CN1840899B - 制造风动涡轮叶片的装置和方法 - Google Patents

制造风动涡轮叶片的装置和方法 Download PDF

Info

Publication number
CN1840899B
CN1840899B CN2006100719778A CN200610071977A CN1840899B CN 1840899 B CN1840899 B CN 1840899B CN 2006100719778 A CN2006100719778 A CN 2006100719778A CN 200610071977 A CN200610071977 A CN 200610071977A CN 1840899 B CN1840899 B CN 1840899B
Authority
CN
China
Prior art keywords
manufactory
wind turbine
blade
turbine blade
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100719778A
Other languages
English (en)
Other versions
CN1840899A (zh
Inventor
W·W·-L·林
S·R·芬
D·-J·库特斯特拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1840899A publication Critical patent/CN1840899A/zh
Application granted granted Critical
Publication of CN1840899B publication Critical patent/CN1840899B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/50Building or constructing in particular ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9113Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a roadway, rail track, or the like for recovering energy from moving vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/02Transport, e.g. specific adaptations or devices for conveyance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种为风力农场地区(12)上的设施制造风动涡轮叶片(16)的方法。按照本发明的方法,在主制造厂(22)制造风动涡轮叶片(16)的主要零件例如叶根部分和翼梁缘条,在比主制造厂(22)更接近风力农场地区(12)的辅助制造厂制造辅助零件例如叶片外壳。可以在风力农场(12)附近的装配站里将制成的主要零件和辅助零件组装起来。

