CN1935641B - 一种由石油焦插层处理制备炭分子筛的方法 - Google Patents

一种由石油焦插层处理制备炭分子筛的方法 Download PDF

Info

Publication number
CN1935641B
CN1935641B CN200610047774A CN200610047774A CN1935641B CN 1935641 B CN1935641 B CN 1935641B CN 200610047774 A CN200610047774 A CN 200610047774A CN 200610047774 A CN200610047774 A CN 200610047774A CN 1935641 B CN1935641 B CN 1935641B
Authority
CN
China
Prior art keywords
molecular sieve
refinery coke
carbon molecular
carbon
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610047774A
Other languages
English (en)
Other versions
CN1935641A (zh
Inventor
徐绍平
卢春兰
苏泉声
刘书林
刘淑琴
刘长厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAOYANG PETROLEUM AND CHEMICAL FIBRE CO CHINA PETROLEUM CORP
Dalian University of Technology
Original Assignee
LIAOYANG PETROLEUM AND CHEMICAL FIBRE CO CHINA PETROLEUM CORP
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAOYANG PETROLEUM AND CHEMICAL FIBRE CO CHINA PETROLEUM CORP, Dalian University of Technology filed Critical LIAOYANG PETROLEUM AND CHEMICAL FIBRE CO CHINA PETROLEUM CORP
Priority to CN200610047774A priority Critical patent/CN1935641B/zh
Publication of CN1935641A publication Critical patent/CN1935641A/zh
Application granted granted Critical
Publication of CN1935641B publication Critical patent/CN1935641B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种由石油焦插层处理制备炭分子筛的方法。首先将石油焦预粉碎,然后采用氧化剂和插层剂对原料进行浸渍氧化插层膨胀处理,样品进一步细粉碎,再加入适量粘结剂、粘结助剂及水进行捏合,捏合均匀后将该捏合物进行成型处理,成型处理物经干燥处理后进行炭化,然后根据需要进行控制物理活化以及碳沉积调孔处理,获得本发明所述的炭分子筛。本发明的有益效果是,所得产品强度高,微孔丰富,孔径分布窄,产品可用于PSA法空气分离制氮,以及瓦斯气或天然气中甲烷的富集。

