CN1935927B - Cerium oxide abrasive and method of polishing substrates - Google Patents

Cerium oxide abrasive and method of polishing substrates Download PDF

Info

Publication number
CN1935927B
CN1935927B CN2006101425095A CN200610142509A CN1935927B CN 1935927 B CN1935927 B CN 1935927B CN 2006101425095 A CN2006101425095 A CN 2006101425095A CN 200610142509 A CN200610142509 A CN 200610142509A CN 1935927 B CN1935927 B CN 1935927B
Authority
CN
China
Prior art keywords
cerium oxide
particle
slurry
particle diameter
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2006101425095A
Other languages
Chinese (zh)
Other versions
CN1935927A (en
Inventor
吉田诚人
芦泽寅之助
寺崎裕树
仓田靖
松泽纯
丹野清仁
大槻裕人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25913896A external-priority patent/JPH10106982A/en
Priority claimed from JP8258767A external-priority patent/JPH10102038A/en
Priority claimed from JP25878196A external-priority patent/JPH10106993A/en
Priority claimed from JP8258768A external-priority patent/JPH10102039A/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of CN1935927A publication Critical patent/CN1935927A/en
Application granted granted Critical
Publication of CN1935927B publication Critical patent/CN1935927B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

A cerium oxide abrasive for abrading surfaces of an SiO2 insulating film or the like film without causing defects and at high speeds. The abrasive includes a slurry obtained by dispersing, in a medium, the cerium oxide particles having diameters of primary particles of from 10 to 600 nm, a median value of 30 to 250 nm, a median value of particle diameters of 150 to 600 nm, and a maximum diameter of not larger than 3000 nm.