Description

制造风动涡轮叶片的装置和方法
发明领域
本发明总的涉及风力涡轮机,尤其涉及风动涡轮叶片。本发明的具体实施例为使制造质量和运输最佳化提供了建造多件大型风动叶片的装置和方法。
背景技术
风力涡轮机通常被认为是环境安全而且理想的能源。总体说来,风力涡轮机利用风能为动力并将该动能转变成电能,它以一种几乎无污染的方式发出电力。为了获得最高的发电效率并简单化与输电网络的连接,常常将多台风力涡轮机彼此靠近安装在相关技术中称之为“风力农场”的地方,这些风力农场位于风力较强的地方例如近海区域和平原地带。
用于发电的风力涡轮机通常具有一个装有多个沿径向伸出的叶片的转子。这些叶片吸取风的动能,又使传动轴和电发机的转子转动。由于发电机的转子与定子的电磁关系促使转子的动能转换成电能。总之,转子的转动在发电机内感应产生电流,从而发出电力。
上述的风力发电装置产生的电量取决于风力涡轮机吸取风能的能力,作为一个例子,风动涡轮叶片的效力越大,该涡轮机发出的电力越多。在设计风力涡轮机的叶片时发现,增加涡轮叶片的长度可增加风力涡轮机的电力输出量。
然而,现在的叶片结构受到基础设施方面的限制。例如,为地面基地的风力农场设计的叶片最大长度常常受限于运输干线例如公路和桥梁的尺寸,因为,即使不是无能为力,也很难于将叶片从制造厂运输到风力农场地区。作为一个特殊例子来说,这种结构的设计可能限制通过隧道和桥下运输叶片所允许的最大叶片弦宽。因此必须根据最佳的长度考虑减小最大弦宽,以满足上述的运输和基础设施的要求。
另外,在风力涡轮机设计过程中通常希望保持良好的质量控制标准,尤其是在叶片长度增加的情况下更是如此。遗憾的是,在单一的制造厂里制造整体风动叶片的传统技术可能要求某些叶片零件在位于风力农场的地区制造,以便使叶片结构不受运输的限制。但是,制造商通常更难于在上述的只生产少量叶片的现场生产工地投资建立为最佳质量控制所必需的基础设备(例如,无损检验设备,自动化生产设备等)。
因此,很需要提出能改善大型风动涡轮叶片的制造质量和运输要求的制造方法和装置。
本发明概述
本发明提出一种克服了上述问题的制造风动涡轮叶片的新型方法。简言之,按照本发明的一个方面,一种用以制造安装在风力农场地区的风动涡轮叶片的方法包括:在主制造厂制造风动涡轮叶片的至少一个结构件,并在辅助制造厂制造风动涡轮叶片的外壳件,所述的辅助制造厂位于比主制造厂更靠近风力农场的地方。本发明的方法还包括将上述结构件和外壳件运送至靠近风力农场地区的装配站。
附图简述
如果参看附图阅读下面的详细说明,就会更清楚地了解本发明的上述的和其他的特征、外貌和优点,所有的附图中同样的标号代表相同的部件,附图中:
图1简单示出按照本技术的一个示例性实施例制造厂相对于风力农场的地理关系;
图2示出按照本发明的一个示例性实施例的风力涡轮机总成图;
图3是按照本技术的一个示例性实施例的风动涡轮叶片总成的透视图;
图4是沿图34-4线的风力涡轮机的风动叶片的横剖视图;和
图5是按照本技术的一个示例性实施例的制造风动涡轮叶片的方法的有代表性的流程。
详细说明
本发明提供一种使制造质量和运输达到最佳化的制造多件风动涡轮叶片的方法,该方法包括在优质承制厂里制造风动涡轮叶片的主要结构件,并运输较小的叶片零件而不是长距离运输整体的叶片,从而获得优质的零件和最佳的设计。下面参看图1~6说明本发明的某些实施例。
图1示出按照本发明的示例性实施例的风动叶片零件的各制造厂相对于风力农场12的地理关系10。在风力农场12装有多台风力涡轮机14,每台风力涡轮机具有多片风动叶片16。在风力农场12的风力涡轮机14可对公用输电网络18集中供电。风力农场12最好设置在风力较强的地区例如近海区域和平原地带。
