CN1918582A - 具有灰度光谱的光学编码粒子 - Google Patents

具有灰度光谱的光学编码粒子 Download PDF

Info

Publication number
CN1918582A
CN1918582A CNA2004800420036A CN200480042003A CN1918582A CN 1918582 A CN1918582 A CN 1918582A CN A2004800420036 A CNA2004800420036 A CN A2004800420036A CN 200480042003 A CN200480042003 A CN 200480042003A CN 1918582 A CN1918582 A CN 1918582A
Authority
CN
China
Prior art keywords
particle
film
analyte
acceptor
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800420036A
Other languages
English (en)
Inventor
迈克尔·J·赛勒
肖恩·O·米德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN1918582A publication Critical patent/CN1918582A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7779Measurement method of reaction-produced change in sensor interferometric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及具有通过在粒子不同区域之间的折射率变化而嵌入其物理结构的灰度编码的粒子(10,10a)。该粒子包括形成在基底(14)上的具有孔隙率的多孔薄膜(12)。

Description

具有灰度光谱的光学编码粒子
技术领域
本发明的领域是编码。本发明其它可作示范的领域有生命科学、安全、产品标记、食品加工、农业及化学识别。
背景技术
社会对标记的需要非常广泛。标记是进行跟踪和识别的基础。编码可用作能被人或机器识别的标记形式,如条形码的情况一样。但在微尺度上,标记/编码本身变得困难重重。
对微尺度材料进行编码的方法因而吸引了人们越来越多的注意力,以便在药品发明、遗传筛选、生物医学研究以及生物学和化学感应的领域用在进行高通量筛选等用途。对增多的分析物进行测量、同时尽可能减少所必须的样品数量的研究方法集中在芯片上空间区别排列或编码珠。为了生物学和/或化学感应的目的,已通过使用位置编码以记录特定分析物的响应而开发了大排列。使用排列相对常规的单独分析物传感器的主要优点是可以同时处理和分析大量的分析物。但是,位置可遭受低扩散率,并且限制在被感应的分析物的浓度范围上。另一种方法是使用单独编码珠。
早期尝试对粒子进行编码使用荧光的或红外线活性分子作为二元标记物。近期以来,由于其独特的荧光特性,硒化镉量子点已被证明是对粒子进行编码的可行的侯选者。较有机分子而言,量子点具有对光致褪色的增加的稳定性、更尖锐的荧光峰、改善的溶解性以及激发频率范围大等优点。通过6种颜色(限于可见光谱区荧光的峰宽)和10种强度水平,理论上可对106个粒子进行编码。由于光谱的重叠以及样品的不均一性,实际操作中难以达到这一数目。另外,尽管量子点的光稳定性有所提高,但荧光熄灭仍然是可能的,这使将相对强度的测量作为可靠的编码方法带有不确定性。