Description

The Ginding process of cerium oxide abrasive and substrate
The present invention relates to the Ginding process of cerium oxide abrasive and substrate.
In the manufacturing process of semiconductor device, the abrasive that generally uses colloidal silica system is as the cmp agent so that the SiO of methods such as plasma CVD (chemical vapour deposition), low pressure chemical vapor deposition formation traditionally 2Inorganic insulation retes such as insulating film carry out leveling.The manufacture method of colloidal silica based abrasive is, utilizes method such as thermolysis silicon tetrachloride to make silica dioxide granule grow up, utilize the basic solution of alkali-free metals such as ammoniacal liquor to adjust the pH value.Yet the technical problem of this abrasive is that the grinding rate of inorganic insulating membrane is insufficient, must use low grinding rate when reality is used this abrasive.
On the one hand, can use cerium oxide abrasive to carry out the surface grinding of photomask with glass.It is low that cerium oxide particle and silica dioxide granule, alumina particle etc. are compared hardness, thereby be difficult to scratch lapped face, grinds so can be used for polishing.In addition, well-known, cerium oxide is a kind of strong oxidizer, so have chemical activity.Effectively utilize this advantage, can be cerium oxide aptly as insulating film cmp agent.But, be used for the inorganic insulating membrane grinding if the photomask glass surface is ground the cerium oxide abrasive former state of using, then because its primary granule particle diameter is big, so can cause macroscopic grinding scar on the insulating film surface.
The invention provides and a kind ofly can not scratch SiO 2Insulating films etc. are by the cerium oxide abrasive that grinds under the high grinding rate of abrasive surface and the Ginding process of substrate.
According to cerium oxide abrasive of the present invention, contain the handlebar cerium oxide particle and be scattered in slurry in the medium, wherein the primary granule particle diameter median of this cerium oxide particle is that 30~250 nanometers, grain diameter median are 150~600 nanometers.
In addition, according to cerium oxide abrasive of the present invention, can contain the handlebar cerium oxide particle and be scattered in slurry in the medium, wherein the primary granule particle diameter median of this cerium oxide particle is that 100~250 nanometers, grain diameter median are 150~350 nanometers.
In the above-mentioned cerium oxide particle, preferably the maximum particle diameter of primary granule is below 600 nanometers, and the particle diameter of primary granule is preferably 10~600 nanometers.
In addition, according to cerium oxide abrasive of the present invention, the cerium oxide particle that can contain handlebar primary granule particle diameter median and be 30~70 nanometers, grain diameter median and be 250~600 nanometers is scattered in the slurry in the medium.
In the above-mentioned cerium oxide particle, preferably the primary granule particle diameter is 10~100 nanometers.
In cerium oxide abrasive of the present invention, preferably the maximum particle diameter of cerium oxide particle is below 3000 nanometers.
Medium can make water, and uses at least a dispersion agent that is selected from the family that is made up of for example water soluble organic polymer, water soluble anionic surfactant, water soluble nonionic surfactant and water-soluble amine, is preferably ammonium polyacrylate.
The cerium oxide that cerium oxide particle preferably uses cerous carbonate to obtain through burning till.
Utilize cerium oxide abrasive of the present invention, can grind the substrate of the defineds such as semi-conductor chip that for example are formed with silicon dioxide film.
Usually, the compound of ceriums such as cerium oxide carbonate, vitriol, oxalate obtains through burning till.SiO by formation such as TEOS-CVD methods 2Insulating film, though cerium oxide primary granule particle diameter is big more and crystallization deformation few more be that crystallinity is good more, may carry out high grinding rate more and grind, have and easily cause the tendency of grinding scar.Therefore, used cerium oxide particle among the present invention is made not improving under the crystallinity.In addition, because cerium oxide particle of the present invention is used for the grinding of semi-conductor chip, so preferably the content of basic metal and halogen is limited in below the 1ppm.
Abrasive purity height of the present invention, below 1ppm, Al content is below 10ppm respectively for the content of Na, K, Si, Mg, Ca, Zr, Ti, Ni, Cr, Fe.
Among the present invention, the preparation method of cerium oxide particle can use sintering method.But,, preferably do not improve crystalline easy fired as far as possible for the particle that makes preparation does not cause the grinding scar.Because the oxidizing temperature of cerium compound is 300 ℃, so firing temperature is preferably more than 600 ℃ below 900 ℃.
Preferably, cerous carbonate was burnt till in oxidizing atmospheres such as oxygen 5~300 minutes under the temperature below 900 ℃ more than 600 ℃.
Cerium oxide after the method pulverizing of can utilize dry ground such as jet mill, stirring mill (PVC-ズ ミ Le) wet pulverization of etc.ing is burnt till.In 527~532 pages of for example " chemical industry collection of thesis " the 6th volumes No. 5 (1980), have illustrated for jet mill.Find,, can take place to pulverize remaining if utilize dry ground method such as jet mill to pulverize cerium oxide after burning till.
According to ceria slurry of the present invention, be contain with good grounds method for preparing cerium oxide particle the aqueous solution or obtain by the cerium oxide particle, water and the composition that dispersion agent constituted in case of necessity that reclaim from this aqueous solution by disperseing.Wherein, though for the concentration of cerium oxide particle without limits, handle easily from suspension liquid, its concentration is preferably in 0.1~10% weight percentage ranges.In addition, dispersion agent is the dispersion agent of metal ion class not, its example has acrylate copolymer and ammonium salt thereof, methacrylate polymer and ammonium salt thereof, water soluble organic polymer classes such as polyvinyl alcohol, water soluble anionic surfactants such as ammonium lauryl sulfate, polyethylene oxide Zetesol AP, water soluble nonionic surfactants such as polyethylene oxide lauryl ether, poly-Tego-stearate, water-soluble amine such as Monoethanolamine MEA BASF, diethanolamine, or the like.
Especially, ammonium polyacrylate is preferably the ammonium polyacrylate of weight-average molecular weight 5000~20000.The addition of these dispersion agents, according to particulate dispersiveness and preventing property of sedimentation etc. in the slurry, corresponding to the cerium oxide particle of 100 weight parts, preferably at 0.01 weight part in the scope of 5 weight parts.In order to improve its dispersion effect, dispersion agent preferably when dispersion treatment and particle join in the dispersion machine simultaneously.
These cerium oxide particles are distributed to method in the water, can also use homogenizer, ultrasonic dispersing machine, ball mill etc. the dispersion treatment except being undertaken by common stirrer.Especially, for discrete particles is a cerium oxide particle below 1 micron, preferably use wet type dispersion machines such as ball mill, vibromill, planetary ball mill, medium stirring mill.In addition, under the situation that will improve slurry alkalescence, can be when dispersion treatment or handle the back and add the not alkaline matter of metal ion such as ammoniacal liquor.
Though cerium oxide abrasive of the present invention can former state use above-mentioned slurry, can add N in above-mentioned slurry, N-diethylethanolamine, N, additive such as N-dimethylethanolamine, N-aminoethyl ethanolamine and as abrasive.
The median that constitutes the primary granule particle diameter that is scattered in cerium oxide particle in the slurry of the present invention is 30~250 nanometers, and the median of the particle diameter of dispersed particles (pulp particle) is 150~600 nanometers.
If the primary granule particle diameter median of cerium oxide particle less than 150 nanometers, then can not be ground SiO by high grinding rate less than 30 nanometers or pulp particle particle diameter median 2Insulating film by abrasive surface.If the median of primary granule particle diameter, then can cause SiO greater than 600 nanometers greater than 250 nanometers or pulp particle particle diameter median 2Insulating film is by the scuffing of abrasive surface.
In addition, preferably the median of the primary granule particle diameter of cerium oxide particle is that 100~250 nanometers, grain diameter median are 150~350 nanometers.If they are less than the above-mentioned lower limit of median separately, then grinding rate diminishes; If greater than the upper limit separately, then easily scratch.
In the above-mentioned cerium oxide particle, preferably below 600 nanometers, the primary granule particle diameter is preferably 10~600 nanometers to the maximum particle diameter of primary granule.If primary granule greater than the higher limit of 600 nanometers, then easily scratches; If it is less than 10 nanometers, then grinding rate diminishes.