Description

一种由石油焦插层处理制备炭分子筛的方法
技术领域
本发明属于化工生产技术领域,涉及一种由石油焦插层处理制备炭分子筛的方法。
背景技术
炭分子筛(CMS)是指具有接近被吸附分子大小的孔隙且孔径分布均匀的微孔炭材料,广泛应用于吸附分离、净化和催化等领域,主要作为变压吸附(PSA)工艺的吸附剂,广泛应用于中小规模的空气分离以制备富N2气体。CMS性能及其制造成本很大程度上由所用原料和采用的工艺过程所决定。对于工业生产CMS来说,开发新的原料以降低生产成本将带来巨大的经济效益和社会效益。用于制备CMS的原料很广,由含炭植物或矿物(煤、沥青等)到合成高分子聚合物等,均可用来制造炭分子筛。石油加工副产品石油焦是制备CMS可供选择的原料之一。
随着石油焦产量的不断上升和市场需求趋于饱和,为石油焦寻找新的利用途径越来越受到人们的重视。以石油焦为原料合成CMS,是一条石油焦增值和利用的新途径。石油焦具有价格低廉、来源广泛、固定炭含量高,灰分低等优点,但石油焦微观结构致密、易石墨化,限制了其应用。一般认为只有原料本身或原料经过适当的处理所得的中间产物具有较均匀的发达微孔结构时,才能制备出性能优良的CMS。
中国专利CN1631775A以石油焦为原料,经预炭化后,加3~8倍质量的氢氧化钾活化,制得高比表面积活性炭,再经过高温热缩聚,制得高比表面积纳米孔碳分子筛。由于石油焦微观结构致密,需要大量的活化剂(氢氧化钾)活化,因此造成生产成本较高,设备腐蚀严重,污染大;中国专利CN1462650A以石油焦为原料,以石油沥青、乙烯裂解焦油或煤焦油为粘结剂,加水捏合后成型,干燥炭化后经过控制活化与两组份孔隙调整法的组合法的孔径处理工艺,获得微孔丰富的CMS。采用焦油或沥青粘结剂,含有害物质较多,污染环境;采用苯类或汽油类浸渍剂浸渍法调孔,难以实现微孔尺度和孔容的精细调控;采用物理活化法难以打开石油焦致密的微孔结构,所生产的CMS孔径分布宽,不适用于分子尺度相近的混合组分如空气的分离。以石油焦为原料生产CMS的国外专利未见报道。
发明内容
本发明的目的是克服上述不足,提供一种通过插层预处理来改变石油焦的内部结构使其适用于制备空分或富集甲烷用CMS的方法。由该方法制得的CMS灰分低,微孔丰富,孔径分布范围窄,气体分离性能优良且生产成本低,环境污染小。
本发明基于以下原理:石油焦由石墨微晶构成,与其他炭原料相比,结晶度和有序化程度高,微晶尺度大,结构紧密,孔隙结构不发达,本质上是一种部分已石墨化的炭素形态.石墨晶体具有层状结构,层内炭原子间以强有力的共价键结合成网状平面大分子,层间以很弱的范德华力相结合.在强氧化剂下,网状平面分子带有正电核,层与层之间同性电荷相斥,使石墨层间距加大,插层剂***石墨层间,形成石墨层间化合物.进一步通过快速加热膨胀处理,使微晶尺度减小,层间距加大,从而发展其孔隙结构,使其成为适合制备CMS的前躯体.
将预氧化插层处理前后的石油焦进行X-射线衍射(XRD)分析,可获得样品微晶结构参数。原料石油焦XRD谱图的002峰尖锐且强度较大,说明其内部含有石墨微晶结构;而经过氧化插层处理后的石油焦的002峰较宽且强度降低,说明氧化插层处理使其内部结构无序化。表1是根据石油焦原样和插层石油焦的XRD实验谱图获得的样品石墨微晶结构参数和比表面积数据。表1可以看出,石油焦经过插层处理后层片间距d002由原来的0.345nm增加到0.356nm,石墨微晶厚度参数Lc由原来的2.26nm降低到0.75nm,插层反应使石油焦的石墨微晶层片间距变大,且微晶变小。处理后的石油焦的比表面积也远远大于未处理石油焦,说明预氧化插层处理改变了石油焦的微晶结构,使石油焦具有了较发达的孔隙结构,使其适于作为制备炭分子筛的前驱体。
表1插层处理前后石油焦微晶结构参数
基于上述原理及实验,本发明的技术方案是:一种由石油焦插层处理制备炭分子筛的方法,该方法步骤为:
(1)首先将石油焦预粉碎至过100目的筛网;
(2)将插层剂与氧化剂混合均匀,然后加入石油焦粉中搅拌均匀,石油焦、插层剂和氧化剂的质量比为1∶0.05~0.2∶0.8~2.0,在30~60℃的温度下,反应0.5~3h,再用去离子水洗至pH值为5~6,在60~80℃干燥1~6小时,最后在600-900℃温度下快速膨胀。
(3)将上述样品进一步细粉碎至粒径小于5~10μm,其中90%小于5μm;
(4)再加入粘结剂、粘结助剂及水进行捏合,再挤压成型。捏合成型时物料的质量比为石油焦粉∶粘结剂∶粘结助剂∶水为1∶0.2~0.7∶0.02~0.1∶0.4~0.8;
(5)成型处理物经干燥处理后进行炭化、活化和碳沉积调孔处理,即获得本发明所述的炭分子筛,炭化条件为:转炉炭化,升温速率2~10℃/min,温度800~900℃,氮气或氩气保护;活化条件为:活化剂为水蒸气或二氧化碳,体积浓度30~80%,载气为氮气或氩气,活化温度为800~900℃,活化时间为0.5~3h;碳沉积调孔条件为:碳沉积试剂为苯或甲烷,体积浓度3~20%,载气为氮气或氩气,沉积温度为700~800℃,时间为0.5~3h。
所述石油焦的灰分≤1.00%,水分≤5.0%,挥发分≤18%,含碳量≥90%。氧化剂为浓度为10~30wt%H2O2溶液或浓度为10~40wt%HNO3溶液。插层剂为浓度为95~98wt%H2S04溶液。所述的快速膨胀过程可以是在自由落下床中惰性气氛N2或Ar或反应性气氛空气中完成,气体流速为100~800ml/min进行,加热速率为500~1000℃/s;也可以是在固定床中惰性气氛N2或Ar中进行,加热速率10~50℃/min。粘结剂为热固性酚醛树脂,其性能符合如下指标:黏度为0.3~1.5Pa·s/20℃,固含量为55~75%,粘结助剂为水溶性淀粉或羧甲基纤维素。
本发明与已有的技术相比具有如下优点:
1.对石油焦进行插层预处理可以使其微晶尺度减小,层片间距d002值变大,使其具有较发达的微孔,且改变石油焦的表面结构,有利于进一步的活化调孔处理。同时,预处理后的石油焦易于细粉碎。
2.插层预处理在低温下进行,容易操作控制,且所用的插层剂和氧化剂可以回收再利用。
3.采用酚醛树脂为粘结剂,产生的污染较小。
4.采用淀粉、羧甲基纤维素等为粘结助剂,生产成本较低。
5.所生产的CMS灰分低,强度高,微孔丰富,孔径分布范围窄,分离(变压吸附空分制氮或瓦斯气或天然气中甲烷富集)性能优良。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1(对比例):
取粉碎后的石油焦原料300g,加入粘结剂(热固性酚醛树脂)、助剂(淀粉)和水混捏均匀,其中焦粉∶粘结剂∶助剂∶水=1∶0.2∶0.05∶0.6,再挤压成型。在110℃烘干2h,制成直径2mm,长3~5mm的圆柱体小颗粒。成型烘干后的颗粒在电热转炉中以5℃/min的升温速率升到800℃炭化1h,载气N2流速130ml/mim;炭化后再以0.45ml/min速率通入水活化0.5h;最后在温度750℃时通入苯1h,进行调孔,苯流速0.135ml/min,冷却后即获得CMS。所制得的CMS用转鼓测定的强度达到99.5%,N2吸附测定的总孔容积为0.021ml/g,双塔变压吸附装置测定的空分性能N2的出口浓度为88%。同等条件下商品炭分子筛的测试结果为:转鼓强度99.0%,总孔容积为0.030ml/g,N2浓度为97.9%。
实施例2
取300g焦粉与98%浓硫酸300ml及30%双氧水30ml搅拌混合均匀,反应1h,然后用去离子水洗至pH值为5~6,在80℃左右干燥2h,最后在钢甑中以10~20℃/min加热速率快速升温至750℃,停留0.5h,载气N2流速100ml/min,制得预处理石油焦粉。接着按照实施例1的成型、炭化、活化、沉积步骤进行。所制得的CMS用转鼓测定的强度达到99.4%,N2吸附测定的总孔容积为0.043ml/g,双塔变压吸附装置测定的空分性能N2的出口浓度为96.8%。
实施例3
取300g焦粉与98%浓硫酸300ml及30%双氧水15ml搅拌混合均匀,反应1h,然后用去离子水洗至pH值为5~6,在80℃左右干燥2h,最后在钢甑中以10~20℃/min加热速率快速升温至750℃,停留0.5h,载气N2流速100ml/min,制得预处理的石油焦粉。接着按照实施例1的成型、炭化、活化、沉积步骤进行。所制得的CMS用转鼓测定的强度达到99.6%,N2吸附测定的总孔容积为0.048ml/g,双塔变压吸附装置测定的空分性能N2的出口浓度为98.1%。
实施例4
取300g焦粉与98%浓硫酸300ml及30%双氧水15ml搅拌混合均匀,反应1h,然后用去离子水洗至pH值为5~6,在80℃左右干燥2h,最后在800℃下自由落下床中快速落下,颗粒的升温约600℃/s,载气N2流速200ml/min,制得预处理的石油焦粉。接着按照实施例1的成型、炭化、活化、沉积步骤进行。所制得的CMS用转鼓测定的强度达到99.3%,N2吸附测定的总孔容积为0.052ml/g,双塔变压吸附装置测定的空分性能N2的出口浓度为98.7%。