风动叶片16是分成多个零件在多个制造厂里制造的。所述制造厂包括一个制造主要零件的主制造厂22和一个或多个制造辅助零件的辅助制造厂24。一示例性的主制造厂22包含一个生产风动叶片16的主要零件的生产基地,而辅助制造厂24包含制造风动叶片的辅助零件的现场生产工地(即比较靠近风力农场12的地方)。下面再介绍风动叶片的主要零件和辅助零件的组装问题。在主制造厂22和辅助制造厂24制造的零件分别通过运输路线26和28运输至风力农场地区12,所述的运输路线26和28可包含公路、铁路、或水路。特别是,运输路线26还包括桥梁和隧道。在一个实施例中,主要零件和辅助零件可交给货运公司,由他们运往风力农场地区12。从制造厂22和24运来的零件在靠近风力农场地区的装配站组装起来,然后安装到风力涡轮机上。在一个实施例中,风动叶片零件在风力农场地区的组装是由制造辅助结构件的辅助制造厂完成的。
在一个实施例中,主制造厂22是一种为分布在各种地区的多个风力农场制造风动叶片主要零件的中央生产基地,它拥有自动化生产车间、内设检验室和测试室,该测试室既拥有例如破坏性试验设备又拥有无损检测设备例如超声检测仪。在上述的中央生产基地生产较小的结构件有利于将这些主要结构件较方便地运输到在地理上相隔较远的风力农场地区,同时又保证了这类零件的结构质量和完整性。在某些实施例中,主制造厂和/或辅助制造厂可包括订合同的制造厂商,在这种情况下,只要建立起风力农场,就不需要风动涡轮叶片制造商涉及上述制造厂的费用问题。
图2示出包含本发明各个方面的风力涡轮机14,该风力涡轮机14具有一个含有多个向外伸出的叶片16的转子30,它还具有一个安装在塔台34顶部的机舱32,上述转子30与装在机舱32内的发电机(未示出)传动连接。塔台34使叶片16是露在风中,叶片16吸收风能,并将此能量转变成转子30绕轴线36的转动,再通过发电机将上述的转动转换成电能。正如前面所述,叶片吸收风能的效率连同其他因素一起正比于叶片16的长度L(见图3),为了使长度大的叶片具有刚性,最好使叶片具有较宽的最大弦宽W(见图4)。
图3和4示出按照本发明制造的风动涡轮叶片16的各个零件。图3是示出叶片16的叶根部分38和叶身部分40的透视图,叶根38是一个横截面大致为圆形的圆柱段,而且是叶片16的承受弯曲负荷的主要结构件,在一个实施例中,叶根部分38通常是在主制造厂22采用自动化工艺过程,例如丝缠绕法、带缠绕法、编织法、浸渍法或自动化的纤维/丝束/带填筑法制成的。叶身40具有如图4清楚所示的翼面横截面。按照本发明制造的风动叶片16具有长度L和宽度W,以致使叶片的长度和宽度以及运输车辆的尺寸都超过地方当局制定的允许运输范围,这就可使风力涡轮机14吸收最大的风能并发出更多的电能。当然,正如熟悉本技术的人们所知,运输限制是随地理位置变化的,并且受到特定管辖区域的法则的管制。
图4是叶片16沿图3的4-4线的横剖视图。叶片16具有一个做成带有前缘44和后缘46的翼面段形状的外壳42。前缘44和后缘46之间的距离W称为叶片16的弦宽;该弦宽沿叶片16的长度是变化的,然而,据认为叶片16的最大长度L至少部分地取决于叶片16的最大弦宽W。外壳42可由轻质芯料例如泡沫材料和轻木制成,在一个实施例中,外壳42是在辅助制造厂里采用纸成本的真空辅助树脂移动横制法(VARTM)制成。叶片16还具有纵向的承受弯曲负荷的结构件48和50,在相关技术中该两种零件称为“翼染缘条”(spar cap)。在一个实施例中,翼梁缘条48和50是由连续的纤维增强复合材料例如碳质复合材料制成。在某些其他的实施例中,翼梁缘条48和50由玻璃纤维或其他的连续纤维制成。上述翼梁缘条48和50可采用例如自动化的纤维填筑法来制造。在翼面段内翼梁缘条48和50之间安装一个或多个纵向大梁52(称为抗剪腹板),该大梁52用于承受对风动涡轮叶片16的气动剪切负荷。在典型的实施例中,主要零件指的是风动涡轮叶片的主要结构件或气动负荷承力件例如叶根部分和翼梁缘条。外壳、抗剪腹板和连接盖板(未示出)则是叶片的辅助结构件的实例,辅助零件也可承受气动负荷,但这种负荷比主要零件所承受的负荷小得多。
