CN1942758A - 缺陷检查装置及使用该缺陷检查装置的基板制造*** - Google Patents

缺陷检查装置及使用该缺陷检查装置的基板制造*** Download PDF

Info

Publication number
CN1942758A
CN1942758A CNA2005800118229A CN200580011822A CN1942758A CN 1942758 A CN1942758 A CN 1942758A CN A2005800118229 A CNA2005800118229 A CN A2005800118229A CN 200580011822 A CN200580011822 A CN 200580011822A CN 1942758 A CN1942758 A CN 1942758A
Authority
CN
China
Prior art keywords
light
detection apparatus
flaw detection
subject
lighting division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800118229A
Other languages
English (en)
Inventor
田中利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of CN1942758A publication Critical patent/CN1942758A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明提供缺陷检查装置及使用该缺陷检查装置的基板制造***,其中,缺陷检查装置的特征在于,包括:照明部,其可改变入射角而对被检体照射照明光;以及受光部,其可改变检测角度而接收来自被照射所述照明部的照明光的被检体的光,所述受光部接收向与来自所述照明部的照明光的入射方向大致相同方向射出的光。

Description

缺陷检查装置及使用该缺陷检查装置的基板制造***
技术领域
本发明涉及缺陷检查装置及使用该缺陷检查装置的基板制造***。例如,涉及对半导体晶片、液晶基板等基板的表面缺陷进行检查的缺陷检查装置及使用该缺陷检查装置的基板制造***。
本申请对于2004年04月22日申请的日本专利申请第2004-126767号要求优先权,这里援引其内容。
背景技术
一般通过在由硅或玻璃等构成的基板上进行光刻处理来制造半导体晶片或液晶基板。在该光刻处理中,在基板表面上涂敷的保护膜上如果存在膜不均或尘埃的附着等,则导致蚀刻后的图形(pattern)的线宽不良或图形内的针孔等缺陷。
因此,在蚀刻前的基板的制造工序中,进行调查有无这样的缺陷的全数检查。该检查多通过作业者目视观察的方法来进行,但由于作业者判断力的差别或在无尘室中来自作业者身体的尘埃的影响不能忽视,因此提出了使用具有判断功能的缺陷检查装置的方案。
例如,专利文献1中公开了以下的方案,即配置有以角度θ0照明被检体表面的照明部、为了拍摄正反射光而配置在角度θ0的位置的第一摄像部、为了拍摄衍射光而配置在垂直的位置的第二摄像部、以及为了拍摄散射光而配置在角度θ1的位置的第三摄像部。
此外,专利文献2中公开了设置两个摄像部和引导照明光的光纤束,可以自由地设定入射角θ1、θ2和入射角φ1、φ2的方案。
专利文献1:日本特开平9-61365号公报(图5)
专利文献2:日本特开平7-27709号公报(图18)
发明内容
但是,如上述的以往的缺陷检查装置中存在以下的问题。
在专利文献1以及2中记载的技术中,使用照明部和摄像部取得被检体的图像并检测缺陷。被检体表面的重复图形变得细微时,存在根据条件,照明光的入射方向和要观察的衍射光的射出方向重叠或接近的情况。这样的情况下,存在如下问题:导致照明部和受光部干涉而不能接收衍射光,不能进行使用该方向的衍射光的检查。
此外,在以往的缺陷检查装置中,由于观察受到表面的平坦度和下层图形的影响的射出光,所以存在衍射光复杂,图像处理变得烦杂的问题。
本发明鉴于上述问题而完成,其目的在于提供可以接收并检查通过被照射到被检体的照明光而从被检体向宽范围射出的光而使检查精度变高的缺陷检查装置。
在本发明的缺陷检查装置中,包括:照明部,其可改变入射角而对被检体照射照明光;以及受光部,其可改变检测角度而接收来自被照射了所述照明部的照明光的被检体的光,所述受光部接收向与来自所述照明部的照明光的入射方向大致相同方向射出的光。
根据本发明,至少在检查时,由受光部接收通过照明部的照明光而从被检体射出的光、向与入射方向大致相同方向射出的光,所以即使照明光的入射角变化也可以将受光部配置在相对于照明光始终相同的角度位置。其结果,在入射角可变范围内,可以使照明部和受光部不干涉。从而,在与入射角可变范围同等的范围内可检测从被检体射出的光。
根据本发明的缺陷检查装置以及基板制造***,产生如下效果,即由于可以相应于照明光的入射角变化来检测在与入射角可变范围同等的范围内从被检体射出的光,因此可以检查从被检体向各个方向射出的光,并可以提高缺陷检查精度。
附图说明
图1是用于说明本发明的实施方式的缺陷检查装置的概略结构的概念图。
图2A是用于说明规则的图形的衍射光的原理图。
图2B是用于说明布拉格(Bragg)法则的表示对透过面的入射光和衍射光的关系的示意光路图。
图3是用于说明本发明的第一实施方式的缺陷检查装置的控制/处理部的概略结构的功能方框图。
图4是说明本发明的第一实施方式的缺陷检查装置的摄像定时和摄像信号的读出控制的时序图的示意图。
图5是用于说明本发明的第二实施方式的缺陷检查装置的概略结构的概念图。
图6是用于说明本发明的第二实施方式的缺陷检查装置所使用的多个照明部的一例的示意说明图。
图7同样是用于说明多个照明部的其他例子的示意说明图。
图8是暗视场观察的情况下的光学***的结构图。
图9是用于说明第二实施方式的变形例的缺陷检查装置的概略结构的概念图。
图10是用于说明本发明的第三实施方式的缺陷检查装置的概略结构的概念图。
图11是用于说明本发明的第四实施方式的基板制造***的概略结构的概念图。
符号说明
20、24、25、27、135、150…缺陷检查装置 5…被检体 50…基板(被检体) 101、102…照明部(多个照明部中的至少一个) 121…LED 140…基板制造装置 144、145…传送部 146…涂敷显影部 147…曝光部 148…控制部(自动校正单元) 149…LAN 151…检查服务器 201…工作台 202、203…光学保持部 202a…保持部移动机构 400、414、415…光轴 401…受光元件 402…偏振滤光片 403…狭缝(slit) 404…散射板 405…照明部406…半反射镜(光分离单元) 406a…光分离面 407…聚光透镜 408…转盘(turret) 409…透镜 410、420、430…照明/受光光学*** 411…反射镜(反射部件) 416、417…狭缝(遮光单元) 501…装置控制部 502…摄像控制部(摄像控制单元) 503…存储部 504…照明控制部(照明控制单元) 505…工作台控制部 506…滤光片控制部 507…光学***控制部 510…显示部 512A、512B…检查算法部 522…通信控制部 602…触发信号 603…曝光信号
具体实施方式
以下,参照附图说明本发明的实施方式。在所有的附图中,即使实施方式不同的情况下,对于同一或相应的部件赋予同一符号并省略重复的说明。
[第一实施方式]
说明本发明的第一实施方式的缺陷检查装置。
图1是用于说明本发明的实施方式的缺陷检查装置的概略结构的概念图。图2A是用于说明规则的图形的衍射光的原理图。图2B是用于说明布拉格(Bragg)法则的表示对透过面的入射光和衍射光的关系的示意光路图。图3是用于说明本发明的第一实施方式的缺陷检查装置的控制/处理部的概略结构的功能方框图。
如图1所示,本实施方式的缺陷检查装置20由照明受光部21和进行各种控制和图像处理的控制/处理部22构成。
照明受光部21由光学保持部202、兼有与光学保持部202一体保持的照明光学***(照明部)和受光光学***(受光部)的照明/受光光学***410构成。
光学保持部202被设置在将通过适当的吸附机构被吸附保持的被检体5在规定方向上移动传送的工作台201上,是通过保持部移动机构202a而可转动地支撑于工作台201上的检查位置的壳体部件。工作台201上的检查位置在铅直方向上是配置在工作台201上的被检体5的上面,在水平方向上被设置为相对于被检体5的移动方向固定,并形成在与移动方向交叉的方向(图1的纸面垂直方向)上延伸的直线状或直线条状。
保持部移动机构202a由旋转轴和提供以旋转轴为中心的旋转驱动力的电机(未图示)等构成,旋转角度通过后述的光学***移动控制部509控制。这里,旋转轴包含照明/受光光学***的光轴和被检体(具有在半导体或液晶等的表面规则地排列的图形的基板)的表面的交点,并成为与后述的照明部的线状的长度方向平行的轴。
照明/受光光学***410是使对检查位置上照射条状照明光的照明光学***和接收从检查位置射出的光的受光光学***对一部分光路共有同轴而形成一体化的光学***。光轴400是该共有部分的光轴。
由图1的实线绘制的光学保持部202表示照明/受光光学***410的光轴400和被检体5的法线N重叠的情况,即照明光相对于被检体5的入射角为0°的情况。同样,用二点划线绘制的光学保持部202表示光轴400相对于被检体5的法线N向图示顺时针旋转了角度θ的情况,即照明光的入射角为θ的情况。
照明/受光光学***410的概略结构由光源405、散射板404、半反射镜406、聚光透镜407、透镜409、以及受光元件401构成。
光源405是用于对被检体5照射条状的均匀的照明光的光源。作为光源405,例如可以排列多个卤素灯或金属卤化物灯等,也可以采用通过光纤等传送该光的结构。在该情况下,为了提高光的利用效率,重要的是将光的出射角度范围控制在后述的聚光透镜407的NA的范围内,但在这样的设计变得困难的情况下,通过在光源的后方设置反射镜等而可以提高光的利用效率。
在本实施方式中,虽然未图示,然而是与基板等被检体平行配置的线状的照明,采用了将白色LED线状地排列多个的结构。通过这样的结构,可以成为照明寿命长且维护性好的照明部。