Claims (5)

1.一种由石油焦插层处理制备炭分子筛的方法,其特征在于,该方法步骤为:
(1)首先将石油焦预粉碎至过100目的筛网;
(2)将插层剂与氧化剂混合均匀,然后加入石油焦粉中搅拌均匀,石油焦、插层剂和氧化剂的质量比为1∶0.05~0.2∶0.8~2.0,在30~60℃的温度下,反应0.5~3h,再用去离子水洗至pH值为5~6,在60~80℃干燥1~6小时,最后在600-900℃温度下快速膨胀,所述的插层剂为浓度为95~98wt%H2SO4溶液,氧化剂为浓度为10~30wt%H2O2溶液或浓度为10~40wt%HNO3溶液;
(3)将上述样品进一步细粉碎至粒径小于5~10μm,其中90%小于5μm;
(4)再加入粘结剂、粘结助剂及水进行捏合,再挤压成型,捏合成型时物料的质量比为石油焦粉∶粘结剂∶粘结助剂∶水为1∶0.2~0.7∶0.02~0.1∶0.4~0.8;
(5)成型处理物经干燥处理后进行炭化、活化和碳沉积调孔处理,即获得炭分子筛,炭化条件为:转炉炭化,升温速率为2~10℃/min,温度为800~900℃,氮气或氩气保护;活化条件为:活化剂为水蒸气或二氧化碳,体积浓度为30~80%,载气为氮气或氩气,活化温度为800~900℃,活化时间为0.5~3h;碳沉积调孔条件为:碳沉积试剂为苯或甲烷,体积浓度3~20%,载气为氮气或氩气,沉积温度为700~800℃,时间为0.5~3h。
2.根据权利要求1所述的一种由石油焦插层处理制备炭分子筛的方法,其特征在于,所述石油焦的灰分≤1.00%,水分≤5.0%,挥发分≤18%,含碳量≥90%。
3.根据权利要求1所述的一种由石油焦插层处理制备炭分子筛的方法,其特征在于,所述的快速膨胀过程是在自由落下床中惰性气氛N2或Ar或反应性气氛空气中完成,加热速率为500~1000℃/s,或者是在固定床中惰性气氛N2或Ar中进行,加热速率为10~50℃/min。
4.根据权利要求1所述的一种由石油焦插层处理制备炭分子筛的方法,其特征在于,所述的粘结剂为热固性酚醛树脂,其性能符合如下指标:黏度为0.3~1.5Pa·s/20℃,固含量为55~75%。
5.根据权利要求1所述的一种由石油焦插层处理制备炭分子筛的方法,其特征在于,所述的粘结助剂为水溶性淀粉或羧甲基纤维素。
CN200610047774A 2006-09-13 2006-09-13 一种由石油焦插层处理制备炭分子筛的方法 Expired - Fee Related CN1935641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200610047774A CN1935641B (zh) 2006-09-13 2006-09-13 一种由石油焦插层处理制备炭分子筛的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610047774A CN1935641B (zh) 2006-09-13 2006-09-13 一种由石油焦插层处理制备炭分子筛的方法