另一种编码方法是使用超微金属棒。这种超微金属棒的制作是将金属以受控厚度的交替带电镀在多孔膜上。各种金属不同的反射特性可被用作条形码,达到识别的目的。反射谱没有荧光团固有的光致褪色的缺点。而且,荧光分析物不会干扰粒子信号。但棒的沉积是相对复杂的工艺,而且,可能难以用作其中例如需要大量编码的编码方法,因为必须将每一个棒子放在光学读码器(比如显微镜)的焦点中以读出编码。仍需要在微尺度上编码的方法。
发明内容
本发明涉及一种粒子,其具有通过粒子不同区域之间折射率的改变嵌入在粒子物理结构内的灰度编码。
附图说明
图1是本发明的多层编码粒子的示意图;和
图2说明了制造编码粒子的优选实施方式。
具体实施方式
本发明涉及一种粒子,其具有通过粒子不同区域之间折射率的改变嵌入在粒子物理结构内的灰度编码。优选通过改变形成在粒子中的孔隙率改变折射率。来自粒子的反射在可见和/或不可见波长上产生光学特征。在优选实施方式下,峰的数量、其位置和强度可被用来产生大量的独特的显示灰度编码的光学特征。在优选实施方式形成方法中,通过蚀刻工艺可产生多孔编码结构,在该蚀刻工艺中蚀刻条件在孔形成过程中根据电脑生成的设计用于产生灰度编码的波形而变化。可进行切割以形成具有小尺寸范围的单独编码粒子,比如,从几百纳米到几百微米。
本项发明的方法和粒子可应用于许多行业,包括但不限于药品发明、生物学筛选、化学筛选、生物学标记、化学标记、体内标记、安全识别及产品标记。本项发明的粒子及方法的各种属性使得能够在各行业得到广泛应用。粒子的小尺寸使其能被方便地引入各种主体,例如产品、试验箱、被化验品、粉末(如用于鉴定的***物)、糊状物、液体、玻璃、纸张以及可接纳小粒子的任何其它主体或***。通过本发明的生物相容性粒子使得能够体内检测,其然后可例如利用可穿透组织的近红外线和红外线波长通过组织查询。
根据上文对本发明的示例性方面和应用,优选实施方式中的粒子可通过其变化的多孔结构的反射率谱所固有的灰度编码而被识别。本发明的另一方面,物质如生物学或化学物质附着在多孔结构中,而粒子则成为鉴定由孔所携带的物质的标签。本发明的另一方面,编码粒子的反射率谱的变化可反映粒子孔内的物质的存在、缺乏或数量。
图1显示了优选实施方式下编码粒子10的横截面。编码粒子10包含多孔薄膜12。具有变化的孔隙率的该多孔薄膜12如图1所示在晶片14上形成。但是,本发明的实施方式从基底上剥离的粒子结构,它们最初在该基底上或从该基底上形成。对薄膜12进行编码以在反射率谱中产生形成包括灰度编码的光学特征的干涉图形。根据在粒子10形成过程中计算机产生的波形控制蚀刻条件,可对本发明中的粒子10进行特别编码。
多孔薄膜12可由任何多孔半导体或绝缘体形成。在本发明的优选实施方式粒子中,多孔硅被用来形成多孔薄膜12。在氢氟酸溶液中对结晶硅进行受控的阳极蚀刻可同时对多孔薄膜12的孔隙率和厚度进行控制。蚀刻的定时控制多孔层的厚度,而蚀刻电流的密度控制孔隙率。多孔薄膜12的厚度和孔隙率根据电脑产生的波形控制。
多孔硅是薄膜12的优选材料。多孔硅具有一系列已被证明的优点。例如,多孔硅被证明是生物相容的。另外,氧化的多孔硅的表面化学与氧化硅同样有效。因此,表面化学可由于生化衍生作用和配合基固定化而很好地理解。
在优选实施方式中,形成薄膜12以在多孔结构内包括受体材料。受体的目的是与所关心的特定分析物结合。示范性受体(也被称为结合体)披露在例如标题为“Porous Semiconductor Based Optical Interferometric Sensor”的美国专利No.6,248,539中。利用将受体分子束缚到多孔薄膜12的任意方式,受体分子可与多孔硅薄膜12吸附或另外联合。这包括但不限于受体分子与半导体的共价结合、受体分子与层的离子缔合、将受体分子吸附到层的表面,或其它类似技术。联合也可包括通过将受体分子共价连接到另一部分,该另一部分一次共价连接到多孔薄膜12上,或通过杂化或其它生物学联合机理将目标分子连接到另一部分,该另一部分连接到多孔薄膜12。其它具体的例子有受体配合基,其被附着在多孔硅层上从而形成生物传感器。结合到本发明粒子10上的分析物通过粒子10提供的编码变得可被识别和跟踪。