In addition, preferably the median of the primary granule particle diameter of cerium oxide particle is 30~70 nanometers, and the median of pulp particle particle diameter is 250~600 nanometers.If they are less than the above-mentioned lower limit of median separately, then grinding rate diminishes; If they then easily scratch greater than separately the upper limit.
In the above-mentioned cerium oxide particle, the primary granule particle diameter is preferably 10~100 nanometers.If primary granule is less than 10 nanometers, then grinding rate diminishes; If it greater than the higher limit of 100 nanometers, then easily scratches.
In the cerium oxide abrasive of the present invention, the maximum particle diameter of cerium oxide particle is preferably below 3000 nanometers.If the maximum particle diameter of cerium oxide particle greater than 3000 nanometers, then easily scratches.
By inference, burn till cerium oxide by jet mill equal to contain in the cerium oxide particle after the method comminuting method is pulverized pulverize remaining, this pulverizing residual particles is different with the coacervate that primary granule is reunited again, their stress when grinding has produced the destructive active face, it is believed that this active face helps do not scratching SiO 2Being ground under the high grinding rate of abrasive surface of insulating film.
Can contain the following pulverizing residual particles of 3000 nanometers in the slurry of the present invention.
Among the present invention, measure the primary granule particle diameter by scanning electron microscope (for example S-900 type of (strain) Hitachi manufacturing).Measure particle diameter by laser diffractometry (for example, the Master Sizer microplus that MalvernInstruments company makes, specific refractory power: 1.9285, light source: He-Ne laser absorbs 0) as the cerium oxide particle of pulp particle.
Constitute the length-to-diameter ratio that is scattered in the primary granule of cerium oxide particle in the slurry of the present invention and be preferably 1~2, median is 1.3.Measure the length-to-diameter ratio of primary granule by scanning electron microscope (for example S-900 type of (strain) Hitachi manufacturing).
Being scattered in cerium oxide particle in the slurry of the present invention can use the Y value of structural parameter of its expression isotropy miniature deformation that records by the analysis of powder X-ray ray Rietveld (リ-ト ベ Le ト) method (RIETAN-94) at the cerium oxide particle below 0.70 more than 0.01.By using this cerium oxide particle, can under not scratching, grind by lapped face and high grinding rate with crystallization deformation.
The specific surface area that is scattered in the cerium oxide particle in the slurry of the present invention is preferably 7~45m 2/ g.Specific surface area is less than 7m 2Receiving a visitor during/g easily scratches by lapped face, and specific surface area is greater than 45m 2The slack-off tendency of grinding rate is arranged during/g.The specific surface area of cerium oxide particle is identical with the specific surface area of dispersive cerium oxide particle in the slurry.
In the slurry of the present invention the zeta current potential of cerium oxide particle be preferably-100mV is above-below the 10mV.Can make cerium oxide particle that good dispersiveness is arranged like this, and can under not scratching, grind by lapped face and high grinding rate.
The median size that is scattered in the cerium oxide particle in the slurry of the present invention is set in below above 400 nanometers of 200 nanometers, and the halfwidth of size-grade distribution is set in below 300 nanometers.
PH value of slurry of the present invention is preferably more than 7 below 10, more preferably more than 8 below 9.
Re-use after placing more than 7 days more preferably more than 30 days down at 5~55 ℃ if put into container such as polyethylene after the slurry adjustment, then scratch and tail off.
Slurry excellent dispersion of the present invention, settling velocity is slow, puts into the cylinder of the high 1m of diameter 10cm, places 2 hours, no matter how high position change rate of concentration is all less than 10%.
Can use the preparation method of the inorganic insulating membrane of cerium oxide abrasive of the present invention, low pressure chemical vapor deposition method, plasma CVD method etc. are for example arranged.Form SiO by the low pressure chemical vapor deposition method 2Use silane: SiH during insulating film 4As the Si source, use oxygen: O 2As oxygen source.By making this SiH 4-O 2Carry out under the low temperature of the oxidizing reaction of system below about 400 ℃ and obtain inorganic insulating membrane.In order to reach leveling, when Doping Phosphorus (P), preferably use SiH by high temperature reflux 4-O 2-PH 3It is reactant gases.The advantage of plasma CVD method is just can carry out the chemical reaction that must high temperature carries out at low temperature under common thermal equilibrium.The production method of plasma body for example has capacity mating type and induces two kinds of mating types.Reactant gases has and for example uses SiH 4As Si source, N 2O is as the SiH of oxygen source 4-N 2O is gas and uses the TEO5-O of tetraethoxysilane (TEOS) as the Si source 2Be gas (TEOS-plasma CVD method).Preferably in 250 ℃~400 ℃ scopes, reaction pressure is preferably in 67~400Pa scope for substrate temperature.Like this, SiO of the present invention 2Can be doped with elements such as phosphorus, boron in the insulating film.
The substrate of defined can use semiconductor substrate promptly form circuit element and wiring pattern stage semiconductor substrate, form on the semiconductor substrate of semiconductor substrate etc. in circuit element stage and be formed with SiO 2The substrate of insulating film layer.By using above-mentioned cerium oxide abrasive to grind this SiO that on semiconductor substrate, forms 2Insulating film layer can be eliminated SiO 2Insulating film layer surface uneven makes whole semiconductor substrate surface become even curface.Wherein, milling apparatus can use general milling apparatus, promptly contains the anchor clamps that keep semiconductor substrate and adheres to the platform (be equipped with can change revolution motor etc.) of abrasive cloth (pad pad).Abrasive cloth can use general non-woven fabrics, polyurathamc, porous fluoropolymer resin etc., and it is had no particular limits.In addition, preferably be processed with the ditch that can accumulate slurry on the abrasive cloth.For grinding condition without limits, but the speed of rotation of platform is preferably the following slow speed of revolution of 100rpm so that semi-conductor can not fly out, and is applied to pressure on the semiconductor substrate preferably at 1kg/cm 2Below so that do not produce scuffing after grinding.During grinding, utilize pump etc. that slurry is supplied on the abrasive cloth continuously.For its feed rate without limits, but the abrasive cloth surface preferably always covered by slurry.
After semiconductor substrate after preferably grinding being finished was fully cleaned in flowing water, use rotatory drier etc. stroked attached to the water droplet on the semiconductor substrate and makes its drying.At leveling SiO so 2On the insulating film layer, form the 2nd layer aluminum wiring, forming SiO by aforesaid method once more between its distribution and on the distribution 2Insulating film uses above-mentioned cerium oxide abrasive to grind then, thereby eliminates the uneven of insulating film surface, makes whole semiconductor surface become burnishing surface.By this technology being repeated the number of times of defined, can make the semi-conductor of the required number of plies.
Cerium oxide abrasive of the present invention not only can be used to grind the SiO that forms on semiconductor substrate 2Insulating film, and can also be used to grind the SiO that forms on the wiring board of deciding distribution to some extent containing 2Insulating film, glass, inorganic insulating membranes such as silicon nitride, opticglass such as photomask, lens, prism, ITO inorganic conductive films such as (tin indium oxides), by optic integrated circuit, switching element, the light-guide wave path that glass and crystalline material constitute, the end face of fiber optics, optics such as scintillator monocrystalline, Solid State Laser monocrystalline, celadon laser LED (photodiode) corundum substrate, semiconductor monocrystals such as SiC, GaP, GaAS, glass substrate for disc, magnetic head etc.
The substrate of defined among the present invention comprises being formed with SiO like this 2The semiconductor substrate of insulating film is formed with SiO 2The wiring board of insulating film, glass, inorganic insulating membranes such as silicon nitride, opticglass such as photomask, lens, prism, inorganic conductive films such as ITO are by optic integrated circuit, switching element, the light-guide wave path that glass and crystalline material constitute, the end face of fiber optics, optics such as scintillator monocrystalline, Solid State Laser monocrystalline, celadon laser LED corundum substrate, semiconductor monocrystals such as SiC, GaP, GaAS, glass substrate for disc, magnetic head etc.
Cerium oxide particle is dispersed in the slurry in the medium and is arranged between the part of the insulating film layer on the defined substrate and forms responding layer by chemical reaction, by using cerium oxide particle that this responding layer machinery is removed, can at high grinding rate and not cause to grind under the scar and grind insulating film layer.