散射板404用于使从光源405照射的光均匀,被设置在光源405的射出侧。散射板404在如本实施方式这样将白色LED线状地排列的情况下,采用构成为在排列方向(线状的长度方向)上扩散效果好、在与排列方向正交的方向上扩散效果差的散射板时,可以提高光的利用效率。
半反射镜406(光分离单元)通过光分离面406a将从光源405射出的光反射到被检体5侧,同时,使从被检体5沿着光轴400射出的光透过,从而将照明光学***和受光光学***的光路分离。半反射镜406只要可进行这样的光路分离,由什么样的光学元件构成都可以,可以采用适当的分光器、例如平行平面板、棱镜等。
在半反射镜406的外周侧适当设有用于限制不需要光的遮光部件或光圈等。
特别在与散射板404之间设有对于由散射板404散射并条状地扩展的光束限制宽度方向的不需要光的狭缝403。这样的话,可以减轻亮视场光对暗视场图像带来的影响。
聚光透镜407、透镜409是以该顺序被分别配置在由半反射镜406反射的条状的光前进的光路上,并在检查位置上形成成为规定宽度的条状的均匀的照明光,同时为了将从检查位置的被检体5射出的光会聚而在垂直于纸面的面内和平行于纸面的面内具有不同的屈光力的透镜或透镜组。作为透镜的种类,可以采用适当的透镜,但根据检查位置的长度,例如可以采用柱面透镜、复曲面透镜、歪像透镜,或具有为了减轻像差而具有自由曲面的透镜的结构等。
在聚光透镜407和透镜409之间设有用于限制对观察不需要的波长分量的各种滤光片,并设有将它们在光路内适当切换配置的转盘408。转盘408为了切换滤光片的配置而具有未图示的电机,通过后述的光学***控制部507控制切换。
配置在光学保持部202中的这些照明光学***,即光源405、散射板404、半反射镜406、聚光透镜407、透镜409等构成照明部。
受光元件401在从被检体5射出、由透镜409、聚光透镜407会聚并透过了半反射镜406的光分离面406a的光的成像位置配置受光面,拍摄该像并进行光电转换并转换为摄像信号,例如由线状排列的CCD等摄像元件构成。
在半反射镜406和受光元件401之间的光路中可进退地配置有用于使得能够进行偏振观察的偏振滤光片402。
这些受光光学***、即透镜409、聚光透镜407、半反射镜406、偏振滤光片402、受光元件401等构成受光部。
这样,由于照明/受光光学***410形成了共有作为主要的光学元件的聚光透镜407、透镜409的照明光学***和受光光学***,所以通过将光源405和受光元件401配置在光学共轭的位置上,可以使各自的长度方向的大小一致。这样,与不是共轭的配置的情况相比,具有可以减小光学保持部202的大小,并可以成为紧凑的装置的优点。
但是,在光源405的不均比较大的情况下,也可以将光源405从光学共轭的位置稍微偏离配置。如果这样,检查位置上的照明光被散焦,所以照度不均被降低,可以实现照明的均匀化。
这里,说明本实施方式的照明受光部21的作用。
如图2A所示,在平坦的被检体5上以间距P具有规则的图形30的情况下,对被检体5的表面照射以入射角的余角α入射的波长λ的光线31a时,作为衍射光31b以出射角的余角β射出。
为了引起这样的衍射,条件是光程差成为波长λ的整数倍,所以
P·(cosβ-cosα)=nλ        …(1)
成立。这里,n表示整数(以下相同)。
将式子(1)变形得到式子(2)。
cosβ=(nλ/P)+cosα         …(2)
根据式子(2)可知,衍射光31b取由波长λ和图形30的间距P决定的分散的角度β。一般,对应于n=0,1,2,…,分别称作n次衍射光。这里,0次衍射光是正反射光。
由于n=0以外的n次衍射光对图形30的间距变动和被检体5的反射率的变化敏感地反应而改变衍射光的强度,所以观察衍射方向的图像,与正常的图像比较时,图形30以上容易检测到,缺陷检查变得容易。因此,以往,将衍射光用于缺陷检查。
但是,在被检体5不平坦的情况下,由于图形30引起的衍射光互相干涉,所以成为图像上的噪声,存在不能高精度地检测缺陷的问题。
本发明着眼于布拉格法则,在照明受光部21中,使照明光学***(照明部)和受光光学***(受光部)的光轴的一部分构成同轴,从而即使在被检体5不平坦的情况下也能够不受其影响。以下,说明该作用。
图2B中,为了使图示简洁,表示了在虚拟平面50的周围形成具有微小的凹凸的透过性的弯曲面51,在弯曲面51上形成规则的图形30的情况下的入射光32a和衍射光32b的关系。
这里,将图形30A设为虚拟平面50上的图形,将入射光32a的入射角设为γ,将衍射光32b的出射角设为δ。以间距P相邻的图形30B形成在可以近似为倾斜角φ的弯曲面上。
此时,根据几何关系求光程差,要达成成为衍射光的条件,需要下式成立。
P·{sin(γ+φ)+sin(δ-φ)}/cosφ=nλ    …(3)
对于γ解式子(3)则可知γ成为δ、n、λ、φ的函数,即使n、λ、δ一定,也取决于根据情况而不同的倾斜角φ。从而,可知弯曲面的凹凸(平坦度)改变衍射光的强度,成为缺陷检测时的噪声。
通过三角函数的加法定理将式子(3)变形得到式子(4)。
P·{(sinγ+sinδ)+(tanφ)·(cosγ-cosδ)}=nλ  …(4)
这里,式子(4)中,如果φ=0,则是弯曲面51平坦的情况,相当于图4(a),得到与式子(1)同等的下式。与式子(1)的表面上的不同取决于角度的定义。
P·(sinγ+sinδ)=nλ     …(5)
另一方面,使式子(4)的关系不依赖于倾斜角φ的条件是下式成立。
cosγ-cosδ=0            …(6)
即,δ=γ                …(7)
成立。此时,式子(4)如式子(8)这样。
2·P·sinγ=nλ          …(8)
这是作为所谓的布拉格法则已知的条件式。
以上,说明了弯曲面51具有透过性,但作为反射面也能够在不失去一般性的情况下成立。
从而,向与入射方向相同的方向衍射的衍射光不受到表面的平坦度的影响,根据式子(8)可知,向仅由图形的间距P、衍射次数n、波长λ决定的方向射出。
这样,在本实施方式的摄像步骤中,转动光学保持部202而以各种入射角γ照射照明光,可以测定与入射角同方向的出射角δ=γ成立的衍射光,因此可以取得不受平坦度的影响的图像。
此时,由于共用照明光学***和受光光学***的光路,一体地移动,所以例如可以消除受光元件401和光源405干涉而特定的衍射光的测定变得困难的问题。从而,光学保持部202在可动的全范围可以取得在与入射角可变范围相同的范围中发生的衍射光的图像。
接着,参照图3的功能方框图说明控制/处理部22的概略结构。另外,这些功能块的各自的具体结构通过公知的电路、装置、微型计算机等单元或它们的组合实现。
控制/处理部22的概略结构由进行整体的控制的装置控制部501、从外部对装置控制部501输入控制信息的操作部511、由装置控制部501控制的其他的控制部、显示部510、将由受光元件401取得的摄像信号作为二维的图像数据存储的存储部503构成。其他的控制部的控制对象虽然未图示,但分别被设置在控制/处理部22的内外。
作为其他的控制部,设有照明控制部504(照明控制单元)、工作台控制部505、滤光片控制部506、光学***控制部507、试样方向对齐检测部508、摄像控制部502(摄像控制单元)、通信控制部522以及检查算法部512A、512B。此外,设有缺陷词典519和缺陷判定部518。
照明控制部504通过来自装置控制部501的控制信号,以使光源405(参照图1)适合摄像条件的光量,按照摄像的定时,控制发光量。光量控制在本实施方式中采用控制LED的点亮时间来改变闪烁占空比的控制。
工作台控制部505通过来自装置控制部501的控制信号,控制工作台201(参照图1)的动作,进行工作台201上载置的被检体5的吸附和解除吸附动作、工作台201的移动的起动结束动作以及移动速度控制。工作台201的动作根据需要包含使被检体5向衍射光出来的方向旋转的动作,或通过升降机顶升销(lift pin)使被检体5上升下降的动作等。
滤光片控制部506通过来自装置控制部501的控制信号,进行照明/受光光学***410的滤光片的切换控制。即,旋转转盘408来切换转盘408上的滤光片,或使偏振滤光片402在光路中进退。
光学***控制部507通过来自装置控制部501的控制信号,使保持部移动机构202a动作,改变控制光学保持部202的角度。
试样方向对齐检测部508用于通过来自装置控制部501的控制信号,检测被检体5的设置方向、有无从设置位置的偏离。例如,由位置检测传感器检测为了被检体5的位置对齐而设置的定向平面或凹口等的位置,从而将从规定位置的偏离量或偏离的有无作为检测信号输出到装置控制部501。
摄像控制部502对应于来自装置控制部501的控制信号,对受光元件401输出摄像控制信号,进行摄像动作的控制、摄像的定时或曝光时间等摄像条件控制、以及摄像信号的读出控制,将从受光元件401读出的摄像信号传送到存储部503。
这里,参照图4说明摄像定时和摄像信号的读出控制。
图4是说明摄像定时和摄像信号的读出控制的时序图的示意图。
时钟信号601为受光元件401的动作的基准。
触发信号602是在与时钟信号601同步的任意定时从摄像控制部502对受光元件401输出的脉冲状的控制信号。受光元件401在触发信号602成为高的定时,切换摄像的开始和结束。
曝光信号603是为了进行曝光时间的控制而从摄像控制部502对受光元件401输出的与时钟信号601同步的长度可变的控制信号。曝光信号603与表示摄像开始的触发信号602同步地为高,并保持曝光时间那么久的高电平。受光元件401仅在曝光信号603为高的期间进行曝光动作。
摄像控制部502对曝光时间的控制对应于从被检体5射出的光量和受光元件401的摄像灵敏度进行,以便适当地拍摄被检体5。
由触发信号602的间隔决定的摄像时间成为受光元件401的行取入时间,(行取入时间-曝光时间)成为图像传送时间。即,在该时间内,摄像元件的各蓄积电荷被依次读出、被A/D转换,并被传送到摄像控制部502。
通信控制部522对应于来自装置控制部501的控制信号,控制与外部装置的通信。例如,在缺陷检查装置20被组装在被检体5的制造装置中的情况下,基于这样的制造装置的通信顺序,对控制信号或数据进行通信,并可以实现协调动作。此外,例如,在装置外部为LAN等通信线路的情况下,按照通信线路的通信顺序,可以在通信线路上进行控制信号或数据的通信。