我们依据方程1-4,利用波形和光谱设计已证明了光谱位置和灰度(光谱高度)的再现性。
An=(Anmax-Anmin)/2            (1)
kn=频率=1/周期               (2)
yn=An[sin(knt-Φ)+1]+Anmin    (3)
ycomp=[y1+...+yn]/n           (4)
方程(1)限定正弦成分n的振幅,这将产生光谱峰高度,或者比特(bit)的灰度。方程(2)限定每一个正弦成分的频率,这将产生峰的光谱位置,或者比特(第一比特,第二比特,等等)的识别。方程(3)限定正弦成分n。方程(4)限定用于驱动电化学蚀刻的合成(composite)波形。谱峰位置是频率k和时域的正弦成分y(t)的函数。谱峰位置与在k-空间的位置是类似的(synomomous),关系是c=波长×k(频率)。谱线高度中的灰度可基于每一个正弦成分的振幅决定。在进行产生孔隙率图形的蚀刻之前可用傅立叶分析作为建模工具来估算所产生的光子学(photonic)晶体的光谱。根据方程(4),增加两个独立的正弦成分可以形成合成波形。在多孔硅光子学晶体中,如果在一个或者多个正弦成分的振幅发生改变后谱线组要保持相同的绝对光谱位置,合成波形的平均振幅必须保持相同。例如,试想两个波形,wf_1和wf_2,对应两个格式编码:Acomp(bit 1)=(A1+...+An)/n;Acomp(bits2...n)={[A1-(x/(n-1))]+...+[An+x]}/n。如果第二个编码具有在正弦成分的振幅上增加的量x,则必须满足下列条件:Acomp(wf-1)=Acomp(wf_2),其中Acomp是由增加wf_1和wf_2形成的合成波形的振幅。所形成的k-空间光谱将显示,当正弦成分的振幅根据上述方程发生改变时,光谱的位置保持不变。当入射的白色光线照到编码薄膜时,只有包含与存在于薄膜中的变化的孔隙率的空间频率相匹配的频率的光线被反射回来。这是自然的光学变换,与傅立叶变换十分相似。
已做过试验证明此发明。通过在HF(48%,aq)/乙醇为3∶1溶液中阳极蚀刻具有<1mOhm-cm电阻率的p++型、B掺杂的、(100)定向硅制备灰度样品。运用由计算机产生的与上述解释一致的用于灰度编码的阳极电流波形,并运用铂网状电极作为对电极。结果与预计一致。
反射谱中的峰强度由在薄膜12之间的的界面处的折射率的控制,该折射率由相邻层之间的孔隙率的变化决定。这种变化可能是逐步的,也可能是急剧的。峰的位置可通过调整层的厚度控制。通过变换每一反射率峰的相对强度,可以进行额外编码,这种编码可以通过调整电化蚀刻参数设计到本发明的粒子10中,以控制薄膜12的孔隙率。本发明的粒子10编码LN个编码,其中N是光谱线数量,L为每一光谱线中的可能的灰度级的数量。
图2中说明了形成编码多孔粒子10的优选方法。选择合适的半导体或绝缘体,比如硅片,进行加工(第14步)。比如,硅片可以切割并掩蔽以具有暴露的用于蚀刻的部分。示范的合适硅材料为单晶硅片。此后限定空间编码(第16步)。空间编码限定在将被蚀刻的材料上的编码范围。进行空间溶解(resolved)蚀刻使得编码被编在硅片的颗粒尺寸的部分中。在题目为“Photolithographic fabrication of luminescent images on porous siliconstructures”的美国专利No.5,318,676号(1994年6月7日公告)中披露了一种示范的空间溶解蚀刻方法。在一个替代工艺中,空间限定的步骤(第16步)被省略。比如,单独的硅片或硅片上的区域可以蚀刻,以包括具有单独编码的粒子。