Use cerium oxide abrasive to carry out the surface grinding of photomask with glass.It is low that cerium oxide particle and silica dioxide granule, alumina particle etc. are compared hardness, thereby be difficult to scratch lapped face, grinds so can be used for polishing.In addition, well-known, cerium oxide is a kind of strong oxidizer, so have chemical activity.Effectively utilize this advantage, can be cerium oxide aptly as insulating film cmp agent.But, be used for polishing insulation film if the photomask glass surface is ground the cerium oxide abrasive former state of using, then owing to its particle crystallinity height, so can cause macroscopic grinding scar on the insulating film surface.
Determine crystalline factor that crystallite dimension and crystallization deformation are arranged.If crystallite dimension more than 1 micron, then causes the grinding scar easily when crystallite dimension is extremely big; Even crystallite dimension is very little in addition, if but use the particle that does not have crystallization deformation, also can cause the grinding scar sometimes.Yet some crystalline ceric oxide particle is too low, though can not cause the grinding scar, can not grind by high grinding rate.Thereby, cerium oxide particle is not caused grind scar and the high grinding rate grinding of energy, it must have suitable particle size range and deformation to a certain degree.The factor of decision grinding rate not only has above-mentioned particulate crystallinity, but also the chemical activity of cerium oxide is arranged.
Although can use the pellet hardness silica dioxide granule harder than cerium oxide particle, the grinding rate of silica slurry is than slow many of the grinding rate of ceria slurry.This explanation is with regard to the chemical factor of chemical mechanical milling method, and ceria slurry is strong.SiO 2The insulating film surface is electronegative in the solution more than the pH3 in hydrogen concentration.If use the ceria slurry of particle positively charged to grind, then forming with the cerium oxide is the inert coating of principal constituent.This inert coating can not be removed by washing, but utilizes strongly acidic solution such as nitric acid to remove.When utilizing acid to remove inert coating, insulating film layer is removed more than 1000 nanometers.The insulating film of being removed is the responding layer that generates when forming inert coating.In addition, even cerium oxide particle also can form inert coating when electronegative.Inert coating depends on the charged size of particulate to the sticking power of insulating film.For example, the inert coating that forms when big of electronegative absolute value can be by washing, scrub and remove.The formation degree that is inert coating and responding layer depends on the particulate electriferous state.The phenomenon of this formation inert coating does not observe, is the peculiar phenomenon of ceria slurry for silica slurry.This phenomenon is the factor that the high grinding rate of decision grinds.Cerium oxide particle eliminates this inert layer and responding layer.This phenomenon is the element of chemical mechanical milling method.If the particulate crystallinity is bad, then responding layer can not be removed and grinding rate is slack-off.On the contrary, can remove responding layer when the particle crystallinity is good easily, also can eliminate the responding layer that forms fast fast after removing responding layer, responding layer formation-particle grinds the result that order carries out, and makes it possible to high grinding rate and grinds.
The method of particle electriferous state has the zeta potentiometry in the research slurry.Concrete principle is, cerium oxide is put into the cell that both sides are provided with platinum electrode, applies voltage on two electrodes.By applying voltage, charged cerium oxide particle is to electrode one side shifting of oppositely charged.Obtain its translational speed, utilize the relational expression between well-known translational speed and the zeta current potential just can obtain particulate zeta current potential.In order to form inert coating and responding layer, the zeta current potential of ceria slurry preferably-more than the 100mV.But,, all do not reach and form firm inert coating and do not cause the optimum particulate that grinds scar to grind even when the electronegative but electric charge absolute value of particle positively charged and particle during less than 10mV.Thereby, the zeta current potential of slurry preferably-more than the 100mv-below the 10mv.
Utilization contains the abrasive that the handlebar cerium oxide particle is scattered in the slurry in the medium, thereby optionally grinds other film by forming inert coating so that not only grind the surface of certain a kind of specific film, can grind the form layers that is made of two or more different films on the substrate.
By forming inert coating so that not only grind the surface of certain a kind of specific film in the form layers that constitutes by two or more different films on the substrate, thereby the membrane portions that forms this inert coating as restraining mass (stopper), can be by optionally grinding other film smooth above-mentioned form layers.
The feature of this Ginding process is; on the surface of certain specific interlayer dielectric and interlayer flatted membrane; owing to formed the inert coating that constitutes by the resultant of reaction between abrasive particles or lapping liquid constituent and the film constituent, so almost do not carry out the grinding of this film.So-called inert coating be meant grinding rate than original by the slow upper layer of grinding film.Pictograph is being become such specific interlayer dielectric of this inert coating and interlayer flatted membrane are used to form under the situation of pattern of semi-conductor chip, by thereon the layer grind and form other interlayer film, can reach whole planarizations to lower membrane as restraining mass.
As by at the device that different films constitute more than 2 kinds that forms on this substrate, can be semiconductor substrate as substrate, organic SOG (spin-on glass spin glass) film and the SiO that forms by chemical vapour deposition and thermooxidizing etc. 2Film is as the form layers above it, SiO 2Film is as the film that forms inert coating, organic sog film as the selectivity grinding film.
So-called organic sog film, be meant for example organoalkoxysilane and alkylalkoxy silane are dissolved in organic solvents such as ethanol, by making its hydrolysis to wherein adding water and catalyzer, utilize whirl coating etc. that the coating solution of gained is coated on the substrate, make it to solidify the film that obtains by heat treated then.
In this insulating film, the insulating film that the C atomicity in bonded Si atomicity and the alkyl has following relation in the siloxanes in insulation preferably:
C atomicity/(Si atomicity+C atomicity) 〉=0.1
On smooth organic SOG insulating film layer, form CVD-SiO 2Film and as the 2nd layer aluminum wiring.Forming the CVD-SiO of lower floor between its distribution and on the distribution once more 2Film and organic sog film by using above-mentioned ceria slurry to grind, are eliminated the uneven of insulating film layer surface then, make whole semiconductor surface become burnishing surface.By this technology being repeated the number of times of defined, can make the semi-conductor of the required number of plies.Thereby forms in the technology as the structure of purpose at the film that forms that utilizes this Ginding process to grind to constitute by film more than 2 kinds, smooth by utilizing the selectivity grinding to carry out, can realize the simplification and the high precision int of technology.
Embodiment 1
(preparation 1 of cerium oxide particle)
2kg cerous carbonate hydrate is packed in the platinum container, under 800 ℃, in air, burnt till 2 hours, thereby obtain the yellow-white powder of about 1kg.Utilize X-ray diffraction method to carry out the evaluation of this powder phase, turn out to be cerium oxide.Burning till the powder particle particle diameter is 30~100 microns.The surface that utilizes scanning electron microscopic observation to burn till powder particle, observe cerium oxide the grain circle.Measure the particle diameter of the cerium oxide primary granule that is surrounded by the grain circle, the median that obtains its distribution is 190 nanometers, and maximum value is 500 nanometers.Carry out X-ray diffraction and accurately measure burning till powder, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.080, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.223.Utilize jet mill that the 1kg ceria oxide powder is carried out dry ground.Utilize the scanning electron microscopic observation pulverized particles, find except the small-particle identical with the primary granule grain size, also mixing has from 1 micron to 3 microns bigger pulverizing residual particles with from 0.5 micron to 1 micron pulverizing residual particles.Pulverizing residual particles is not the coacervate of primary granule.Pulverized particles is carried out X-ray diffraction accurately measure, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.085, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.264.As a result, do not change the primary granule particle diameter substantially by pulverizing.Make by pulverizing in addition and introduced deformation on the particle.And then, utilizing BET method measurement the specific area, the result is 10m 2/ g.