按照本发明的实施例,在主制造厂22里制造风动叶片的较小的主要零件例如叶根部分和翼梁缘条。在一个实施例中,主制造厂具有自动化的制造能力以及无损检验能力,这有利于主要零件的质量控制和可靠性,并省去了在现场制造厂的严格检测过程,这可兼顾多件叶片结构的质量。而且,主制造厂拥有检测设备,有利于对中央地区各风力农场所需的主要结构件进行质量检测。这些较小的结构件可以更有效地装在卡车或铁路车辆上并运送到靠近风力农场12的装配站。上述这些主要零件的质量和结构完整性的确是倍受关注的,因为它们是承受载荷的支撑构件。在靠近风力农场12的装配站,可用成本较低的工艺来制造大的辅助结构件,所述工艺包括对形成翼面的外壳42和抗剪腹板52进行真空辅助浸渍或湿式层压的工艺。然后将抗剪腹板52安装在翼梁缘条48和50之间并连接到外壳和翼梁缘条上。运输较小的零件更加方便了,尤其是通过原先限制风动涡轮叶片的最大允许尺寸(W和L)的桥梁和隧道以及桥下的运输更为有效。本发明的技术由于在靠近风力农场处制造叶片16的最大零件即外壳42而克服了上述问题,故可不用考虑对叶片最大弦宽的限制而获得最佳的翼面设计。采用上述的现场装配技术有可能达到无限的叶片长度和最大的叶片弦宽,例如叶片最大弦宽可以从长度为50米的叶片的3.6米左右变化到例如在近海地域使用的长达100米的叶片的8米左右。
在记住图1~4的同时参看图5,图5是按照本发明的一个实施例制造风动涡轮叶片的典型方法54的流程图。该方法54包括在例如主制造厂制造叶片的主要零件例如叶根部分和翼梁缘条(方框56),如上所述,该制造厂拥有自动化生产设备和内设的检验设备。方框58表示在一个或多个现场的低成本制造厂制造辅助零件,该辅助零件包括例如外壳和抗剪腹板。由于这些零件不是很重要的结构件,所以其结构完整性就不会像对叶片的主要零件那么重视。方框60表示通过例如货车将主要零件和辅助零件运送到靠近风力农场的装配站。如上所述,本发明允许通过公路、水路或铁路将较小的结构件从优质制造厂运输到风力农场地区,因此,高级制造厂可具有通往水路或铁路仓库的入口。最后,方框62表示在靠近风力农场地区处将主要零件和辅助零件组装成完整的叶片。由于在较为靠近风力农场的工地制造较大的辅助零件例如叶片外壳,故可减轻由于基础设施限制所造成的对叶片尺寸的限制。例如,通过水路或在一个短的路程内运输50米长的叶片就比通过公路从中央生产基地和更远的主制造厂运输同样的叶片要容易得多。
显然,上述的技术为改善可靠性和获得更轻型的结构而使叶片主要结构件具有更高的性能和更均匀的质量。因此,本发明的技术排除了对大多数气动结构的最佳翼面设计的限制。
虽然上面仅仅示出和说明本发明的某些特征,但是,熟悉本技术的人们将会做出许多的改进和变更。因此,应当明白,所附权利要求书要包含所有符合本发明实际精神的这些改进和变更。
零件标号与名称一览表
10    (叶片零件制造厂与风力农场的)地理关系
12    风力农场
14    风力涡轮机
16    风动叶片
18    公用输电风路
22    主制造厂
24    辅助制造厂
26    运输线路
28    运输线路
30    转子
32    机舱
34    塔台
36    转动轴线
38    叶片的叶根部分
40    叶片的叶身
42    叶片外壳
44    叶片的前缘
46    叶片的后缘
48    翼梁缘条
50    翼梁缘条
52    抗剪腹板
54    风动涡轮叶片的制造方法
56    方法54的第一步骤
58    方法54的第二步骤
60    方法54的第三步骤
62    方法54的第四步骤