Publications (2)

Publication Number Publication Date
CN1935641A CN1935641A (zh) 2007-03-28
CN1935641B true CN1935641B (zh) 2010-05-12

Family

ID=37953417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610047774A Expired - Fee Related CN1935641B (zh) 2006-09-13 2006-09-13 一种由石油焦插层处理制备炭分子筛的方法

Country Status (1)

Country Link
CN (1) CN1935641B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381708B (zh) * 2010-08-30 2013-08-21 比亚迪股份有限公司 一种工业硅的冶炼方法
CN102826549A (zh) * 2012-10-10 2012-12-19 江西财经大学 一种超级电容器用活性炭制备方法
CN105111468B (zh) * 2015-09-14 2018-04-10 大连理工大学 一种液态热固性高分子聚合物固化粉化方法
CN106082172B (zh) * 2016-06-20 2018-06-19 宁夏天利丰能源利用有限公司 一种高比表面积制氮碳分子筛的制备方法
CN108793156B (zh) * 2017-04-26 2020-01-10 中国石油化工股份有限公司 三维交联网状等级孔结构碳基多孔材料及其制备方法和应用
CN108467035A (zh) * 2018-02-11 2018-08-31 安徽海德化工科技有限公司 基于石油焦的炭分子筛的制备方法
CN110548485B (zh) * 2019-09-05 2021-02-26 中南大学 一种改性废旧阴极炭材料及其制备和应用方法
CN111847447A (zh) * 2020-05-14 2020-10-30 内蒙古浦瑞芬环保科技有限公司 无烟煤制备高比表面积活性炭的方法
CN111943198A (zh) * 2020-08-18 2020-11-17 湖州民强炭业有限公司 一种高比表面积椰壳碳分子筛的制备方法

Also Published As

Publication number Publication date
CN1935641A (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
CN1935641B (zh) 一种由石油焦插层处理制备炭分子筛的方法
CN100595142C (zh) 一种石油焦预氧化处理制备炭分子筛的方法
Hunter et al. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons
EP3266743B1 (en) Method for preparing biomass graphene by using cellulose as raw material
Wang et al. A new route for preparation of hydrochars from rice husk
Fu et al. Evolution of char structure during steam gasification of the chars produced from rapid pyrolysis of rice husk
Qian et al. Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing
Li et al. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde
Gong et al. Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene
Rizhikovs et al. Preparation of granular activated carbon from hydrothermally treated and pelletized deciduous wood
Wu et al. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge
CN105314617A (zh) 一种制备炭分子筛的方法
Kang et al. Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization
Khan et al. Effect of multi walled carbon nanotubes and diamond nanoparticles on the structure and properties of carbon foams
Wang et al. A porous carbon foam prepared from liquefied birch sawdust
Song et al. Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers
Wang et al. Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped) carbons
Tabak et al. Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem
Guo et al. Preparation and in situ reduction of Ni/SiCxOy catalysts supported on porous SiC ceramic for ethanol steam reforming
Lee et al. Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent
Yang et al. Effects of cellulose carbonization on biomass carbon and diatomite composite
Khan et al. Synthesis and characterization of carbon fibers and their application in wood composites
Wu et al. Fabrication of biomorphic ZrC/C ceramics by sol–gel and carbothermal reduction processing
Luo et al. Effect of thermal extraction on coal-based activated carbon for methane decomposition to hydrogen
Kunusa et al. FTIR, SEM and XRD analysis of activated carbon from sago wastes using acid modification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20100913