(preparation 2 of cerium oxide particle)
2kg cerous carbonate hydrate is packed in the platinum container, under 750 ℃, in air, burnt till 2 hours, thereby obtain the yellow-white powder of about 1kg.Utilize X-ray diffraction method to carry out the evaluation of this powder phase, turn out to be cerium oxide.Burning till the powder particle particle diameter is 30~100 microns.The surface that utilizes scanning electron microscopic observation to burn till powder particle, observe cerium oxide the grain circle.Measure the particle diameter of the cerium oxide primary granule that is surrounded by the grain circle, the median that obtains size distribution is 141 nanometers, and maximum value is 400 nanometers.Carry out X-ray diffraction and accurately measure burning till powder, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.101, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.223.Utilize jet mill that the 1kg ceria oxide powder is carried out dry ground.Utilize the scanning electron microscopic observation pulverized particles, find except the small-particle identical with the primary granule grain size, also mixing has from 1 micron to 3 microns bigger pulverizing residual particles with from 0.5 micron to 1 micron pulverizing residual particles.Pulverizing residual particles is not the coacervate of primary granule.Pulverized particles is carried out X-ray diffraction accurately measure, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.104, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.315.As a result, do not change the primary granule particle diameter substantially by pulverizing.Make by pulverizing in addition and introduced deformation on the particle.And then, utilizing BET method measurement the specific area, the result is 16m 2/ g.
(preparation of ceria slurry)
The cerium oxide particle of the above-mentioned preparation 1,2 of 1kg, 23g polyacrylic acid aqueous ammonium (40% weight percent) and 8977g deionized water mix, and carry out ultrasonic dispersing 10 minutes while stir.Utilize 1 micron filter to filter the slurry of gained, and then obtain the abrasive of 3% weight percent by adding deionized water again.PH value of slurry is 8.3.
By laser diffractometry (for example, the MasterSizer microplus that Malvern Instrument company makes, specific refractory power: 1.9285, light source: He-Ne laser, absorption 0) size distribution of mensuration pulp particle finds that the median of size distribution is 200 nanometers.The particle of largest particle particle diameter more than 780 nanometers is 0% volume percent.
For the dispersiveness of studying slurry and the electric charge of pulp particle, measure the zeta current potential of slurry.Ceria slurry is put into the cell that both sides are provided with platinum electrode, on two electrodes, apply the voltage of 10V.By applying voltage, charged pulp particle is to electrode one side shifting of oppositely charged.Just can obtain particulate zeta current potential by obtaining its translational speed.The measurement result of zeta current potential confirms, and is all electronegative under every kind of situation, its value is respectively-50mV ,-63mV, so the absolute value of zeta current potential is big, the slurry favorable dispersity.
(grinding of insulating film layer)
The Si0 that is formed with according to the preparation of TEOS-plasma CVD method 2The Si wafer of insulating film is positioned over attached in the anchor clamps on the sub master that keeps substrate installation usefulness, make abrasive surface put anchor clamps down on the platform that adheres to cellular polyurethane resin ground dish, and then loaded weight is 300g/cm so that make machine load 2
On one side above-mentioned ceria slurry (solids content: 3% weight percent) speed of dividing with 50ml/ drops on the platform, one side with the speed rotatable platform of 30rpm 2 minutes, carry out the grinding of insulating film.After the grinding, take off wafer from anchor clamps, fully clean with flowing water, utilize sono-cleaner further to clean 20 minutes then.After cleaning, utilize rotatory drier to remove water droplet on the wafer, in 120 ℃ drying machine dry 10 minutes.
Utilize light interference type determining film thickness device to measure the Thickness Variation of grinding front and back, found that,
Eliminate the insulating film of 600 nanometers, 580 nanometers (grinding rate is respectively: 300 nm/min, 290 nm/min) respectively by this grinding, along entire wafer surface uniform film thickness.In addition, use observation by light microscope insulating film surface, do not find tangible scar.
Embodiment 2
(preparation of cerium oxide particle)
2kg cerous carbonate hydrate is packed in the platinum container, under 700 ℃, in air, burnt till 2 hours, thereby obtain the yellow-white powder of about 1kg.Utilize X-ray diffraction method to carry out the evaluation of this powder phase, turn out to be cerium oxide.Burning till the powder particle particle diameter is 30~100 microns.The surface that utilizes scanning electron microscopic observation to burn till powder particle, observe cerium oxide the grain circle.Measure the particle diameter of the cerium oxide primary granule that is surrounded by the grain circle, the median that obtains size distribution is 50 nanometers, and maximum value is 100 nanometers.Carry out X-ray diffraction and accurately measure burning till powder, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.300, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.350.
Utilize jet mill that the 1kg ceria oxide powder is carried out dry ground.Utilize the scanning electron microscopic observation pulverized particles, find except the small-particle identical with the primary granule grain size, also mixing has from 2 microns to 4 microns bigger pulverizing residual particles with from 0.5 micron to 1.2 microns pulverizing residual particles.Pulverizing residual particles is not the coacervate of primary granule.Pulverized particles is carried out X-ray diffraction accurately measure, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.302, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.412.As a result, do not change the primary granule particle diameter substantially by pulverizing.Make by pulverizing in addition and introduced deformation on the particle.And then, utilizing BET method measurement the specific area, the result is 40m 2/ g.
(preparation of ceria slurry)
The cerium oxide particle of the above-mentioned preparation of 1kg, 23g polyacrylic acid aqueous ammonium (40% weight percent) and 8977g deionized water mix, and carry out ultrasonic dispersing 10 minutes while stir.Utilize 2 micron filters to filter the slurry of gained, and then obtain the abrasive of 3% weight percent by adding deionized water again.PH value of slurry is 8.0.(determinator: Master Sizer microplus, specific refractory power: the 1.9285) size distribution of mensuration pulp particle, the median of discovery size distribution is 510 nanometers by laser diffractometry.The particle of largest particle particle diameter more than 1430 nanometers is 0% volume percent.
For the dispersiveness of studying slurry and the electric charge of pulp particle, measure the zeta current potential of slurry.Ceria slurry is put into the cell that both sides are provided with platinum electrode, on two electrodes, apply the voltage of 10V.By applying voltage, charged pulp particle is to electrode one side shifting of oppositely charged.Just can obtain particulate zeta current potential by obtaining its translational speed.The measurement result of zeta current potential confirms that pulp particle is electronegative, and the zeta potential value is-64mV, so its absolute value is big, and the slurry favorable dispersity.
(grinding of insulating film layer)
The SiO that is formed with according to the preparation of TEOS-plasma CVD method 2The Si wafer of insulating film is positioned over attached in the anchor clamps on the sub master that keeps substrate installation usefulness, make abrasive surface put anchor clamps down on the platform that adheres to cellular polyurethane resin ground dish, and then loaded weight is 300g/cm so that make machine load 2
On one side above-mentioned ceria slurry (solids content: 3% weight percent) speed of dividing with 35ml/ drops on the platform, one side with the speed rotatable platform of 30rpm 2 minutes, carry out the grinding of insulating film.After the grinding, take off wafer from anchor clamps, fully clean with flowing water, utilize sono-cleaner further to clean 20 minutes then.After cleaning, utilize rotatory drier to remove water droplet on the wafer, in 120 ℃ drying machine dry 10 minutes.Utilize the Thickness Variation of light interference type determining film thickness device before and after measure grinding, found that, by this grinding eliminate 740 nanometers (grinding rate is: insulating film 370 nm/min), along entire wafer surface uniform film thickness.In addition, use observation by light microscope insulating film surface, do not find tangible scar.
Embodiment 3
(preparation of cerium oxide particle)