这样,可以蚀刻其他硅片以包括具有不同编码的粒子。随后开始阳极蚀刻,比如在氢氟酸和乙醇的水溶液中(第18步)。此后,用根据所限定的编码策略变化的蚀刻条件进行蚀刻(第20步)。发明的一个或多个灰度编码被蚀刻到硅片上。横向(图1中的纵向)编码但是仍然相联系的粒子可以从硅片上去除(第22步),比如通过高水平的电解抛光电流。空间限定蚀刻部分间的区域可以被切割以使不同编码硅片部分分离。单个粒子此后可以在例如通过机械搅动或者超声波破裂进行的切割中分离(第24步)。粒子分离(第24步)优选制造出微米级的粒子,比如大小从几百纳米到几百微米的粒子。在粒子分离(第24步)或者在第20步或者第22步之后可以进行粒子指定的步骤(第26步)。粒子指定可以包括,比如,为了特定的生物、生物医学、电子或者环境应用的多孔多层结构121-12N的化学改性。举例说明,粒子可以通过用于期望分析物的受体或者靶向部分(比如糖或者多肽)进行改性。另外,结合(binding)可通过比如分析物的荧光标识或者分析物自身荧光来表示(signal)。在使用粒子10时,根据与指定目标分析物结合时的光学特征,可以鉴别出该粒子。这个指定步骤在发明的实施方式中也可以省略。
在发明的其他实施方式中,编码粒子可以放置在合适的主体中,即任何液体、粉末、细尘或者其他将承载本发明的微米级的编码粒子的材料。放置在主体中的粒子,例如可以被用于鉴别人造粉末的来源,比如***物。另一种潜在的主体是动物。本发明的生物相容的粒子可以活体植入到动物主体中。本发明的优选实施方式的多孔硅粒子10的反射率谱包括可视、近红外和红外线光谱。这显示出了通过活体组织等障碍感知到本发明的粒子的灰度编码的可能性。
第一个实施方式示例为远距离探测。这是用于从远处鉴别分析物的化学探测技术。本发明的粒子10包括感知特定分析物的受体。粒子的灰度编码以及与分析物结合的指示可以在反射率谱中被检测到,例如使用低功率激光。该受体例如可以对于感知生物分子或者将编码粒子附着在细胞、孢子或者花粉粒子上是特定的。
本发明另一优选示范应用为通过本发明的编码粒子10进行生物分子筛选。对于少量层,数以百万灰度编码是可能的。已测试了使用荧光标记的蛋白质的简单的基于抗体的生物检测。对于范例的化学感应实施方式使用了如前所述的周期性Rugate格式的编码。通过在蚀刻前掩蔽晶片,可能生成界限清晰的粒子板。
成层的灰度多孔硅编码结构较目前的编码方法具有许多优势。多孔硅编码结构可以被构建来显示跨越光谱的可见光、近红外和红外区域的特征。不同于基于成层金属纳米棒、荧光或振动特征的编码方法,该发明的编码粒子可以使用光衍射技术进行探测,因此无需使用成像光学来读出编码。编码粒子可使用常规的荧光标记技术进行检测,感光(sensitive)化学和生物化学检测技术也可导入编码粒子的光学结构,消除对荧光探针和聚焦光学器件的需要。此外,由于优选实施方式的氧化多孔硅编码粒子对于环境呈现类似氧化硅的表面,它们不容易猝熄来自有机发色团的荧光,并且可以使用为玻璃珠生物鉴定而开发的化学对其进行处理和改性。硅基编码粒子易于与现有芯片技术结合。
在医学诊断应用时使用本发明的编码硅粒子比有机染料或量子点更有优势。活体研究已显示出多孔硅的生物相容性和多层结构的反射数据的长期稳定性。此外,可能在近红外、组织穿透性的波长对粒子进行光学编址,而没有与低荧光量子产率有关的耗损,使得这些材料可受体内诊断的检验。最后,由于多孔编码是多孔结构的整体有序部分,所以对于编码的部分不能缺失、混淆或光退色,而这些情况是可能发生于量子点或荧光分子上的。
尽管已显示和描述了本发明的具体实施方式,但其他修改、代替和替换对本领域技术人员是显而易见的。在不偏离由所附权利要求确定的本发明的精神和范围的情况下可作出这些修改、代替和替换。
本发明的各种特征在所附权利要求中列明。

