CN1974486A - Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction - Google Patents

Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction Download PDF

Info

Publication number
CN1974486A
CN1974486A CN 200610154732 CN200610154732A CN1974486A CN 1974486 A CN1974486 A CN 1974486A CN 200610154732 CN200610154732 CN 200610154732 CN 200610154732 A CN200610154732 A CN 200610154732A CN 1974486 A CN1974486 A CN 1974486A
Authority
CN
China
Prior art keywords
cnt
tube
carbon nano
zinc oxide
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610154732
Other languages
Chinese (zh)
Other versions
CN100400469C (en
Inventor
杨德仁
杜宁
张辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2006101547321A priority Critical patent/CN100400469C/en
Publication of CN1974486A publication Critical patent/CN1974486A/en
Application granted granted Critical
Publication of CN100400469C publication Critical patent/CN100400469C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention discloses process of preparing carbon nanotube/nanometer zinc oxide sphere heterojuntion. The process includes the following steps: ultrasonically dispersing carbon nanotube mixed alcohol-water solution to obtain alcohol-water solution of carbon nanotube; heating the alcohol-water solution of carbon nanotube to 60-90 deg.c; dropping zinc chloride solution in the concentration of 0.01-0.5 mol/L and triethaolamine solution in the concentration of 0.1-2 mol/L to react for 1-3 hr, centrifuging, and drying. The present invention has simple preparation process and low reaction temperature, and the carbon nanotube/nanometer zinc oxide sphere heterojuntion of the present invention structure is used in the deep research and application of photoelectronic device and gas sensor.

Description

A kind of method for preparing CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction
Technical field
The present invention relates to a kind of method for preparing CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
Background technology
Since CNT (carbon nano-tube) in 1991 is successfully synthesized, because its special structure has caused it in electric transmission, opto-electronic device, all there is particular performances aspects such as gas sensor, thereby are subjected to paying close attention to widely.In addition, along with the carbon pipe in batches synthetic successfully solve and the advantageous characteristic of matrix material itself makes carbon pipe based composites become the focus of research.At present, carbon pipe/high molecular polymer, carbon pipe/precious metal, composite structures such as carbon pipe/metal oxide have all obtained a lot of application in fields such as nano photoelectronic devices and gas sensors.And zinc oxide is a kind of important semiconductor material with wide forbidden band, and its nano material is widely used in optoelectronic areas such as photodiode, gas sensor, ultraviolet detector.Therefore CNT (carbon nano-tube)/zinc oxide heterogeneous knot expection meeting shows particular performances in fields such as opto-electronic device and gas sensors.Have at present on a small quantity about the report of CNT (carbon nano-tube)/zinc oxide heterogeneous structure, generally all be at high temperature or through complicated chemical reaction make (as, Kim.H.; Sigmund, W.; Appl.Phys.Lett.2002,81,2085 and Sun, J.; Gao, L.; Iwasa, M.; Chem.Commun.2004,832).
Summary of the invention
The purpose of this invention is to provide a kind of method that adopts the simple low temperature chemical reaction to prepare CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
The method for preparing CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction of the present invention may further comprise the steps:
1) with the CNT (carbon nano-tube) ultra-sonic dispersion in the ethanol water mixed solution, obtain the CNT (carbon nano-tube) aqueous ethanolic solution, the volume ratio of second alcohol and water is 1: 1;
2) zinc chloride and trolamine are dissolved in respectively in the deionized water, the preparation volumetric molar concentration is that the liquor zinci chloridi and the volumetric molar concentration of 0.01~0.5 mol is the triethanolamine solution of 0.1~2 mol;
3) the CNT (carbon nano-tube) aqueous ethanolic solution is heated to 60~90 ℃, and in the CNT (carbon nano-tube) aqueous ethanolic solution, drip above-mentioned zinc chloride and triethanolamine solution simultaneously, reaction 1~3h, the mol ratio of zinc chloride and CNT (carbon nano-tube) is 1: 1~10, the mol ratio of zinc chloride and trolamine is 1: 0.2~200, reaction finishes, and is centrifugal, dry, obtains CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
Beneficial effect of the present invention is:
Preparation technology is simple, and temperature of reaction is low, adopts the inventive method can obtain CNT (carbon nano-tube)/special structure of zinc oxide nanosphere heterojunction, for the further investigation and the application of opto-electronic device and gas sensor provides the basis.
Description of drawings
Fig. 1 is the stereoscan photograph of CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
Fig. 2 is the transmission electron microscope photo of zinc oxide/zinc oxide nanosphere heterojunction.
Embodiment
Further specify the present invention below in conjunction with embodiment.
Embodiment 1:
At first with in 60 milligrams of CNT (carbon nano-tube) ultra-sonic dispersion to 200 milliliter ethanol water mixed solution, wherein the volume ratio of second alcohol and water is 1: 1.Then 0.68g zinc chloride and 8.3 milliliters of trolamines are dissolved in respectively in 500 ml deionized water, the preparation volumetric molar concentration is that the liquor zinci chloridi and the volumetric molar concentration of 0.01 mol is the triethanolamine solution of 0.1 mol.Secondly above-mentioned CNT (carbon nano-tube) solution is heated to 90 ℃.The 1h of while 0 milliliter of zinc chloride of Dropwise 5 and 50 milliliters of triethanolamine solutions in CNT (carbon nano-tube) solution, and reaction then.With above-mentioned solution centrifugal, drying, obtain the heterojunction of carbon nanotube/zinc oxide nanosphere at last.Fig. 1 and Fig. 2 are the stereoscan photograph and the transmission electron microscope photos of CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
Embodiment 2:
At first with in 300 milligrams of CNT (carbon nano-tube) ultra-sonic dispersion to 200 milliliter ethanol water mixed solution, wherein the volume ratio of second alcohol and water is 1: 1.Then 3.4g zinc chloride and 166 milliliters of trolamines are dissolved in respectively in 500 ml deionized water, the preparation volumetric molar concentration is that the liquor zinci chloridi and the volumetric molar concentration of 0.5 mol is the triethanolamine solution of 2 mol.Secondly above-mentioned CNT (carbon nano-tube) solution is heated to 60 ℃.The 3h of while 0 milliliter of zinc chloride of Dropwise 5 and 50 milliliters of triethanolamine solutions in CNT (carbon nano-tube) solution, and reaction then.With above-mentioned solution centrifugal, drying, obtain the heterojunction of carbon nanotube/zinc oxide nanosphere at last.Its result is similar with example 1.
Embodiment 3:
At first with in 375 milligrams of CNT (carbon nano-tube) ultra-sonic dispersion to 200 milliliter ethanol water mixed solution, wherein the volume ratio of second alcohol and water is 1: 1.Then 0.85g zinc chloride and 83 milliliters of trolamines are dissolved in respectively in 500 ml deionized water, the preparation volumetric molar concentration is that the liquor zinci chloridi and the volumetric molar concentration of 0.125 mol is the triethanolamine solution of 1 mol.Secondly above-mentioned CNT (carbon nano-tube) solution is heated to 80 ℃.The 2h of while 0 milliliter of zinc chloride of Dropwise 5 and 50 milliliters of triethanolamine solutions in CNT (carbon nano-tube) solution, and reaction then.With above-mentioned solution centrifugal, drying, obtain the heterojunction of carbon nanotube/zinc oxide nanosphere at last.Its result is similar with example 1.