2kg cerous carbonate hydrate is packed in the platinum container, under 800 ℃, in air, burnt till 2 hours, thereby obtain the yellow-white powder of about 1kg.Utilize X-ray diffraction method to carry out the evaluation of this powder phase, turn out to be cerium oxide.Burning till the powder particle particle diameter is 30~100 microns.The surface that utilizes scanning electron microscopic observation to burn till powder particle, observe cerium oxide the grain circle.Measure the particle diameter of the cerium oxide primary granule that is surrounded by the grain circle, the median that obtains its distribution is 190 nanometers, and maximum value is 500 nanometers.Carry out X-ray diffraction and accurately measure burning till powder, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.080, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.223.
Utilize to stir to grind the 1kg ceria oxide powder is carried out wet pulverization.Drying contains the liquid of pulverized particles, pulverizes dried particles with ball mill.By scanning electron microscopic observation, find that pulverized particles is the particle identical with the primary granule grain size, do not find big pulverizing residual particles.Pulverized particles is carried out X-ray diffraction accurately measure, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.085, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.300.As a result, do not change the primary granule particle diameter substantially by pulverizing.Make by pulverizing in addition and introduced deformation on the particle.And then, utilizing BET method measurement the specific area, the result is 10m 2/ g.
(preparation of ceria slurry)
The cerium oxide particle of the above-mentioned preparation of 1kg, 23g polyacrylic acid aqueous ammonium (40% weight percent) and 8977g deionized water mix, and carry out ultrasonic dispersing 10 minutes while stir.Utilize 1 micron filter to filter the slurry of gained, and then obtain the abrasive of 3% weight percent by adding deionized water again.PH value of slurry is 8.3.(determinator: Master Sizer microplus, specific refractory power: the 1.9285) size distribution of mensuration pulp particle, the median of discovery size distribution is 290 nanometers by laser diffractometry.The particle of largest particle particle diameter more than 780 nanometers is 0% volume percent.
For the dispersiveness of studying slurry and the electric charge of pulp particle, measure the zeta current potential of slurry.Ceria slurry is put into the cell that both sides are provided with platinum electrode, on two electrodes, apply the voltage of 10V.By applying voltage, charged pulp particle is to electrode one side shifting of oppositely charged.Just can obtain particulate zeta current potential by obtaining its translational speed.The measurement result of zeta current potential confirms that pulp particle is electronegative, and the zeta potential value is-50mV, so its absolute value is big, and the slurry favorable dispersity.
(grinding of insulating film layer)
The SiO that is formed with according to the preparation of TEOS-plasma CVD method 2The Si wafer of insulating film is positioned over attached in the anchor clamps on the sub master that keeps substrate installation usefulness, make abrasive surface put anchor clamps down on the platform that adheres to cellular polyurethane resin ground dish, and then loaded weight is 300g/cm so that make machine load 2On one side above-mentioned ceria slurry (solids content: 3% weight percent) speed of dividing with 35ml/ drops on the platform, one side with the speed rotatable platform of 30rpm 2 minutes, carry out the grinding of insulating film.
After the grinding, take off wafer from anchor clamps, fully clean with flowing water, utilize sono-cleaner further to clean 20 minutes then.After cleaning, utilize rotatory drier to remove water droplet on the wafer, in 120 ℃ drying machine dry 10 minutes.Utilize the Thickness Variation of light interference type determining film thickness device before and after measure grinding, found that, by this grinding eliminate 560 nanometers (grinding rate is: insulating film 280 nm/min), along entire wafer surface uniform film thickness.In addition, use observation by light microscope insulating film surface, do not find tangible scar.
Implement 4
(preparation of cerium oxide particle)
2kg cerous carbonate hydrate is packed in the platinum container, under 700 ℃, in air, burnt till 2 hours, thereby obtain the yellow-white powder of about 1kg.Utilize X-ray diffraction method to carry out the evaluation of this powder phase, turn out to be cerium oxide.Burning till the powder particle particle diameter is 30~100 microns.The surface that utilizes scanning electron microscopic observation to burn till powder particle, observe cerium oxide the grain circle.Measure the particle diameter of the cerium oxide primary granule that is surrounded by the grain circle, the median that obtains its distribution is 50 nanometers, and maximum value is 100 nanometers.Carry out X-ray diffraction and accurately measure burning till powder, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.300, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.350.
Utilize to stir to grind the 1kg ceria oxide powder is carried out wet pulverization.Drying contains the solution of pulverized particles, pulverizes dried particles with ball mill.Utilize the scanning electron microscopic observation pulverized particles, discovery is the particle identical with the primary granule grain size, does not find big pulverizing residual particles.Pulverized particles is carried out X-ray diffraction accurately measure, utilize Rietveld method (RIETAN-94) to analyze its result, the value that obtains expressing the structural parameter X of primary granule particle diameter is 0.302, and the value of expressing the structural parameter Y of isotropy miniature deformation is 0.450.As a result, do not change the primary granule particle diameter substantially by pulverizing.Make by pulverizing in addition and introduced deformation on the particle.And then, utilizing BET method measurement the specific area, the result is 40m 2/ g.
(preparation of ceria slurry)
The cerium oxide particle of the above-mentioned preparation of 1kg, 23g polyacrylic acid aqueous ammonium (40% weight percent) and 8977g deionized water mix, and carry out ultrasonic dispersing 10 minutes while stir.Utilize 1 micron filter to filter the slurry of gained, and then obtain the abrasive of 3% weight percent by adding deionized water again.PH value of slurry is 8.5.(determinator: Master Sizer microplus, specific refractory power: the 1.9285) size distribution of mensuration pulp particle, the median of discovery size distribution is 290 nanometers by laser diffractometry.The particle of largest particle particle diameter more than 780 nanometers is 0% volume percent.
For the dispersiveness of studying slurry and the electric charge of pulp particle, measure the zeta current potential of slurry.Ceria slurry is put into the cell that both sides are provided with platinum electrode, on two electrodes, apply the voltage of 10V.By applying voltage, charged pulp particle is to electrode one side shifting of oppositely charged.Just can obtain particulate zeta current potential by obtaining its translational speed.The measurement result of zeta current potential confirms that pulp particle is electronegative, and the zeta potential value is-65mV, so its absolute value is big, and the slurry favorable dispersity.
(grinding of insulating film layer)
The SiO that is formed with according to the preparation of TEOS-plasma CVD method 2The Si wafer of insulating film is positioned over attached in the anchor clamps on the sub master that keeps substrate installation usefulness, make abrasive surface put anchor clamps down on the platform that adheres to cellular polyurethane resin ground dish, and then loaded weight is 300g/cm so that make machine load 2On one side above-mentioned ceria slurry (solids content: 3% weight percent) speed of dividing with 35ml/ drops on the platform, one side with the speed rotatable platform of 30rpm 2 minutes, carry out the grinding of insulating film.
After the grinding, take off wafer from anchor clamps, fully clean with flowing water, utilize sono-cleaner further to clean 20 minutes then.After cleaning, utilize rotatory drier to remove water droplet on the wafer, in 120 ℃ drying machine dry 10 minutes.Utilize the Thickness Variation of light interference type determining film thickness device before and after measure grinding, found that, by this grinding eliminate 400 nanometers (grinding rate is: insulating film 200 nm/min), along entire wafer surface uniform film thickness.In addition, use observation by light microscope insulating film surface, do not find tangible scar.
Comparative example
With embodiment similarly, for the SiO that is formed with according to TEOS-CVD method preparation 2The Si wafer of insulating film utilizes commercially available silica slurry (Cabot corporate system, trade(brand)name SS225) to grind.The pH of this commercially available slurry is 10.3, SiO 2Granule content is 12.5% weight percent.Grinding condition is identical with embodiment.As a result, though scratch and be to grind evenly, only eliminate 150 nanometers (grinding rate: insulating film layer 75 nm/min) by 2 minutes grindings through grinding not cause.
As mentioned above, SiO can not scratched according to abrasive of the present invention 2Insulating films etc. are ground under the high grinding rate of abrasive surface, are applicable to the substrate of defineds such as grinding semiconductor substrate especially.