Claims (10)

1.一种用以制造安装在风力农场地区(12)的风动涡轮叶片(16)的方法,该方法包括如下步骤:
在主制造厂(22)制造至少一个风动涡轮叶片(16)的结构件,其中所述主制造厂包括中央生产基地,风动涡轮叶片(16)被制造成具有长度L和宽度W,长度L和宽度W中的至少一个超过地方当局制定的至少一个运输范围;和
在辅助制造厂(24)制造风动涡轮叶片(16)的外壳件(42),其中所述辅助制造厂包括一个或多个现场生产工地。
2.根据权利要求1的方法,其特征在于,还包括将上述至少一个结构件和外壳件(42)供给靠近风力农场地区(12)的装配站。
3.根据权利要求2的方法,其特征在于,上述的供给至少一个结构件和外壳件(42)的步骤包括将至少一个结构件从主制造厂(22)运输到该装配站。
4.根据权利要求1的方法,其特征在于,还包括在风力农场地区(12)将该至少一个结构件和外壳件(42)装配起来的步骤。
5.根据权利要求2的方法,其特征在于,上述的供给至少一个结构件和外壳件(42)的步骤包括将该至少一个结构件和外壳件(42)交付给货运公司运输。
6.根据权利要求1的方法,其特征在于,所述的至少一个结构件包括多个翼梁缘条(48,50)。
7.根据权利要求1的方法,其特征在于,所述的至少一个结构件包括风动涡轮叶片(16)的叶根部分(38)。
8.根据权利要求1的方法,其特征在于,还包括在该辅助制造厂制造风动涡轮叶片(16)的抗剪腹板(52),其中,上述的辅助制造厂(24)比主制造厂(22)更靠近风力农场地区(12)。
9.根据权利要求6的方法,其特征在于,还包括借助于自动化纤维填筑工艺制成翼梁缘条(48,50)。
10.根据权利要求7的方法,其特征在于,还包括借助于自动化工艺过程制成叶根部分(38),所述的工艺包括带缠绕法,或纤维填筑法,或带填筑法,或丝束填筑法,或编织法,或浸渍法,或丝缠绕法,或其组合。
CN2006100719778A 2005-03-31 2006-03-31 制造风动涡轮叶片的装置和方法 Expired - Fee Related CN1840899B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/094952 2005-03-31
US11/094,952 US20060225278A1 (en) 2005-03-31 2005-03-31 Wind blade construction and system and method thereof