Claims (41)

1.光学编码粒子(10,10a),包括:
材料层;和
在材料层中的孔隙率,其构置成产生在反射率光谱中的干涉图样,该干涉图样形成包括可探测的灰度编码的光学特征。
2.权利要求1中的粒子,其中粒子的直径为数百微米或更小。
3.权利要求1中的粒子,其中所述孔隙率根据蚀刻波形形成,并且蚀刻波形的正弦成分和所述干涉图样的傅立叶变换k-空间的峰的光谱位置和高度相对应。
4.权利要求3的粒子,其中所述在反射率光谱中干涉图样延伸超越可见光谱。
5.权利要求3的粒子,其中光谱峰的高度与正弦成分的振幅相对应。
6.权利要求1中的粒子,其中该材料包括半导体。
7.权利要求6中的粒子,其中所述半导体包括硅。
8.权利要求1中的粒子,其中所述第一多孔层和所述n层其他多孔层由绝缘体形成。
9.权利要求1中的粒子,进一步含有用于结合预定的分析物的受体。
10.光学编码粒子(10,10a),包括薄膜,其中孔隙率以生成在反射率光谱中可检测的光学特征的方式变化,其在转换成傅立叶k-空间时呈现出灰度编码。
11.权利要求10中的粒子,进一步含有受体。
12.权利要求11中的粒子,其中所述受体是用于生物分析物的受体。
13.权利要求11中的粒子,其中所述受体是用于化学分析物的受体。
14.权利要求11中的粒子,其中所述受体是用于气态分析物的受体。
15.权利要求10中的粒子,进一步含有用于分析粒子的荧光标记。
16.权利要求10中的粒子,其中该薄膜包括多孔硅。
17.权利要求10中的粒子,为微米级的。
18.对薄膜进行编码的方法,包括下列步骤:
蚀刻半导体或绝缘体基底从而形成含有孔的薄膜;
根据图样改变蚀刻条件,以改变薄膜中的孔隙率,这将产生响应于照明的在反射率光谱中的光学特征,该光学特征包括灰度编码。
19.权利要求18中的方法,其中所述该变的步骤包括应用通过增加根据ycomp=[y1+…+yn]/n的至少两个独立正弦成分形成的蚀刻波形,其中yn是正弦成分。
20.权利要求18中的方法,其中灰度编码在自然光学转换的k空间中呈现出来。
21.权利要求18中的方法,进一步包括从半导体或绝缘体基底分离薄膜的步骤。
22.权利要求18中的方法,进一步包括将薄膜分离成粒子的步骤。
23.权利要求18中的方法,进一步包括将粒子放置到主体内的步骤。
24.权利要求18中的方法,进一步包括以下步骤:
通过照明一个或多个粒子产生在反射率光谱中的干涉图样;
从k空间中峰的位置和高度确定粒子编码。
25.权利要求18中的方法,其中所述改变蚀刻条件的步骤根据正弦成分方程改变蚀刻条件。
26.权利要求18中的方法,进一步包括空间限定半导体或绝缘体基底的步骤,以在空间限定的位置或多个位置上进行蚀刻步骤。
27.权利要求26中的方法,其中所述改变的步骤进一步在不同空间限定位置中改变蚀刻条件以在薄膜中进行多重编码。
28.权利要求27中的方法,进一步包括将薄膜从半导体或绝缘体基底上分离的步骤。
29.权利要求28中的方法,进一步包括将薄膜分离成粒子的步骤。
30.一个鉴定附着于权利要求10的编码粒子的分析物、或鉴定含有权利要求10的编码粒子的主体(host)的方法,该方法包括以下步骤:
将编码粒子与分析物或主体联合;
通过照明该粒子产生在该反射率光谱中的干涉图样;
从该干涉图样确定该粒子编码;
根据上述确定步骤鉴定分析物或主体。
31.权利要求30中的方法,进一步包括通过用特殊受体或靶向部分对粒子改性以指定粒子与分析物相结合的步骤。
32.权利要求31中的方法,其中该靶向部分为糖或多肽。
33.权利要求32中的方法,进一步包括通过荧光标识或分析物自身荧光来表示分析物的结合的步骤。
34.一种编码微米级粒子的方法,该方法包括以下步骤:
蚀刻晶片从而形成具有改变的孔隙率的薄膜,这将产生响应于照明的可检测的光学特征灰度编码;
对晶片施以电解抛光电流来从晶片去除多孔薄膜;
将薄膜切成微米级粒子,每个微米级粒子保留有由上述蚀刻步骤产生的光学特征。
35.权利要求34中的方法,进一步包括以特殊受体或靶向部分对粒子改性的步骤。
36.编码微米级粒子(10,10a),具有通过粒子不同区域之间的折射率变化嵌入其物理结构中的灰度编码。
37.权利要求36中的粒子,进一步含有受体。
38.权利要求37中的粒子,其中所述受体是用于生物分析物的受体。
39.权利要求37中的粒子,其中所述受体是用于化学分析物的受体。
40.权利要求37中的粒子,其中所述受体是用于气态分析物的受体。
41.权利要求37中的粒子,进一步含有用于分析粒子的荧光标识。
CNA2004800420036A 2003-12-22 2004-12-21 具有灰度光谱的光学编码粒子 Pending CN1918582A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53214403P 2003-12-22 2003-12-22
US60/532,144 2003-12-22