Claims (1)

1. method for preparing CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction is characterized in that may further comprise the steps:
1) with the CNT (carbon nano-tube) ultra-sonic dispersion in the ethanol water mixed solution, obtain the CNT (carbon nano-tube) aqueous ethanolic solution, the volume ratio of second alcohol and water is 1: 1;
2) zinc chloride and trolamine are dissolved in respectively in the deionized water, the preparation volumetric molar concentration is that the liquor zinci chloridi and the volumetric molar concentration of 0.01~0.5 mol is the triethanolamine solution of 0.1~2 mol;
3) the CNT (carbon nano-tube) aqueous ethanolic solution is heated to 60~90 ℃, and in the CNT (carbon nano-tube) aqueous ethanolic solution, drip above-mentioned zinc chloride and triethanolamine solution simultaneously, reaction 1~3h, the mol ratio of zinc chloride and CNT (carbon nano-tube) is 1: 1~10, the mol ratio of zinc chloride and trolamine is 1: 0.2~200, reaction finishes, and is centrifugal, dry, obtains CNT (carbon nano-tube)/zinc oxide nanosphere heterojunction.
CNB2006101547321A 2006-11-21 2006-11-21 Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction Expired - Fee Related CN100400469C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101547321A CN100400469C (en) 2006-11-21 2006-11-21 Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101547321A CN100400469C (en) 2006-11-21 2006-11-21 Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction

Publications (2)

Publication Number Publication Date
CN1974486A true CN1974486A (en) 2007-06-06
CN100400469C CN100400469C (en) 2008-07-09

Family

ID=38124881

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101547321A Expired - Fee Related CN100400469C (en) 2006-11-21 2006-11-21 Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction

Country Status (1)

Country Link
CN (1) CN100400469C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429032B (en) * 2007-11-06 2011-05-18 中国科学院化学研究所 CuO-carbon nano-tube composite micro-nano-sphere, preparation and uses thereof
CN101665883B (en) * 2009-10-19 2011-08-10 浙江大学 Method for preparing nano-porous block of Fe-Sn intermetallic compound
CN102157358A (en) * 2010-12-30 2011-08-17 北京理工大学 Method for synthesizing carbon nano tube and zinc oxide heterostructure by hydrothermal method
CN101920986B (en) * 2009-06-16 2012-01-11 合肥学院 Preparation method of zinc oxide nanosphere
US9786848B2 (en) 2010-10-14 2017-10-10 University Of Utah Research Foundation Nanofiber-based heterojunction approach for high photoconductivity on organic materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667757A (en) * 2004-03-10 2005-09-14 中国科学院成都有机化学有限公司 Composite powdery conductor containing carbon nanotube
CN1750176A (en) * 2004-09-17 2006-03-22 中国科学院成都有机化学有限公司 Method for preparing carbon containing nano tube conductive powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429032B (en) * 2007-11-06 2011-05-18 中国科学院化学研究所 CuO-carbon nano-tube composite micro-nano-sphere, preparation and uses thereof
CN101920986B (en) * 2009-06-16 2012-01-11 合肥学院 Preparation method of zinc oxide nanosphere
CN101665883B (en) * 2009-10-19 2011-08-10 浙江大学 Method for preparing nano-porous block of Fe-Sn intermetallic compound
US9786848B2 (en) 2010-10-14 2017-10-10 University Of Utah Research Foundation Nanofiber-based heterojunction approach for high photoconductivity on organic materials
CN102157358A (en) * 2010-12-30 2011-08-17 北京理工大学 Method for synthesizing carbon nano tube and zinc oxide heterostructure by hydrothermal method
CN102157358B (en) * 2010-12-30 2012-08-29 北京理工大学 Method for synthesizing carbon nano tube and zinc oxide heterostructure by hydrothermal method

Also Published As

Publication number Publication date
CN100400469C (en) 2008-07-09

Similar Documents

Publication Publication Date Title
Wang et al. Inorganic–organic pn heterojunction nanotree arrays for a high-sensitivity diode humidity sensor
Chang et al. Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons
Huang et al. Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays
CN1297484C (en) Process for preparing one-dimensional nano tin dioxide material
Mali et al. Novel synthesis and characterization of mesoporous ZnO nanofibers by electrospinning technique
Zhou et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process
Cozzoli et al. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods
Ma et al. In2O3 hierarchical structures of one-dimensional electrospun fibers with in situ growth of octahedron-like particles with superior sensitivity for triethylamine at near room temperature
CN100400469C (en) Process of preparing carbon nanotube/nanometer zinc oxide sphere heterojunction
CN101049924A (en) Method for producing Nano carbon tube clad by metallic sulfide
CN101044848A (en) Nanometer silver antibiotic powder fixed by silk fibroin and preparation method thereof
Chuang et al. Simple synthesis of eco-friendly multifunctional silk-sericin capped zinc oxide nanorods and their potential for fabrication of hydrogen sensors and UV photodetectors
Li et al. Comprehensive studies of the hydrothermal growth of ZnO nanocrystals on the surface of bamboo
Kebede et al. Low-dimensional nanomaterials
CN1305773C (en) Preparation for zinc oxide nanometer material
CN103043712B (en) Method for preparing precious metal gold particle catalytically-grown stannic oxide nanowire
CN103084582B (en) A kind of method preparing atomic scale noble metal nano particles stable colloid suspension
Gao et al. CdS nanorod-based structures: from two-and three-dimensional leaves to flowers
CN102649089B (en) Preparation method of nanogold-tannin-graphene oxide nano composites
CN104947043A (en) Preparation method of Si-ITO composite nanowire ordered array
CN1234611C (en) Method for preparing zinc oxide nanometer material with orientation arrangement nano-tubes
Karthik Kannan et al. Facile Synthesis of Indium Doped Tin Oxide (ITO) Nanoparticles and Development of ap-Si/n-ITO Photodiode for Optoelectronic Applications
Xu et al. Patterned growth of ZnO nanorod arrays on a large-area stainless steel grid
CN103214340A (en) Triptycene organic nano-material and preparation method thereof
CN1234610C (en) Method for preparing zinc oxide nanometer material with orientation arrangement nano-towers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080709

Termination date: 20121121