检查算法部512A、512B都对应于来自装置控制部501的控制信号,将存储部503中存储的图像数据读出并进行图像处理,提取缺陷,将缺陷的特征数据输出到装置控制部501。它们实现的缺陷提取的算法相同,可以并行动作。
因此,以下说明检查算法部512A,省略检查算法部512B的说明。
检查算法部512A由图像不均校正部513、失真校正部514、图像位置校正部515、缺陷提取部516、缺陷特征提取部517构成,通过在它们之间以该顺序传送从存储部503传送的图像数据,从而依次进行用于提取缺陷的图像处理。
图像不均校正部513进行黑点校正,即基于预先设定的校正数据存储部521中保存的参数,校正受光元件401或照明/受光光学***410的特性引起的每个像素的差。
因此,校正数据存储部521中存储了拍摄校正基准样本并进行图像处理从而预先取得的由光源405的照明不均或受光元件401的特性偏差等引起的图像信息。
失真校正部514基于特征存储部520中保存的校正数据对照明/受光光学***410歪斜引起的图像失真进行失真校正,或进行用于吸收被检体5的偏差或照明/受光光学***410的变化引起的亮度的变化的亮度校正。
图像位置校正部515进行被检体5的位置校正处理等图像校正。
由此被图像处理后的图像数据可以在各个处理结束的阶段分别被存储在存储部503中。
缺陷提取部516对存储在存储部503中的被检体5的图像和预先存储在存储部503中的良品图像进行比较处理,从而可以提取被检体5的缺陷。
但是,不仅可以进行与良品的图像的比较检查,而且可以进行将被检体5的图像细分,将包含较多的部分判断为良品来构建良品图像,对该构建图像和被检体5的图像进行比较从而检测缺陷的提取方式。
缺陷特征提取部517用于对由缺陷提取部516提取的缺陷的形状信息或位置信息进行分析,并进行缺陷的特征提取。
缺陷词典519是为了确定缺陷的种类而将已知的缺陷信息进行分类存储,从而可进行检索的数据存储部。
缺陷判定部518通过对检查算法部512A、512B提取了特征的缺陷的形状信息或位置信息参照缺陷词典519的数据,从而判定缺陷的种类。缺陷的种类的分类优选基于按照被检体5的不同制造工序发生的特征来将该特征分类。如果这样,具有可以将缺陷与制造工序相关联起来,对于缺陷的原因的确定也可以有贡献的优点。
显示部510在画面中显示由操作部511输入的控制信息、受光元件401取得的图像、由检查算法部512A、512B提取的缺陷的图像以及检查结果信息等。即,形成缺陷检查装置20的用户界面。
接着,说明缺陷检查装置20的动作。另外,如上述说明的那样,由于各控制部的动作等由装置控制部501控制,所以只要没有误解的可能,就省略由装置控制部501发布各个控制信号的说明。
缺陷检查装置20的概略动作按照如下顺序进行被检体加载工序、初始化工序、摄像工序、缺陷检查工序。
在被检体加载工序中,制造工序投入前或投入后的基板作为被检体5,例如通过传送用机器人等被传送到工作台201上。然后,由适当的导轨引导,被工作台201上的吸附机构吸附,固定位置。
在初始化工序中,首先使试样方向对齐检测部508动作,判定被检体5的位置是否准确地被定位在规定位置。如果位置偏离,则通过工作台控制部505使工作台201动作,来校正被检体5的姿势。
然后,由工作台控制部505驱动工作台201,将被检体5移动到检查位置。
另一方面,基于在检查开始前输入并设定的检查条件,使受光元件401动作,将光源405的照明条件或光学保持部202的角度位置等初始化。
即,由摄像控制部502起动受光元件401使得可进行拍摄。
此外,通过滤光片控制部506将照明/受光光学***410的滤光片设定为规定的组合,通过照明控制部504调整光源405的发光量。
此外,通过光学***控制部507驱动保持部移动机构202a,基于检查条件,将光学保持部202移动到相对于被检体5的法线例如倾斜规定角度θ0的位置。
在本实施方式中,适当地设定光源405中包含的LED的闪烁占空比来进行发光量调整。这样,不会引起光量损失或等待光量稳定,可以有效率地且迅速地进行光量切换。
此外,由于LED的连续点亮时间过长时引起光量降低,所以通过这样适当进行闪烁,具有可以确保稳定的发光量的优点。
另一方面,由于可以由摄像控制部502改变曝光信号603的长度来进行曝光控制,所以一边改变曝光信号603一边对受光元件401的摄像信号进行运算处理,调整曝光信号603的时间宽度以使摄像信号具有适当的增益,从而可以代替通过照明控制部504进行的光量调整。
为了适当地得到被检体5的像,可以自由地选择进行发光量控制或进行曝光时间控制。
例如,如果通过被检体5的反射率等来改变光源405的发光量,从而将曝光时间设为一定,则可以使检查节拍一定,所以通常选择这样的模式。
另一方面,如果使光源405的发光量一定,并改变曝光时间,则特别在降低光量时可以缩短检查节拍。
因此,优选预先设置高速模式,即根据来自操作部511的输入来进行增大光源405的发光量、且缩短曝光时间的控制,从而确保适当的光量同时使检查节拍高速化。
由于受光元件401的输出表示为照度和时间的积,因此为了对同一条件的被检体5得到同一输出,LED的闪烁占空比和曝光时间为反比的关系。从而,也可以将由被检体5的种类、反射率、照明光的入射角、滤光片的透过特性等的检查条件决定的光学特性参数预先存储在存储部503中,根据这些光学特性参数施加时间校正,决定闪烁占空比以及曝光时间。
这样,由于可以迅速地进行光量调整,所以具有可以缩短检查时间的优点。
此外,由于发光量的控制和曝光时间的控制都可以仅通过控制反比的时间来进行,所以控制参数少而变简洁。其结果,也有容易进行控制的优点。
在初始化工序结束后进行摄像工序。即,一边通过工作台控制部505恒速移动工作台201,一边通过受光元件401进行拍摄。
工作台201的恒速是检查位置的曝光宽度与触发信号602的周期同步移动的速度,检查位置的曝光宽度相当的摄像信号由摄像控制部502读出并被依次传送到存储部503。由此,被检体5的表面被扫描,被检体5的二维图像被存储在存储部503中。
此时,如图1所示,以入射角θ0从倾斜了角度θ0的光学保持部202沿着光轴400对被检体5照射照明光。
达到被检体5的表面的照明光的一部分由被检体5吸收,而剩余的成为反射光或由被检体5上形成的电路图形等细的规则的图形发生的入射角θ0的衍射光,并被射出到被检体5的外部。这些反射光、衍射光中,朝向光轴400的方向的光入射到照明/受光光学***410,由透镜409、聚光透镜407会聚,透过由转盘408切换的滤光片和偏振滤光片402,由受光元件401接收。
从而,在本实施方式中,即使角度θ0变化,也总是接收朝向与入射方向同轴方向的反射光或衍射光。这样的反射光宏观上看,在θ0=0°时为正反射光,但除此以外为散射光的一部分。
这样,在初始化条件下的摄像工序结束后,由光学***控制部507将光学保持部202的倾斜角例如变更为角度θ1等而反复进行摄像工序。即,将工作台201重置而返回初始的检查位置,在将光学保持部202设置为角度θ1的状态下,根据需要与初始化工序同样进行光量调整或曝光时间的调整,并与上述同样进行摄像工序。
这样,对检查所需的所有倾斜角θ0,θ1,…,θi-1(i是正整数)进行摄像工序。
另外,通过转盘408将进行波长限制的滤光片***光路中时,可以仅拍摄满足适当的衍射条件的图像。此外,通过切换偏振滤光片402,可以仅接收适当的偏振光而进行拍摄。
这样,根据需要,通过对同一倾斜角θj(j是整数)改变滤光片等的条件来取得多个图像,从而可以提高缺陷检测的精度。
上述摄像工序全部结束,或者与上述各摄像工序并行进行缺陷检查工序。
通过装置控制部501的控制信号,将通过各摄像工序存储在存储部503中的被检体5的图像数据传送到检查算法部512A、512B,并进行图像处理,从而进行缺陷检查工序。检查算法部512A、512B由于可进行并行处理,所以在适当的定时传送不同的图像数据,并可以从各个图像数据中提取缺陷。以下,说明由检查算法部512A进行的图像处理。
被传送到检查算法部512A的图像数据基于校正数据存储部521中保存的参数,由图像不均校正部513进行黑点校正。
此外,为了能够接着执行其它的图像数据的校正,将校正后的图像数据传送到存储部503并存储在存储部503中。存储的图像数据通过从操作部511进行指示而根据需要被显示在显示部510中(以下,存储在存储部503中的数据相同)。
然后,通过失真校正部514进行失真校正、亮度校正,接着,图像位置校正部515进行校正被检体5的位置偏离的处理。各个校正后的图像数据被依次存储在存储部503中。
由缺陷提取部516进行取由图像不均校正部513、失真校正部514以及图像位置校正部515校正后的图像数据与存储部503中预先存储的被检体5的良品的图像数据的差分等比较处理,并仅提取缺陷的图像。
缺陷特征提取部517提取由缺陷提取部516提取的缺陷的图像的特征,并提取缺陷的形状信息、位置信息等。提取出的缺陷的数据被传送到缺陷判定部518。
由于缺陷固有的特征作为与被检体5上的位置或姿势等信息独立的信息被提取,所以可以进行与缺陷词典519中存储的缺陷的数据的比较。
缺陷判定部518将从检查算法部512A(512B)传送来的缺陷的数据和缺陷词典519内的数据进行比较,判定缺陷的种类。然后,基于规定的判定基准,进行合格或不合格的判定,并通知装置控制部501。此外,将合格与否判定、缺陷的种类、位置信息、数量等信息与被检体5的制造工序、检查条件一同存储在存储部503中。
以上,缺陷检查工序结束。
装置控制部501在检测出一系列的缺陷检查工序结束时,基于缺陷判定部518的通知,将检查结果与必要的信息、图像一同显示在显示部510。
在判定为合格的情况下,通过工作台控制部505解除被检体5的吸附并传送到装置外部。然后,对于下一个被检体进行上述工序。
在判定为不合格的情况下,保留下一个检查,显示必要的警报等,进入等待操作者的指示的状态。
这样,根据本实施方式的缺陷检查装置,可以拍摄向光学保持部202的可动范围的全部方向射出的光,通过取得不影响被检体5的表面的平坦度的衍射光的图像,可以高精度地检查表面缺陷。