Claims (8)

1. polishing slurry, by in medium, disperseing cerium oxide particle to form, this cerium oxide particle by powder X-ray ray Rietveld method with the structural parameter Y value of the isotropic miniature deformation of expression of RIETAN-94 assay determination at 0.01-0.70, cerium oxide particle particle diameter median in the slurry is the 150-600 nanometer, primary granule particle diameter median is the 30-250 nanometer, the maximum value of primary granule particle diameter is below the 500nm, and the maximum particle diameter of the cerium oxide particle in the slurry is below 3000 nanometers.
2. polishing slurry, by disperse primary granule particle diameter median in medium is that the maximum value of 30-250 nanometer, primary granule particle diameter is that cerium oxide particle below the 500nm forms, cerium oxide particle particle diameter median in the slurry is the 150-600 nanometer, the maximum particle diameter of the cerium oxide particle in the slurry is below 3000 nanometers, the cerium oxide particle in the slurry has-and the zeta current potential of 100mV--10mV.
3. polishing slurry, by disperse primary granule particle diameter median in medium is that the maximum value of 30-250 nanometer, primary granule particle diameter is that cerium oxide particle below the 500nm forms, cerium oxide particle particle diameter median in the slurry is the 150-600 nanometer, the maximum particle diameter of the cerium oxide particle in the slurry is below 3000 nanometers, and the specific surface area of the cerium oxide particle in the slurry is 7m 2-45m 2/ g, median size is the 200-400 nanometer, the halfwidth of size-grade distribution is below 300 nanometers.
4. cerium oxide abrasive, contain the handlebar cerium oxide particle and be scattered in slurry in the medium, the primary granule particle diameter median of this cerium oxide particle is 30~250 nanometers, and the maximum value of primary granule particle diameter is below the 500nm, and the grain diameter median is 150~600 nanometers.
5. cerium oxide abrasive, contain the handlebar cerium oxide particle and be scattered in slurry in the medium, the primary granule particle diameter median of this cerium oxide particle is 100~250 nanometers, and the maximum value of primary granule particle diameter is below the 500nm, and the grain diameter median is 150~350 nanometers.
6. cerium oxide abrasive, contain the handlebar cerium oxide particle and be scattered in slurry in the medium, the primary granule particle diameter median of this cerium oxide particle is 30~70 nanometers, and the maximum value of primary granule particle diameter is below the 500nm, and the grain diameter median is 250~600 nanometers.
7. the Ginding process of a substrate is characterized in that, utilizes the substrate of each described polishing slurry grinding defined in the claim 1~3.
8. the Ginding process of a substrate is characterized in that, utilizes the substrate of each described cerium oxide abrasive grinding defined in the claim 4~6.
CN2006101425095A 1996-09-30 1997-09-30 Cerium oxide abrasive and method of polishing substrates Expired - Lifetime CN1935927B (en)