Publications (1)

Publication Number Publication Date
CN1918582A true CN1918582A (zh) 2007-02-21

Family

ID=34738754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800420036A Pending CN1918582A (zh) 2003-12-22 2004-12-21 具有灰度光谱的光学编码粒子

Country Status (5)

Country Link
US (1) US8308066B2 (zh)
EP (1) EP1702414A4 (zh)
CN (1) CN1918582A (zh)
AU (1) AU2004308379A1 (zh)
WO (1) WO2005062865A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181634B2 (en) 2002-02-07 2015-11-10 The Regents Of The University Of California Optically encoded particles through porosity variation
US8765484B2 (en) * 2002-02-07 2014-07-01 The Regents Of The University Of California Optically encoded particles
US8274643B2 (en) 2003-03-05 2012-09-25 The Regents Of The University Of California Porous nanostructures and methods involving the same
US8097173B2 (en) * 2004-07-19 2012-01-17 The Regents Of The University Of California Magnetic porous particles and method of making
US7903239B2 (en) * 2004-10-19 2011-03-08 The Regents Of The University Of California Porous photonic crystal with light scattering domains and methods of synthesis and use thereof
US7759129B2 (en) 2006-01-11 2010-07-20 The Regents Of The University Of California Optical sensor for detecting chemical reaction activity
US7889954B2 (en) 2007-07-12 2011-02-15 The Regents Of The University Of California Optical fiber-mounted porous photonic crystals and sensors
CN101385978B (zh) * 2007-09-12 2011-04-20 上海华谊丙烯酸有限公司 一种合成甲基丙烯醛的催化剂及其制备方法
US8033715B2 (en) 2007-11-08 2011-10-11 Illinois Institute Of Technology Nanoparticle based thermal history indicators
EP2580706A4 (en) * 2010-06-14 2014-04-30 Trutag Technologies Inc SYSTEM FOR VERIFYING AN ARTICLE IN A PACKAGING
US9007593B2 (en) 2010-07-20 2015-04-14 The Regents Of The University Of California Temperature response sensing and classification of analytes with porous optical films