接着,简单地说明用于进行上述动作的操作方法。
操作部511的操作进行特别是专用的操作,除了准备了输入单元的情况下,通过操作显示部510上显示的虚拟的操作画面来进行。形成如下的界面:操作部511的通用的输入装置,例如键盘、鼠标、操纵杆等的输入值实时地被反映到虚拟的操作画面上。
虚拟的操作画面中,根据需要设有显示检查图像或图像处理数据的图形显示部。
在检查开始前,通过操作部511输入检查条件。此时,为了识别检查条件,输入被检体5的品种名或工序名等信息。
此外,为了在设定同样的检查条件的情况下变得便利,也准备从存储部503中调用并挪用以前的检查条件,或仅修正变更点并输入的挪用编辑模式。在通过挪用编辑模式设定了检查条件的情况下,检查条件的版本号作为Ver.XX(XX是适当的数字)等被自动地附加,也可以直接使用以前制作的检查条件。
操作画面中,为了省去操作者的麻烦而保留有最新的输入信息,可以仅变更不同的项目。有版本号的检查条件表示最新的版本号的检查条件。
接着,为了进行被检体5的检查区域的设定,输入检查区域以及在其中制造的图形的匹配信息。由此,在制造了多个相同的图形的情况下,重叠显示拍摄该位置信息的图像而可以进行位置调整。
通过按压操作部511中设置的摄像开始按钮来进行拍摄,由此开始拍摄被检体5,同时进行自动调光以得到最佳的光量,调光条件被显示在显示部510中,操作者可以进行确认。
检查模式设置正反射光、衍射光、暗视场的三个模式,根据需要从操作部511中选择它们。例如,在显示部510上显示操作画面,分别设置复选框,使用操作部511的选择装置,例如鼠标等来选择。
在正反射光模式下,在本实施方式的情况下,将光学保持部202设定为光轴400朝向垂直于被检体5的方向。
在衍射光模式下,根据通过衍射光进行几次检查来变更光学保持部202的倾斜角度,并调整工作台201的位置,以使能够最佳地检测该衍射光。例如,在水平面中旋转工作台201。这根据检查位置的匹配信息而自动地判断并进行位置调整。
在暗视场模式的情况下,与自动检测衍射光的工序同样,自动检测正反射光和衍射光都不检测的角度,从而设定光学保持部202的角度。
根据这些检查模式,照明角度以及照明位置调整结束时,自动进行光量调整动作。
以上,用于开始拍摄的准备结束。
拍摄开始的准备结束后,在显示部510中显示检查模式画面。检查模式画面中显示输入的品种名、工序名、版本号等,通过按压检查开始按钮,从而可以开始检查。
然后,检查结束后,拍摄的图像以及检测出的缺陷被重叠显示在图像上。
在缺陷部的附近显示识别缺陷的标号,在画面上显示与各标号对应的缺陷的种类、其面积、坐标、分类概率等信息。
另外,在该画面中设置品种名、工序名、版本号等的输入部,将它们输入时,可以随时调用存储部503中存储的检查结果。
[第二实施方式]
说明本发明的第二实施方式的缺陷检查装置。
图5是用于说明本发明的第二实施方式的缺陷检查装置的概略结构的概念图。图6是用于说明本发明的第二实施方式的表面检查装置所使用的多个照明部的一例的示意说明图。图7同样是用于说明多个照明部的其他例子的示意说明图。
如图5所示,本实施方式的缺陷检查装置24代替第一实施方式的缺陷检查装置20的照明受光部21而设置照明受光部23。照明受光部23由照明受光部21、照明部101、102(多个照明部中的至少一个)构成。
另外,在图5中,与图1同样用实线表示光轴400位于与被检体5的法线N重叠的位置的情况下的光学保持部202等。
以下,以与第一实施方式的不同点为中心进行说明。
如图5所示,照明部101被配置为能够在对于被检体5的法线N倾斜了角度φ1的位置向检查位置射出照明光。而且,如图6所示,由LED 121、散射板122、透镜123、狭缝124以及滤光片125构成。
LED 121将与光源405同样的白色LED沿图6的纸面纵深方向排列多个而成。
散射板122将从LED 121射出的光散射而均匀化,在纸面纵深方向上延伸配置,散射面被调整,以便配合LED 121的排列在均匀的纵深方向(检查位置的长度方向)上得到散射光。
透镜123是将由散射板122散射的光会聚而成为大致平行光的光学元件。
狭缝124遮蔽从透镜123射出的平行光的不需要光,将照明光整形为矩形状。
滤光片125是根据需要限制透过狭缝124的光束的波长,或控制偏振分量的滤光元件。
照明部102从宽范围的角度对检查位置入射照明光,可进行散射照明。如图5、7所示,配置为以对于被检体5的法线N倾斜了角度φ22<φ1)的位置为中心,可向检查位置射出照明光。而且,如图7所示,由LED 131、散射板132、透镜133构成。符号134表示照明部102的光轴。
LED 131将与光源405同样的白色LED在图示断面内以光轴134为中心排列多个,进而在纸面纵深方向上配置了多个。
散射板132与散射板122同样,用于将从LED 131射出的光扩散而均匀化。
透镜133是将由散射板132散射的光向检查位置会聚的光学元件。
通过具有这样的照明部101、102,本实施方式的缺陷检查装置24可以进行如下的缺陷检查。
首先,由于通过照明部101对检查位置照射角度φ1的照明光,因此可以进行检查而不使用光源405。特别可以进行通过对于入射光φ1的正反射光实现的检查。也可以照明部101使改变角度φ1
此外,如果将照明部101的角度φ1取得比较大,将光轴400对于被检体5垂直或比垂直稍微倾斜配置,则可以进行通过暗视场照明实现的观察。即,由于照明部101的照明光对于被检体5的表面以浅的角度反射,所以仅由被检体5的伤或杂质等而散射的光到达受光元件401,可以在暗视场内清楚地观察伤或杂质。因此,可以取得伤或杂质等的缺陷图像而不太受到图形等的影响。
此外,在被检体5以多层膜构成的情况下,也可以在上层膜和下层膜的边界将角度φ1增大到使照明光被全反射的程度。这样,照明光在下层膜被全反射,可以得到不发生由下层膜以下的图形引起的衍射光的图像。因此,具有缺陷提取的图像处理变得容易,可以有效率地仅提取上层膜的缺陷的优点。
此外,如果将滤光片125设为偏振滤光片,事先调整与偏振滤光片402的偏振特性,则可以仅检测一定的偏振分量,并可以仅检测对表面层的变化敏感的分量。
此外,根据照明部102,对于被检体5可以从多个方向照射照明光,特别由于可以增大NA,所以对于杂质或伤等没有规则性的缺陷可以高效率地发生散射光。从而,使用如照明部101这样的来自一个方向的照明光,具有如下优点:即使是难以发生散射光的微小的杂质或伤,也可以容易地检测到。
另外,在上述中,说明了仅将照明部101、102作为照明光学***来进行暗视场照明,但也可以将光源405设定为暗视场照明的条件,进而通过加上照明部101、102的照明光,从而进一步提高微小的杂质或伤的检测精度。
这里,图8表示暗视场观察的情况下的光学***的结构图。基本上是与照明受光部21、23同样的结构,但通过追加狭缝416、417(遮光单元)从而正反射光不入射到受光元件401,所以可进行暗视场观察。
即,通过狭缝417使照明光通过与光轴400不同的光路,由透镜409弯曲而可以以适于暗视场观察的比较大的入射角入射到被检体5。该照明光的正反射光通过与光轴400不同的光路而入射到聚光透镜407,并由狭缝416遮蔽,所以不入射到受光元件401。
另外,狭缝417遮蔽从图1、5、9的照明受光部21、23、25的光源405射出的光中的至少入射到光轴的光束即可,狭缝416至少仅遮蔽通过狭缝417而由被检体5正反射的光束即可。此外,狭缝416、417也可以设置滑动功能而可以进行装卸。
接着,说明本实施方式的变形例。
图9是用于说明第二实施方式的变形例的缺陷检查装置的概略结构的概念图。
本变形例的缺陷检查装置26如图9所示,代替第二实施方式的缺陷检查装置24的照明受光部23而设置照明受光部25。
照明受光部25代替照明受光部21的光学保持部202而设置光学保持部203,在其内部配置将照明/受光光学***410的光路折叠的照明/受光光学***420而构成。
照明/受光光学***420中,在聚光透镜407和透镜409之间设置反射镜411(反射部件),光路被折叠为V字状,在光轴400与被检体5的法线N一致的状态下,受光元件401被配置在照明部102、照明部101的上方。
光学保持部203是容纳这样折叠的照明/受光光学***420的壳体,与光学保持部202同样由保持部移动机构202a可动地支撑。
根据这样的结构,由于可以将光学保持部203紧凑化而集中在照明部101、102的上方,所以可以使光学保持部203的可动范围比较宽。
另外,在图9中,将光路弯曲向平行于纸面的方向,但也可以在垂直于纸面的面内弯曲。由此,可以扩大转动角度的范围。
此外,例如半导体晶片或液晶基板等近年来由于成本降低而倾向于大型化,但根据这样的结构,即使照明/受光光学***420的光路长度长,也可以成为紧凑的缺陷检查装置,因此即使被检体5大型化,也可以将检查所需的空间限于窄的范围内,从而是理想的。
[第三实施方式]
说明本发明的第三实施方式的缺陷检查装置。
图10是用于说明本发明的第三实施方式的缺陷检查装置的概略结构的概念图。
本实施方式的缺陷检查装置28如图10所示,代替第一实施方式的缺陷检查装置20的照明受光部21而设置照明受光部27。照明受光部27代替第一实施方式的照明/受光光学***410而具有照明/受光光学***430。
以下,以与第一实施方式不同点为中心进行说明。
照明/受光光学***430具有将第一实施方式的照明/受光光学***410的半反射镜406除去后,代替透镜409而具有透镜412的受光光学***。该受光光学***将从被检体5射出的光沿着由光轴414表示的光路会聚并引导至受光元件401上。
另一方面,照明光学***除了光源405、散射板404、透镜412之外,还由使由散射板404散射的光大致成为平行光并入射到透镜412的聚光透镜413构成,形成在被检体5的检查位置上,可从相对于光轴414倾斜了角度Δθ的方向照射照明光的光学***。
而且,照明/受光光学***430被固定在光学保持部202上,能以保持部移动机构202a为中心转动地被保持。从而,在这样的转动时,照明光学***和受光光学***的光路所成的角被保持为Δθ。
最好Δθ是微小的角度,并且最好是与照明光的入射方向大致相同方向的角度。例如,为15°以下即可。
