나노결정의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531179A (en) * 1965-10-01 1970-09-29 Clevite Corp Electro-optical light modulator
US3520781A (en) * 1967-11-29 1970-07-14 Eastman Kodak Co Method for lowering dark conductivity of thin semiconducting films
US6780242B2 (en) * 2000-07-26 2004-08-24 Nec Laboratories America, Inc. Method for manufacturing high-quality manganese-doped semiconductor nanocrystals
US6545329B1 (en) * 2001-10-23 2003-04-08 Mcnc High sensitivity polarized-light discriminator device
US6642538B2 (en) * 2001-10-24 2003-11-04 The United States Of America As Represented By The Secretary Of The Navy Voltage controlled nonlinear spin filter based on paramagnetic ion doped nanocrystal
US7343059B2 (en) * 2003-10-11 2008-03-11 Hewlett-Packard Development Company, L.P. Photonic interconnect system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956814A (zh) * 2012-11-20 2013-03-06 浙江大学 一种镧锶铜锰硫氧稀磁半导体材料及其制备方法
CN102956814B (zh) * 2012-11-20 2014-07-16 浙江大学 一种镧锶铜锰硫氧稀磁半导体材料及其制备方法
CN103045235A (zh) * 2012-12-18 2013-04-17 上海交通大学 乙酰丙酮酸稳定的Mn2+掺杂CdS荧光量子点的水相合成方法
CN103382100A (zh) * 2013-06-26 2013-11-06 蚌埠市高华电子有限公司 一种软磁铁氧体磁芯材料及其制备方法
CN103382100B (zh) * 2013-06-26 2014-12-03 蚌埠市高华电子有限公司 一种软磁铁氧体磁芯材料及其制备方法
CN107204225A (zh) * 2016-03-18 2017-09-26 中国科学院物理研究所 氟基铁磁半导体材料及其制备方法
CN110634639A (zh) * 2019-08-28 2019-12-31 松山湖材料实验室 调节稀磁半导体磁性能的方法及其制品
CN111809158A (zh) * 2020-07-22 2020-10-23 延安大学 一种过渡金属掺杂ZnO纳米线阵列、制备方法及其应用

Also Published As

Publication number Publication date
EP1756855A1 (en) 2007-02-28
SE528394C2 (sv) 2006-11-07
JP2007538400A (ja) 2007-12-27
WO2005112086A1 (en) 2005-11-24
KR20070039496A (ko) 2007-04-12
SE0401319L (sv) 2005-11-19
SE0401319D0 (sv) 2004-05-18
US20070190367A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
CN1985359A (zh) 锰掺杂磁半导体
Lewis et al. Inspired by nature: investigating tetrataenite for permanent magnet applications
Lewis et al. De magnete et meteorite: cosmically motivated materials
Dai et al. Junction-like magnetoresistance of intergranular tunneling in field-aligned chromium dioxide powders
Chen et al. Effects of temperature and atmosphere on the magnetism properties of Mn-doped ZnO
Kudo et al. Great differences between low-temperature grown Co2FeSi and Co2MnSi films on single-crystalline oxides
Naumova et al. Magnetoresistive properties of CoFe/Cu/CoFe/Dy pseudo spin valves under conditions of interdiffusion of dysprosium and CoFe ferromagnetic alloy layers
CN100392774C (zh) 具有高自旋极化率的半金属磁性材料
Fersi et al. Intrinsic and extrinsic magnetic properties of nanocrystalline Pr2 (Co, Fe) 7
CN100430335C (zh) 铁磁性材料
CN1998068A (zh) 铜掺杂磁半导体
Iqbal et al. Electron spin dynamics in vertical magnetic junctions incorporating two-dimensional layered materials
Tian et al. Giant positive magnetoresistance in Co-doped ZnO nanocluster films
KR102598395B1 (ko) 희토류 무 금속 경질 자석
US8277960B2 (en) Inhomogeneous compounds having high magnetic resistance, the production and use thereof
Huang et al. Granular Fe–Pb–O films with large tunneling magnetoresistance
Jayashire et al. Microstructural and Magnetic Property Investigations into Antiferromagnetic Mn2FeSi Heusler Alloy for Spintronics Applications
Majumdar et al. Temperature‐dependent structure and magnetism of Mn‐doped Ge nanowires
Kouba Electronic structure and related band parameters of magnetic semiconducting alloys
Jayashire et al. Structural and Magnetic Studies on Mn2TiSi Heusler Alloy for Spintronics Applications
Koplak et al. Microstructure evolution of SmCo films and First Order Reversal Curves analysis of the interphase coupling
Slusser et al. Magnetic behavior of CeO 2-δ thin films doped with non-magnetic transition metals
Norton et al. Ferromagnetism in ZnO doped with transition metal ions
Havela et al. 5 f Magnetism—Specific Features And Boundaries
Slusser et al. Magnetic behavior of CeO thin films doped with non-magnetic transition metals.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1100721

Country of ref document: HK

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070620

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1100721

Country of ref document: HK