Applications Claiming Priority (34)

Application Number Priority Date Filing Date Title
JP1996-258767 1996-09-30
JP25913896A JPH10106982A (en) 1996-09-30 1996-09-30 Polishing method
JP1996258775 1996-09-30
JP25877696 1996-09-30
JP8258767A JPH10102038A (en) 1996-09-30 1996-09-30 Cerium oxide abrasive and grinding of substrate
JP1996258767 1996-09-30
JP25877596 1996-09-30
JP1996-258766 1996-09-30
JP1996-259138 1996-09-30
JP1996258774 1996-09-30
JP25878196A JPH10106993A (en) 1996-09-30 1996-09-30 Polishing method of substrate
JP1996-258768 1996-09-30
JP1996-258776 1996-09-30
JP1996259138 1996-09-30
JP1996258768 1996-09-30
JP1996258770 1996-09-30
JP1996-258781 1996-09-30
JP1996-258774 1996-09-30
JP1996258781 1996-09-30
JP08258766 1996-09-30
JP1996258776 1996-09-30
JP8258768A JPH10102039A (en) 1996-09-30 1996-09-30 Cerium oxide abrasive and grinding of substrate
JP25877496 1996-09-30
JP1996-258775 1996-09-30
JP1996258766 1996-09-30
JP1996-258770 1996-09-30
JP25877096 1996-09-30
JP1997014371 1997-01-28
JP1437197A JPH10154672A (en) 1996-09-30 1997-01-28 Cerium oxide abrasive material and polishing method of substrate
JP1997-014371 1997-01-28
JP1997112396 1997-04-30
JP1997-112396 1997-04-30
JP1997207866 1997-08-01
JP1997-207866 1997-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB97199370XA Division CN1282226C (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and method of abrading substrates

Publications (2)

Publication Number Publication Date
CN1935927A CN1935927A (en) 2007-03-28
CN1935927B true CN1935927B (en) 2010-11-03

Family

ID=37953673

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200810184455A Pending CN101649182A (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and method of polishing substrates
CN2006101425095A Expired - Lifetime CN1935927B (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and method of polishing substrates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200810184455A Pending CN101649182A (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and method of polishing substrates

Country Status (2)

Country Link
JP (1) JPH10154672A (en)
CN (2) CN101649182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788698A (en) * 2019-10-14 2020-02-14 上海交通大学 Based on atomized CeO2Grinding method, system, medium and equipment with auxiliary axial feed

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501694B2 (en) * 1998-12-25 2010-07-14 日立化成工業株式会社 Additive for CMP abrasives
JP4604727B2 (en) * 1998-12-25 2011-01-05 日立化成工業株式会社 Additive for CMP abrasives
JP3957924B2 (en) 1999-06-28 2007-08-15 株式会社東芝 CMP polishing method
JP3525824B2 (en) * 1999-09-17 2004-05-10 日立化成工業株式会社 CMP polishing liquid
JP5017574B2 (en) * 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド Cerium oxide abrasive and method for producing substrate
US7288212B2 (en) 2001-11-15 2007-10-30 Samsung Electronics Co., Ltd. Additive composition, slurry composition including the same, and method of polishing an object using the slurry composition
KR100475457B1 (en) * 2001-11-15 2005-03-08 삼성전자주식회사 An additive composition, a slurry composition including the additive composition, and a method for polishing an object using the slurry composition
KR100511943B1 (en) 2003-05-22 2005-09-01 한화석유화학 주식회사 Concentrate of fine cerium oxide particles for chemical mechanical polishing and preparing method thereof
JP4637464B2 (en) * 2003-07-01 2011-02-23 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing
JP2005179421A (en) * 2003-12-17 2005-07-07 Nissan Chem Ind Ltd Abrasive composition
US7674716B2 (en) 2004-12-29 2010-03-09 Lg Chem. Ltd. Adjuvant for chemical mechanical polishing slurry
DE102006013728A1 (en) * 2005-03-28 2006-10-19 Samsung Corning Co., Ltd., Suwon A method for producing a polishing slurry having high dispersion stability
KR100786948B1 (en) 2005-12-08 2007-12-17 주식회사 엘지화학 Adjuvant capable of controlling a polishing selectivity and chemical mechanical polishing slurry comprising the same
KR100786949B1 (en) 2005-12-08 2007-12-17 주식회사 엘지화학 Adjuvant capable of controlling a polishing selectivity and chemical mechanical polishing slurry comprising the same
KR100880107B1 (en) 2006-01-25 2009-01-21 주식회사 엘지화학 Cmp slurry and method for polishing semiconductor wafer using the same
EP2500928A4 (en) * 2009-11-12 2014-06-25 Hitachi Chemical Co Ltd Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
KR20130136593A (en) 2010-03-12 2013-12-12 히타치가세이가부시끼가이샤 Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
CN103500706A (en) * 2010-11-22 2014-01-08 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
KR20130129399A (en) 2010-11-22 2013-11-28 히타치가세이가부시끼가이샤 Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
CN103222036B (en) 2010-11-22 2016-11-09 日立化成株式会社 The set agent of suspension, lapping liquid, lapping liquid, the Ginding process of substrate and substrate
BR112013016734A2 (en) * 2010-12-31 2019-09-24 Saint Gobain Ceramics abrasive particles with particular shapes and methods of deformation of such particles
KR102004570B1 (en) 2012-02-21 2019-07-26 히타치가세이가부시끼가이샤 Abrasive, abrasive set, and method for abrading substrate
CN108831830B (en) 2012-02-21 2024-05-17 株式会社力森诺科 Abrasive, abrasive set, and method for polishing substrate
SG11201407029XA (en) 2012-05-22 2014-12-30 Hitachi Chemical Co Ltd Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN104321852B (en) 2012-05-22 2016-12-28 日立化成株式会社 The set agent of suspension, lapping liquid, lapping liquid, the Ginding process of matrix and matrix
JP5943072B2 (en) 2012-05-22 2016-06-29 日立化成株式会社 Slurry, polishing liquid set, polishing liquid and polishing method for substrate
KR102261151B1 (en) * 2020-02-27 2021-06-07 비드오리진(주) Spherical inorganic particles having surface bump and method for preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011082A1 (en) * 1994-10-06 1996-04-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011082A1 (en) * 1994-10-06 1996-04-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788698A (en) * 2019-10-14 2020-02-14 上海交通大学 Based on atomized CeO2Grinding method, system, medium and equipment with auxiliary axial feed
CN110788698B (en) * 2019-10-14 2020-11-06 上海交通大学 Based on atomized CeO2Grinding method, system, medium and equipment with auxiliary axial feed

Also Published As

Publication number Publication date
CN1935927A (en) 2007-03-28
JPH10154672A (en) 1998-06-09
CN101649182A (en) 2010-02-17

Similar Documents

Publication Publication Date Title
CN1323124C (en) Cerium oxide abrasive material and grinding method of base plate
CN1935927B (en) Cerium oxide abrasive and method of polishing substrates
JP5023626B2 (en) Polishing method of cerium oxide slurry and substrate
KR100403719B1 (en) Abrasive, Method of Polishing Wafer, and Method of Producing Semiconductor Device
KR100622519B1 (en) A Cerium Oxide Particle
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP2004282092A (en) Cerium oxide abrasive and substrate polishing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20101103