这样,在本实施方式中,采用可将透镜412共同用于受光光学***和照明光学***中的设计。通过设置聚光透镜413,可以成为照明光学***和受光光学***的光路长度不同的设计。从而,在可以比受光光学***改善像差的照明光学***中,如图9所示,由于可以采用紧凑的设计,所以具有可将装置整体小型化的优点。
此外,由于受光光学***和照明光学***不同轴,因此即使在两者的光学特性难以满足的情况下,着眼于各自所需的像差校正量不同的情况,例如也可以是将受光光学***的像差校正优先来设计透镜412,照明光学***中剩余的像差的影响,例如照明不均等,由散射板404、狭缝403、或者适当的黑点校正滤光片等单元校正的结构。
此外,根据角度Δθ的大小,也可以将受光光学***的光路和照明光学***的光路分离,通过分别具有不同的光学特性的透镜面。在该情况下,透镜412可以是自由曲面透镜,也可以将两个透镜粘贴。
根据这样的结构,如图10所示,在光轴414与被检体5的法线N一致的状态下,从光源405照射的光沿着光轴415对于被检体5以入射角Δθ入射。然后,由被检体5向光轴414的方向射出的光以如下的顺序透过透镜412、转盘408、聚光透镜407、偏振滤光片402而会聚在受光元件401上,对其像进行拍摄。
然后,通过转动光学保持部202,对在改变照明光的入射角来照明被检体5时的向偏离角度Δθ的方向射出的光进行摄像。
由此,接收从光学保持部202的可动角度范围中减去Δθ后的角度范围中包含的正反射光、衍射光,并可根据它们的图像来进行缺陷提取。
可以由正反射光拍摄的是光轴414、415分别从被检体5的法线N向角度(Δθ/2)的位置转动的情况。
根据本实施方式的缺陷检查装置28,可以使用以光学保持部202的可动范围的入射角入射到被检体5的照明光,对向与该入射方向偏离了一定角度Δθ的方向射出的光进行拍摄,并可以在宽的范围内拍摄从被检体5射出的光。
此外,由于分为照明光学***和受光光学***的结构,所以可以构成为与各自所需精度对应的光学***,所以可以实现小型化、低成本化。
另外,也可以适当地追加第二实施方式的照明部101、102或暗视场观察用的狭缝416、417,或设置第二实施方式的变形例的反射镜411而将光路弯曲。
[第四实施方式]
接着,说明本发明的第四实施方式的基板制造***。
图11是用于说明本发明的第四实施方式的基板制造***的概略结构的概念图。
本实施方式的基板制造***100是在半导体晶片基板上形成电路图形的基板制造装置中组装本发明的缺陷检查装置,将由基板制造装置制造的基板作为被检体,从而能够进行缺陷检查的***。此外,基板制造装置能自我校正,并能取入缺陷检查装置的检查结果来自动校正。
基板制造***100的概略结构由基板制造装置140、基板制造装置140中组装的缺陷检查装置135构成。
基板制造装置140由将从外部传送的托架141和多个基板50(被检体)在制造工序中送出送入的传送部144、对基板50进行涂敷显影工序的涂敷显影部146、对基板50进行曝光工序的曝光部147、在与缺陷检查装置135之间传送基板50的传送部145、控制它们的动作的控制部148构成。
传送部144、145具有用于保持基板50来进行传送的各个传送机器人142、143(传送单元)。传送机器人142、143分别可以在传送部144、145上在水平面内移动,基板50的保持部在水平方向上伸缩,可以进行上下方向移动和围绕铅直轴的旋转运动。
控制部148(自动校正单元)控制基板制造装置140的制造处理,同时控制各制造处理的控制参数。而且,连接到由适当的网络线路,例如以太网等构成的LAN 149,可以经由LAN 149进行控制信号、数据的通信。
控制部148中包含的自动校正单元被通知缺陷发生的信息时,根据该信息,参照与各处理的控制参数的变化和缺陷发生的相关关系有关的信息,可以再次校正控制参数。
控制参数的变化和缺陷发生的相关关系预先通过实验等求出,并被存储在控制部148可参照的位置。
例如,作为控制参数的变化和缺陷发生的相关关系的例子,例如有发现了由于曝光工序中的对焦模糊或曝光量异常等不利情况而依赖于沿着绘制(mapping)划区的形状的缺陷的例子。
在本实施方式中,存储在控制部148内部的存储单元中,但例如也可以存储在数据存储部154等的外部。
缺陷检查装置135只要是本发明的缺陷检查装置,则何种装置都可以,以下,假设为与第一实施方式的缺陷检查装置20相同的结构进行说明。
缺陷检查装置135的照明受光部21被设置在与曝光部147邻接的位置,被组装在可由传送机器人142、143在工作台201上装卸基板50的位置。因此,被传送到基板制造***100上的基板50在制造工序的任何阶段都可以适当传送到工作台201上来进行检查。
缺陷检查装置135的控制/处理部22经由通信控制部522与LAN 149连接,除了操作部511的操作之外,可以通过LAN 149上连接的检查服务器151进行外部控制。
从而,也可以由检查服务器151经由LAN 149输入检查条件等输入信息。
检查服务器151包括服务器控制部153、数据存储部154,数据存储部154中存储检查条件或检查结果,构建了用于随时进行检索的数据库152。
此外,在LAN 149上,作为适于与基板制造***100一同使用的装置,设有配置在生产线上的具有与本发明的缺陷检查装置同样的结构的缺陷检查装置150、具有进行缺陷有关的观察(review)的同时可对检查服务器151进行访问的通信控制部的观察显微镜155。
说明基板制造***100的动作。
从托架141被传送到基板制造***100的基板50由传送部145、144传送到涂敷显影部146、曝光部147,进行各自的涂敷显影工序、曝光工序。在这样的制造开始前,或者由任一个工序需要进行表面的缺陷检查的阶段,例如形成了一个图形的阶段等,基板50由传送机器人142、143传送到工作台201上。此时,由传送机器人143从图10的右侧传送到工作台201上。
在照明受光部21中,经由第一实施方式中说明的各工序,进行基板50的缺陷检查,进而在继续制造工序的情况下,被传送到涂敷显影部146、曝光部147等,并重复该处理直到基板50的所有的制造工序结束。
基板50的制造工序的最后的缺陷检查结束后,经由通信控制部522、LAN 149对控制部148通知拍摄结束。因此,传送机器人142被起动,将工作台201上的基板50从图示左侧送出,向托架141移送,托架141盛满后被传送到基板制造***100的外部。
这样,在本实施方式中,由于隔着工作台201在左右两侧设有传送机器人142、143,所以具有可以有效率地进行向表面缺陷检查装置135的交接的优点。
在这样的检查过程中检测出基板50上有缺陷时,经由通信控制部522对控制部148通知发现了缺陷的情况,并传送缺陷检查装置135的存储部503中存储的缺陷的种类、数量、位置等缺陷的信息。
控制部148在根据这样的缺陷的信息判断为其可由制造工序的控制参数改善时,进行控制参数的校正。
在判断为曝光工序中存在问题的情况下,再次校正例如曝光部147的曝光量、对焦量、基板50的保持台的倾斜量等,在这些控制参数偏离规定值的情况下,进行返回规定值的控制。
例如,假设发现了由曝光工序中的对焦模糊或曝光量异常等产生的取决于绘制划区的形状的不良缺陷。
在该情况下,在曝光部147中,一边使用曝光检测传感器检测曝光量,一边摇动对焦,检测曝光量为最大的对焦位置。从此处移动到预先设定的对焦位置。接着,在该对焦位置一边检测曝光时的曝光量,一边再设定曝光量,由此将对焦量、曝光量再校正为正常的设定。
此外,同样在判断为涂敷显影部146的显影工序中存在问题的情况下,例如一边由涂敷显影部146中设置的容量传感器、温度传感器等检测这些控制参数,一边再校正显影液的容量、温度等。
在判断为缺陷例如是原形不明的杂质附着等、与制造工序的控制参数的关系不明的情况下,或者即使再校正控制参数也不准确的情况下,通知发现了自动校正无法解决的缺陷的情况,以使操作者明白。此外,在判断为可通过基板50的重做而改善的缺陷的情况下,通知需要重做。
这样,在基板制造***100中,基于涂敷显影部146中组装的缺陷检查装置135判定的缺陷的信息,可以由控制部148自动校正制造工序的控制参数的不良,所以具有可以迅速地将缺陷的信息反映到制造工序上,并可以实现不良率的降低,可以削减制造工序的检查人员或无人化的优点。
接着,说明与缺陷检查装置150、检查服务器151、观察显微镜155有关的动作。
缺陷检查装置150可以进行与缺陷检查装置135相同的检查,但在本实施方式中,主要通过连接到LAN 149而代替缺陷检查装置135进行检查条件的设定及其维护。即,从缺陷检查装置150输入检查条件,保存其数据,适当进行修正来配合制造工序实现检查条件的维护。
然后,经由LAN 149,根据需要将这些检查条件传送到缺陷检查装置135。
在将检查条件输入缺陷检查装置135的情况下,由于检查与通过基板制造装置140进行的基板50的制造工序联动,因此不得不停止制造工序,但由于使用缺陷检查装置150来进行检查条件的设定,因此可以进行检查条件的设定、变更而不必停止制造工序。因此,具有可以提高基板制造装置140的运转效率,并可以廉价地制造基板50的优点。
根据检查服务器151,通过将缺陷检查装置135、150内保存的检查条件、检查结果存储在数据存储部154中,从而构建数据库152,并可以经由LAN 149进行访问。由此,可以提高基板的制造或检查的效率。
对数据库152的数据登记如下进行。
缺陷检查装置135(150)在结束检查时,通过装置控制部501(参照图3)的指示,经由通信控制部522将检查图像、检查数据保存在数据存储部154中。此时,在传送了所有的数据之后,将成为结束的触发的触发文件保存在数据存储部154中。
服务器控制部153始终监视触发文件的生成,检测到触发文件时,按照规定的格式将相应的检查的图像数据保存在数据存储部154中,同时将检查数据作为数据库152的记录登记。
该记录中登记了例如品种名、工序名、检查条件、识别批的批ID、识别制造装置的制造装置ID、检查日期时间、操作管理者名、图像数据的存储位置等信息,以便可以在登记后进行各种检索。
通过将这些数据登记在数据库152中,可以检索、显示与这些数据有关的条件所对应的图像。
另外,来自服务器控制部153的检索、显示也可以采用通过互联网等普及的通用的环球网(Web)功能中包含的各种检索引擎、显示软件。这样,具有可以容易地实现对其它检查装置的链接而不必开发LAN 149固有的检索引擎等的优点。