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390452A (en) * 1979-08-20 1983-06-28 Minnesota Mining & Manufacturing Company Microparticles with visual identifying means
US4484797A (en) * 1981-07-20 1984-11-27 Rca Corporation Diffractive subtractive color filter responsive to angle of incidence of polychromatic illuminating light
USRE33581E (en) * 1984-06-25 1991-04-30 Immunoassay using optical interference detection
AU5815886A (en) * 1985-05-29 1986-12-24 Kurt Tiefenthaler Optical sensor for selectively determining the presence of substances and the variation of the refraction index in the measured substances
US5468606A (en) * 1989-09-18 1995-11-21 Biostar, Inc. Devices for detection of an analyte based upon light interference
US5218472A (en) * 1989-03-22 1993-06-08 Alcan International Limited Optical interference structures incorporating porous films
US5318676A (en) * 1992-06-22 1994-06-07 The Regents Of The University Of California Photolithographic fabrication of luminescent images on porous silicon structures
US5301204A (en) * 1992-09-15 1994-04-05 Texas Instruments Incorporated Porous silicon as a light source for rare earth-doped CaF2 laser
GB9314394D0 (en) * 1993-07-12 1993-08-25 Slater James H A security device using an ultrasensitive microtrace for protecting materials,articles and items
DE19608428C2 (de) * 1996-03-05 2000-10-19 Forschungszentrum Juelich Gmbh Chemischer Sensor
DE19609073A1 (de) * 1996-03-08 1997-09-11 Forschungszentrum Juelich Gmbh Farbselektives Si-Detektorarray
US6060143A (en) * 1996-11-14 2000-05-09 Ovd Kinegram Ag Optical information carrier
US5928726A (en) * 1997-04-03 1999-07-27 Minnesota Mining And Manufacturing Company Modulation of coating patterns in fluid carrier coating processes
US6096496A (en) * 1997-06-19 2000-08-01 Frankel; Robert D. Supports incorporating vertical cavity emitting lasers and tracking apparatus for use in combinatorial synthesis
US6206065B1 (en) * 1997-07-30 2001-03-27 The Governors Of The University Of Alberta Glancing angle deposition of thin films
US6248539B1 (en) * 1997-09-05 2001-06-19 The Scripps Research Institute Porous semiconductor-based optical interferometric sensor
US6465193B2 (en) * 1998-12-11 2002-10-15 The Regents Of The University Of California Targeted molecular bar codes and methods for using the same
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6846460B1 (en) * 1999-01-29 2005-01-25 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
EP1190100B1 (en) * 1999-05-20 2012-07-25 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
DE60030436T2 (de) * 1999-05-20 2007-03-29 Illumina, Inc., San Diego Vorrichtung zur halterung und präsentation von mindestens einer mikrokugelmatrix zu lösungen und/oder zu optischen abbildungssystemen
US6544732B1 (en) * 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
FR2797093B1 (fr) * 1999-07-26 2001-11-02 France Telecom Procede de realisation d'un dispositif comprenant un empilement de plans de boites quantiques sur un substrat de silicium ou germanium monocristallin
US7225082B1 (en) * 1999-10-01 2007-05-29 Oxonica, Inc. Colloidal rod particles as nanobar codes
US6919009B2 (en) * 1999-10-01 2005-07-19 Nanoplex Technologies, Inc. Method of manufacture of colloidal rod particles as nanobarcodes
JP2004507337A (ja) * 1999-12-13 2004-03-11 イルミナ インコーポレイテッド オリゴヌクレオチド合成装置
CA2401962A1 (en) * 2000-02-07 2001-08-09 Illumina, Inc. Nucleic acid detection methods using universal priming
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
US7241629B2 (en) * 2001-12-20 2007-07-10 Corning Incorporated Detectable labels, methods of manufacture and use
EP1326268A1 (en) * 2002-01-07 2003-07-09 Alcatel A method of forming pores in a semiconductor substrate
US7042570B2 (en) * 2002-01-25 2006-05-09 The Regents Of The University Of California Porous thin film time-varying reflectivity analysis of samples
US8765484B2 (en) * 2002-02-07 2014-07-01 The Regents Of The University Of California Optically encoded particles

Also Published As

Publication number Publication date
US20070051815A1 (en) 2007-03-08
AU2004308379A1 (en) 2005-07-14
WO2005062865A3 (en) 2005-09-01
EP1702414A2 (en) 2006-09-20
EP1702414A4 (en) 2008-04-23
US8308066B2 (en) 2012-11-13
WO2005062865A2 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US8765484B2 (en) Optically encoded particles
Hovius et al. Fluorescence techniques: shedding light on ligand–receptor interactions
US11391734B2 (en) Surface-immobilized bistable polynucleotide devices for the sensing and quantification of molecular events
AU2008267068B2 (en) Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor
CN1918582A (zh) 具有灰度光谱的光学编码粒子
KR20160138059A (ko) 향상된 검정 감도를 위한 디지털 lspr
WO2008121250A1 (en) Calibration and normalization method for biosensors
WO2001009604A1 (en) Microsensor arrays and method of using same for detecting analytes
US7759129B2 (en) Optical sensor for detecting chemical reaction activity
JP7423641B2 (ja) 分子事象の感知および定量のための表面固定化された双安定ポリヌクレオチド装置
Sako et al. Live cell single‐molecule detection in systems biology
CN1918304B (zh) 光学编码粒子、***及高通量筛选
KR20080004782A (ko) 나노 바이오칩 검사 방법
Bachman et al. Evaluating the Effect of Dye–Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides
Lee et al. Selective fluorescence and fluorescence-free detection of single biomolecules on nanobiochips
Patterson et al. Developing photoactivated localization microscopy (PALM)
Colomb Towards Quantification of Cell-Extracellular Matrix Interactions in Tissue Models Using Light Sheet Microscopy
Ueda et al. Single-molecule analysis of chemotactic signaling mediated by cAMP receptor on living cells
Techniques III Tuesday, February 28, 2012 579a
Mahamdeh et al. Under-Filling Trapping Objectives Optimizes the use of Available Laser Power in Optical Tweezers
ISHII et al. 24 Single Molecule Microscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070221