这样,由于可以通过检查服务器151统一管理缺陷检查装置135、150的数据,所以缺陷检查装置135的装置控制部501可以经由LAN 149将从缺陷检查装置150上传到服务器控制部153中的检查条件下载到缺陷检查装置135。
因此,缺陷检查装置135可以根据需要而下载由缺陷检查装置150适当地维护的检查条件,从而进行检查,并可以分担检查和检查条件设定,从而提高检查工序的效率。
另外,在存在多个如缺陷检查装置150这样的可以上传、下载检查条件的装置的情况下,上传到检查服务器151的数据的修正可以由服务器控制部153进行排他控制。即,进行如下的控制,即各检查条件仅在由最初进行了上传的缺陷检查装置将版本号、更新日提前进行更新的情况下是许可的,而禁止其它的装置进行的修正上传。由此,保持检查条件的一贯性,可以防止一次制作的检查条件由其它的操作者或缺陷检查装置变更的情况引起的不利情况。此外,也可以管理检查条件的变更历史。
观察显微镜155通过被连接到LAN 149,在观察发现了缺陷的基板50的缺陷时,从数据库152取出缺陷的位置或大小等信息,基于这些信息,迅速地移动基板50的位置,可以以适当的放大率来观察应观察的缺陷。
而且,观察的结果,如果数据库152的缺陷数据不适当,则可以从观察显微镜155访问数据库152并进行修正。在服务器控制部153中,许可通过观察显微镜155实现的数据库152的修正,同时保留缺陷数据根据观察结果而被变更的历史。
这样,基于观察结果,例如变更分类名称或修正缺陷的大小,从而可以实现数据库152中保存的缺陷数据的精度提高。这样,可以通过被维护的高精度的缺陷数据来高精度地管理制造工序或检查工序。
观察显微镜155如果可以高精度地观察缺陷,则可以是其它的装置,例如SEM(扫描型电子显微镜)、图形检查装置、重叠装置、线宽检查装置等,也可以是它们多个的组合。
在本发明的缺陷检查装置中,包括可改变入射角地对被检体照射照明光的照明部;以及可改变检测角度地接收来自被照射所述照明部的照明光的被检体的光的受光部,所述受光部的结构为接收向与来自所述照明部的照明光的入射方向大致相同方向射出的光。
根据本发明,至少在检查时,由受光部接收通过照明部的照明光而从被检体射出的光中、向与入射方向大致相同的方向射出的光,所以即使照明光的入射角变化,也可以将受光部配置在相对于照明光始终相同的角度位置。其结果,可以在入射角可变范围内使照明部和受光部不干涉。从而,在与入射角可变范围同等的范围内可以检测从被检体射出的光。
另外,为了构成这样的结构,可以将照明部和受光部一体化以使各自的光路构成一定的角度,也可以使照明部和受光部分别独立地可动,从而在检查时进行使互相的光路所成的角度一定的移动控制。
此外,一定角度在每次检查时一定即可,一定角度的值也可以调整。
此外,在本发明的缺陷检查装置中,照明部的光轴和受光部的光轴优选一部分同轴地构成。
在该情况下,由于照明部的光轴和受光部的光轴的一部分同轴,所以可以成为紧凑的装置。因此,可以使照明光的入射角的可变范围成为宽范围。
此外,在由受光部检测的光为照明光的衍射光的情况下,由于照明光的入射方向和该衍射光同轴、满足布拉格的法则,所以可以作为不依赖于被检体的膜厚变化等的低噪声的衍射光而被接收。从而,图像处理变得容易,同时可以提高检查精度。
此外,在本发明的缺陷检查装置中,优选通过在从照明部射出、被照射到被检体上,并由受光部接收来自被检体的光为止的光路中配置光路分离单元,从而一部分同轴地构成。
在该情况下,由于由光路分离单元将光路分离一部分,所以尽管一部分同轴,光路上的部件的配置也变得容易。
此外,在本发明的缺陷检查装置中,优选为照明部和受光部可一体转动的结构。
在该情况下,由于照明部和受光部可一体转动,所以可靠并且容易地在相同的方向上接收从照明光的入射方向和被检体射出的光,由此可以提高检查效率。
此外,在本发明的缺陷检查装置中,优选通过在从照明部射出、被照射到被检体上,并由受光部接收来自被检体的光为止的光路中配置反射部件,从而将光路弯曲。
在该情况下,由于通过反射部件将光路弯曲,所以光路上的部件的配置变得容易,可以成为紧凑的结构。
此外,在本发明的缺陷检查装置中,优选在由受光部接收来自被检体的光为止的光路中,设置遮断正反射的反射光的光路的遮光单元,可进行暗视场观察。
在该情况下,通过设置遮蔽正反射的反射光的光路的遮光单元而可以进行暗视场观察,所以可以以简单的结构进行暗视场观察。
此外,在本发明的缺陷检查装置中,优选照明部被构成为与被检体平行配置的线状,照明部以及受光部包含照明部以及受光部的光轴和被检体的表面的交点,以平行于照明部的长度方向的轴作为转动轴进行转动。
在该情况下,由于照明部以及受光部包含这些光轴和被检体的表面的交点,并且以平行于照明部的长度方向的轴为转动轴进行转动,所以即使照明部以及受光部转动,照明光也以大致同样的线状照明,所以不需要检查位置的调整等,并可以提高检查效率。
此外,本发明的缺陷检查装置中,受光部优选为接收来自被检体的衍射光的结构。而且更优选衍射光是向与照明光的入射方向同方向衍射的衍射光。
在该情况下,在宽范围的角度范围内可以通过衍射光进行检查。特别在向与照明光的入射方向同方向衍射的衍射光的情况下,根据布拉格的法则,可以作为不依赖于被检体的膜厚变化等的低噪声的衍射光接收,所以图像处理变得容易,同时可以提高检查精度。
此外,在本发明的缺陷检查装置中,其结构优选为照明部被设置为以互不相同的入射角对被检体进行照明的多个照明部,多个照明部中的至少一个的照明光的入射方向为与受光部的接收方向不同的方向。
在该情况下,可以使多个照明部中的至少一个的照明光的、从被检体射出的光向与受光部的接收方向不同的方向射出。从而,例如在暗视场观察等情况下,可以通过多个照明部中的至少一个的照明光形成合适的照明光。
此外,在本发明的缺陷检查装置中,优选包括:照明控制单元,其至少控制照明部的照明光的闪烁占空比;以及摄像控制单元,其控制受光部的曝光时间。
在该情况下,通过照明控制单元控制照明部的照明光的闪烁时间而可以控制光量,并且通过摄像控制单元控制受光部的曝光时间而可以控制受光部的曝光量,所以对检查图像的亮度的改变变得容易。此外,由于照明控制单元和摄像控制单元都控制时间,所以可以通过简单的控制单元协调两者的控制。
此外,在本发明的缺陷检查装置中,结构为包括:制造基板的基板制造装置;以及以制造过程中的所述基板为被检体来进行缺陷检查的上述缺陷检查装置。
根据本发明,可以成为具有与本发明的缺陷检查装置同样的作用效果的基板制造***。
另外,在本发明的缺陷检查装置中,可以将以上说明的优选的方式适当组合来实施。此外,其任何一个缺陷检查装置都可以应用于本发明的基板制造***。
此外,以上说明了本发明的优选的实施方式,但本发明不限定于这些实施方式,可以广泛地应用。在不脱离本发明的主旨的范围内,可进行结构的附加、省略、置换以及其它的变更。本发明不被前述说明所限定,仅由添加的权利要求的范围限定。
此外,上述说明中,假设受光元件401的摄像元件为行传感器的情况进行了说明,但只要对检查范围进行摄像并进行光电转换,则二维传感器是也可以的。
此外,在上述缺陷检查装置的说明中,说明了照明光学***和受光光学***以一定角度被保持为一体的例子,但在检查时保持这样的位置关系即可,不一定需要一体化。例如,也可以分别独立地保持在可动的保持部,互相保持一定角度地被移动控制。此外,一定角度也可以是可调整为根据检查而不同的一定角度。
产业上的可利用性
本发明例如将半导体晶片、液晶基板等的基板作为被检体,在检查其表面缺陷时,可以良好地应用。
权利要求书
(按照条约第19条的修改)
1.一种缺陷检查装置,其特征在于,该缺陷检查装置包括:
照明部,其可改变入射角而对被检体照射照明光;以及
受光部,其可改变检测角度而接收来自被照射所述照明部的照明光的被检体的光,
所述照明部以及所述受光部以包含所述照明部以及所述受光部的光轴和所述被检体的表面的交点的轴作为转动轴进行转动,
所述受光部接收向与来自所述照明部的照明光的入射方向大致相同的方向射出的光。
2.如权利要求1所述的缺陷检查装置,其特征在于,所述照明部被构成为与所述被检体平行地配置的线状,所述转动轴是平行于所述照明部的长度方向的轴。
3.如权利要求1所述的缺陷检查装置,其特征在于,所述照明部的光轴和所述受光部的光轴的一部分构成为同轴。
4.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置在从所述照明部射出而照射到所述被检体上并由所述受光部接收来自所述被检体的光为止的光路中配置光路分离单元,从而所述照明部的光轴和所述受光部的光轴的一部分构成为同轴。
5.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置可使所述照明部和所述受光部一体转动。
6.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置在从所述照明部射出而照射到所述被检体上并由所述受光部接收来自所述被检体的光为止的光路中设置反射部件,从而使光路弯曲。
7.如权利要求1所述的缺陷检查装置,其特征在于,
该缺陷检查装置在由所述受光部接收来自所述被检体的光为止的光路中,
设置遮断正反射的反射光的光路的遮光单元,可进行暗视场观察。
8.如权利要求1所述的缺陷检查装置,其特征在于,所述受光部接收来自所述被检体的衍射光。
9.如权利要求8所述的缺陷检查装置,其特征在于,所述衍射光是向与照明光的入射方向相同的方向衍射的衍射光。
10.如权利要求1所述的缺陷检查装置,其特征在于,所述照明部被设置为以互相不同的入射角对于被检体进行照明的多个照明部,该多个照明部中的至少一个的照明光的入射方向被设为与所述受光部的受光方向不同的方向。
11.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置包括:
照明控制单元,其至少控制所述照明部的照明光的闪烁占空比;以及
摄像控制单元,其控制所述受光部的曝光时间。
12.一种基板制造***,该基板制造***包括:
制造基板的基板制造装置;以及
以制造过程中的所述基板为被检体来进行缺陷检查的权利要求1至11中的任何一项所述的缺陷检查装置。

Claims (12)

1.一种缺陷检查装置,其特征在于,该缺陷检查装置包括:
照明部,其可改变入射角而对被检体照射照明光;以及
受光部,其可改变检测角度而接收来自被照射所述照明部的照明光的被检体的光,
所述受光部接收向与来自所述照明部的照明光的入射方向大致相同方向射出的光。
2.如权利要求1所述的缺陷检查装置,其特征在于,所述照明部的光轴和所述受光部的光轴的一部分构成为同轴。
3.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置在从所述照明部射出而照射到所述被检体上并由所述受光部接收来自所述被检体的光为止的光路中配置光路分离单元,从而一部分构成为同轴。
4.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置可使所述照明部和所述受光部一体转动。
5.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置在从所述照明部射出而照射到所述被检体上并由所述受光部接收来自所述被检体的光为止的光路中设置反射部件,从而使光路弯曲。
6.如权利要求1所述的缺陷检查装置,其特征在于,
该缺陷检查装置在由所述受光部接收来自所述被检体的光为止的光路中,
设置遮断正反射的反射光的光路的遮光单元,可进行暗视场观察。
7.如权利要求1所述的缺陷检查装置,其特征在于,
所述照明部被构成为与所述被检体平行地配置的线状,
所述照明部以及所述受光部包含所述照明部以及所述受光部的光轴和所述被检体的表面的交点,所述照明部以及所述受光部以平行于所述照明部的长度方向的轴作为转动轴进行转动。
8.如权利要求1所述的缺陷检查装置,其特征在于,所述受光部接收来自所述被检体的衍射光。
9.如权利要求8所述的缺陷检查装置,其特征在于,所述衍射光是向与照明光的入射方向相同的方向衍射的衍射光。
10.如权利要求1所述的缺陷检查装置,其特征在于,所述照明部被设置为以互相不同的入射角对于被检体进行照明的多个照明部,该多个照明部中的至少一个的照明光的入射方向被设为与所述受光部的受光方向不同的方向。
11.如权利要求1所述的缺陷检查装置,其特征在于,该缺陷检查装置包括:
照明控制单元,其至少控制所述照明部的照明光的闪烁占空比;以及
摄像控制单元,其控制所述受光部的曝光时间。
12.一种基板制造***,该基板制造***包括:
制造基板的基板制造装置;以及
以制造过程中的所述基板为被检体来进行缺陷检查的权利要求1至11中的任何一项所述的缺陷检查装置。
CNA2005800118229A 2004-04-22 2005-04-20 缺陷检查装置及使用该缺陷检查装置的基板制造*** Pending CN1942758A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004126767 2004-04-22
JP126767/2004 2004-04-22

Publications (1)

Publication Number Publication Date
CN1942758A true CN1942758A (zh) 2007-04-04

Family

ID=35197092

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800118229A Pending CN1942758A (zh) 2004-04-22 2005-04-20 缺陷检查装置及使用该缺陷检查装置的基板制造***

Country Status (6)

Country Link
US (1) US7372062B2 (zh)
JP (1) JPWO2005103658A1 (zh)
KR (1) KR20070009705A (zh)
CN (1) CN1942758A (zh)
TW (1) TW200540939A (zh)
WO (1) WO2005103658A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221345A (zh) * 2010-03-04 2011-10-19 雅马哈发动机株式会社 检查装置以及检查方法
CN104375199A (zh) * 2014-10-30 2015-02-25 烟台正海汽车内饰件有限公司 行李箱盖板生产中的螺母检测方法及装置
CN110018166A (zh) * 2019-03-19 2019-07-16 深圳市派科斯科技有限公司 一种用于产品外观缺陷检测的设备和方法
CN112577965A (zh) * 2021-02-25 2021-03-30 深圳中科飞测科技股份有限公司 检测***
CN112849866A (zh) * 2019-11-27 2021-05-28 株式会社大福 物品输送装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988599B2 (en) * 2010-08-31 2015-03-24 University Of Southern California Illumination sphere with intelligent LED lighting units in scalable daisy chain with interchangeable filters
WO2007144777A2 (en) * 2006-03-30 2007-12-21 Orbotech, Ltd. Inspection system employing illumination that is selectable over a continuous range angles
KR100846633B1 (ko) * 2006-11-09 2008-07-16 삼성전자주식회사 패턴 결함 검출 방법 및 장치
JPWO2008105460A1 (ja) * 2007-02-28 2010-06-03 株式会社ニコン 観察方法、検査装置および検査方法
FR2914422B1 (fr) * 2007-03-28 2009-07-03 Soitec Silicon On Insulator Procede de detection de defauts de surface d'un substrat et dispositif mettant en oeuvre ledit procede.
JP5557000B2 (ja) * 2010-03-06 2014-07-23 株式会社リコー マーク検出装置および印刷装置
JP5444092B2 (ja) * 2010-04-06 2014-03-19 株式会社日立ハイテクノロジーズ 検査方法およびその装置
JP5460662B2 (ja) * 2011-09-07 2014-04-02 株式会社日立ハイテクノロジーズ 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法
JP2013072845A (ja) * 2011-09-29 2013-04-22 Nuflare Technology Inc パターン検査装置及びパターン検査方法
JP5557054B2 (ja) * 2011-10-28 2014-07-23 西日本高速道路エンジニアリング四国株式会社 構造物調査装置及び構造物調査方法
US9020641B2 (en) 2012-06-07 2015-04-28 Samsung Electronics Co., Ltd. Obstacle sensing module and cleaning robot including the same
JP5946751B2 (ja) * 2012-11-08 2016-07-06 株式会社日立ハイテクノロジーズ 欠陥検出方法及びその装置並びに欠陥観察方法及びその装置
KR102250032B1 (ko) 2014-12-29 2021-05-12 삼성디스플레이 주식회사 표시 장치의 검사 장치 및 표시 장치의 검사 방법
US10887500B2 (en) * 2017-01-24 2021-01-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Optical inspection system
KR102233918B1 (ko) * 2018-06-22 2021-03-30 주식회사 엘지화학 디스플레이 유닛의 이물 검사 시스템
US11238303B2 (en) * 2019-05-15 2022-02-01 Getac Technology Corporation Image scanning method for metallic surface and image scanning system thereof
JP7273631B2 (ja) * 2019-06-26 2023-05-15 株式会社日立製作所 検体性状識別装置、検体性状識別方法及び検体搬送システム
CN110738606A (zh) * 2019-09-06 2020-01-31 深圳新视智科技术有限公司 多光源***的图像校正方法、装置、终端及存储介质
CN112683790A (zh) * 2019-10-17 2021-04-20 神讯电脑(昆山)有限公司 物件表面可能缺陷的影像检测扫描方法及其***
JP7191801B2 (ja) * 2019-11-06 2022-12-19 株式会社東芝 光学検査装置
JP7453205B2 (ja) 2021-12-10 2024-03-19 株式会社モリタ製作所 三次元スキャナ、その制御方法、およびプログラム
JP2023139653A (ja) * 2022-03-22 2023-10-04 株式会社東芝 光学検査装置、処理装置、光学検査方法、及び、光学検査プログラム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787208B2 (ja) * 1986-12-08 1995-09-20 日立電子エンジニアリング株式会社 面板欠陥検出光学装置
JP2506725B2 (ja) * 1987-02-20 1996-06-12 三菱電機株式会社 パタ−ン欠陥検査装置
JP2993683B2 (ja) * 1989-09-18 1999-12-20 株式会社日立製作所 検査方法及び検査システム
JP3379805B2 (ja) 1993-05-13 2003-02-24 オリンパス光学工業株式会社 表面欠陥検査装置
JP3388285B2 (ja) * 1993-12-27 2003-03-17 株式会社ニュークリエイション 検査装置
JP3519813B2 (ja) * 1995-03-14 2004-04-19 オリンパス株式会社 欠陥検出方法及び欠陥検出装置
JP3668294B2 (ja) 1995-08-22 2005-07-06 オリンパス株式会社 表面欠陥検査装置
US6134011A (en) * 1997-09-22 2000-10-17 Hdi Instrumentation Optical measurement system using polarized light
US7123357B2 (en) * 1997-09-22 2006-10-17 Candela Instruments Method of detecting and classifying scratches and particles on thin film disks or wafers
GB9805445D0 (en) * 1998-03-16 1998-05-13 Whitehouse John A Product scanner
KR20010101550A (ko) * 1999-11-25 2001-11-14 기시모토 마사도시 결함검사데이터처리시스템
TW500920B (en) * 2000-03-24 2002-09-01 Olympus Optical Co Defect detecting apparatus
US6816250B1 (en) * 2000-06-12 2004-11-09 Dana Corporation Method and apparatus for measuring irregularities on an outer surface of a rotatable cylindrical shaft
JP2002139451A (ja) * 2000-08-04 2002-05-17 Nikon Corp 表面検査装置
US6829559B2 (en) * 2000-09-20 2004-12-07 K.L.A.-Tencor Technologies Methods and systems for determining a presence of macro and micro defects on a specimen
JP4808871B2 (ja) * 2001-07-12 2011-11-02 倉敷紡績株式会社 表面性状評価装置
WO2003027652A1 (fr) * 2001-09-21 2003-04-03 Olympus Corporation Dispositif d'inspection de defauts
CN100523795C (zh) * 2001-11-30 2009-08-05 国际商业机器公司 图形轮廓的检查装置和检查方法、曝光装置
GB0130149D0 (en) * 2001-12-18 2002-02-06 Johnson Electric Sa Electric motor
JP2003344295A (ja) * 2002-05-22 2003-12-03 Pentax Corp 検査装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221345A (zh) * 2010-03-04 2011-10-19 雅马哈发动机株式会社 检查装置以及检查方法
CN102221345B (zh) * 2010-03-04 2013-10-30 雅马哈发动机株式会社 检查装置以及检查方法
CN104375199A (zh) * 2014-10-30 2015-02-25 烟台正海汽车内饰件有限公司 行李箱盖板生产中的螺母检测方法及装置
CN110018166A (zh) * 2019-03-19 2019-07-16 深圳市派科斯科技有限公司 一种用于产品外观缺陷检测的设备和方法
CN112849866A (zh) * 2019-11-27 2021-05-28 株式会社大福 物品输送装置
CN112577965A (zh) * 2021-02-25 2021-03-30 深圳中科飞测科技股份有限公司 检测***

Also Published As

Publication number Publication date
KR20070009705A (ko) 2007-01-18
US20070103893A1 (en) 2007-05-10
WO2005103658A1 (ja) 2005-11-03
US7372062B2 (en) 2008-05-13
JPWO2005103658A1 (ja) 2008-03-13
TW200540939A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
CN1942758A (zh) 缺陷检查装置及使用该缺陷检查装置的基板制造***
CN1906520A (zh) 显微镜和试料观察方法
CN1217229C (zh) 照片印制装置和电子图像输入装置
CN1129788C (zh) 印刷电路基板的检查装置
CN1243231C (zh) 荧光辉度测量方法及装置
CN1755437A (zh) 图形修正装置和显示装置的制造方法
CN1247977C (zh) 透镜检查装置及检查片
CN1432874A (zh) 曝光装置以及曝光方法
CN1816275A (zh) 印刷基板的品质管理***
CN1959534A (zh) 周边曝光装置及其方法
CN1800836A (zh) 图像检查装置
CN1782662A (zh) 分光计测装置
CN1656601A (zh) 半导体制造方法及其装置
CN1573414A (zh) 像素位置特定方法、图像偏移修正方法、及图像形成装置
CN1172221C (zh) 光束特性评价方法
CN1166972C (zh) 倒立型显微镜
CN1645181A (zh) 照相机及焦点检测装置
CN1215318C (zh) 照明光学元件检查装置及照明光学元件检查方法
CN1585913A (zh) 光学装置的制造方法、通过该方法而制造的光学装置、以及备有该光学装置的投影仪
CN1949022A (zh) 光学扫描装置和使用它的图像形成装置
CN1066265C (zh) 胶片处理设备的输片装置及采用该输片装置的胶片处理设备
CN1168073C (zh) 光记录媒体的制造方法和制造装置
CN1906522A (zh) 激光处理装置
CN1865951A (zh) 安装基板的检查及检查用数据作成的方法与装置
CN1229624C (zh) 位置探测法和装置、曝光法和设备、控制程序以及器件制造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070404