Publications (2)

Publication Number Publication Date
CN1840899A CN1840899A (zh) 2006-10-04
CN1840899B true CN1840899B (zh) 2012-08-01

Family

ID=36228718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100719778A Expired - Fee Related CN1840899B (zh) 2005-03-31 2006-03-31 制造风动涡轮叶片的装置和方法

Country Status (5)

Country Link
US (1) US20060225278A1 (zh)
EP (1) EP1707805A3 (zh)
CN (1) CN1840899B (zh)
BR (1) BRPI0601205A (zh)
MX (1) MXPA06003559A (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517198B2 (en) 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US7908923B2 (en) * 2006-12-07 2011-03-22 Siemens Aktiengesellschaft Method of non-destructively testing a work piece and non-destructive testing arrangement
US7608939B2 (en) * 2007-01-04 2009-10-27 General Electric Company Methods and apparatus for assembling and operating monocoque rotary machines
US7976282B2 (en) * 2007-01-26 2011-07-12 General Electric Company Preform spar cap for a wind turbine rotor blade
US7895745B2 (en) * 2007-03-09 2011-03-01 General Electric Company Method for fabricating elongated airfoils for wind turbines
ES2319152B1 (es) * 2007-07-17 2010-01-11 Fco.Javier Garcia Castro Procedimiento para la fabricacion de palas eolicas.
US8733549B2 (en) 2007-11-13 2014-05-27 General Electric Company System for containing and/or transporting wind turbine components
US20090146433A1 (en) * 2007-12-07 2009-06-11 General Electric Company Method and apparatus for fabricating wind turbine components
US7740453B2 (en) * 2007-12-19 2010-06-22 General Electric Company Multi-segment wind turbine blade and method for assembling the same
US8171633B2 (en) * 2007-12-19 2012-05-08 General Electric Company Method for assembling a multi-segment wind turbine blade
EP3276162B1 (en) 2008-12-05 2020-04-08 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
US7841835B2 (en) * 2009-02-20 2010-11-30 General Electric Company Spar cap for wind turbine blades
US8753091B1 (en) 2009-05-20 2014-06-17 A&P Technology, Inc. Composite wind turbine blade and method for manufacturing same
US7998303B2 (en) * 2009-05-28 2011-08-16 General Electric Company Method for assembling jointed wind turbine blade
ES2423186T3 (es) * 2009-08-20 2013-09-18 Siemens Aktiengesellschaft Estructura de plástico reforzado con fibra y método para producir la estructura de plástico reforzado con fibra
EP2473333A4 (en) * 2009-09-04 2017-09-13 Covestro LLC Automated processes for the production of polyurethane wind turbine blades
US8702397B2 (en) * 2009-12-01 2014-04-22 General Electric Company Systems and methods of assembling a rotor blade for use in a wind turbine
US8142164B2 (en) * 2009-12-31 2012-03-27 General Electric Company Rotor blade for use with a wind turbine and method for assembling rotor blade
US20110243750A1 (en) 2010-01-14 2011-10-06 Neptco, Inc. Wind Turbine Rotor Blade Components and Methods of Making Same
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
US8192169B2 (en) * 2010-04-09 2012-06-05 Frederick W Piasecki Highly reliable, low cost wind turbine rotor blade
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
DE102010042530B4 (de) * 2010-10-15 2015-04-30 Senvion Se Schott einer Windenergieanlage
US8250761B2 (en) 2010-12-13 2012-08-28 General Electric Company Methods of manufacturing rotor blades for a wind turbine
US8900671B2 (en) 2011-02-28 2014-12-02 General Electric Company Method for manufacture of an infused spar cap using a low viscosity matrix material
US9486967B2 (en) 2011-03-25 2016-11-08 Siemens Aktiengesellschaft Facility and method for manufacturing a rotor blade of a wind turbine and method for setting up the facility
US8262362B2 (en) * 2011-06-08 2012-09-11 General Electric Company Wind turbine blade shear web with spring flanges
US8257048B2 (en) 2011-07-19 2012-09-04 General Electric Company Wind turbine blade multi-component shear web with intermediate connection assembly
US8393871B2 (en) 2011-07-19 2013-03-12 General Electric Company Wind turbine blade shear web connection assembly
US8235671B2 (en) 2011-07-19 2012-08-07 General Electric Company Wind turbine blade shear web connection assembly
US8360733B2 (en) 2011-09-09 2013-01-29 General Electric Company Rotor blade for a wind turbine and methods of manufacturing the same
WO2013086667A1 (en) * 2011-12-12 2013-06-20 General Electric Company Wind turbine blade shear web connection assembly
US20140064980A1 (en) * 2012-08-30 2014-03-06 General Electric Company Rotor blades with infused prefabricated shear webs and methods for making the same
GB2520007A (en) * 2013-11-05 2015-05-13 Vestas Wind Sys As Improvements relating to wind turbine rotor blades
US9709030B2 (en) * 2013-12-16 2017-07-18 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
US9574544B2 (en) 2013-12-16 2017-02-21 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
US9745954B2 (en) 2014-04-30 2017-08-29 General Electric Company Rotor blade joint assembly with multi-component shear web
US20160377052A1 (en) * 2015-06-29 2016-12-29 General Electric Company Blade root section for a modular rotor blade and method of manufacturing same
US10519927B2 (en) 2017-02-20 2019-12-31 General Electric Company Shear web for a wind turbine rotor blade
US10987879B2 (en) * 2017-03-02 2021-04-27 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
US10570879B2 (en) 2017-05-23 2020-02-25 General Electric Company Joint assembly for a wind turbine rotor blade with flanged bushings
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
WO2021026198A1 (en) * 2019-08-05 2021-02-11 Georgia Tech Research Corporation Systems and methods for repurposing retired wind turbines as electric utility line poles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499904A (en) * 1993-07-12 1996-03-19 Flowind Corporation Vertical axis wind turbine with pultruded blades
US20020148114A1 (en) * 2001-03-02 2002-10-17 Ruebusch Richard T. Modular, vertically-integrated manufacturing method for a lawn and garden implement
CN1575379A (zh) * 2001-10-24 2005-02-02 艾劳埃斯·乌本 具有电流总线的风力电站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606580A (en) * 1969-09-10 1971-09-20 Cyclops Corp Hollow airfoil members
DE3113079C2 (de) * 1981-04-01 1985-11-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Aerodynamischer Groß-Flügel und Verfahren zu dessen Herstellung
US5669758A (en) * 1996-01-24 1997-09-23 Williamson; Larry D. Wind turbine
DK175718B1 (da) * 2002-04-15 2005-02-07 Ssp Technology As Möllevinge
US20050186081A1 (en) * 2004-02-24 2005-08-25 Mohamed Mansour H. Wind blade spar cap and method of making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499904A (en) * 1993-07-12 1996-03-19 Flowind Corporation Vertical axis wind turbine with pultruded blades
US20020148114A1 (en) * 2001-03-02 2002-10-17 Ruebusch Richard T. Modular, vertically-integrated manufacturing method for a lawn and garden implement
CN1575379A (zh) * 2001-10-24 2005-02-02 艾劳埃斯·乌本 具有电流总线的风力电站

Also Published As

Publication number Publication date
MXPA06003559A (es) 2006-09-29
US20060225278A1 (en) 2006-10-12
BRPI0601205A (pt) 2006-12-19
EP1707805A2 (en) 2006-10-04
EP1707805A3 (en) 2012-08-29
CN1840899A (zh) 2006-10-04

Similar Documents

Publication Publication Date Title
CN1840899B (zh) 制造风动涡轮叶片的装置和方法
Tjiu et al. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development
Breeze Wind power generation
Douglas et al. Life cycle assessment of the Seagen marine current turbine
Bellarmine et al. Wind energy for the 1990s and beyond
CN201914610U (zh) 风电塔筒运输保护支架
Golfman Hybrid anisotropic materials for wind power turbine blades
Warne et al. Generation of electricity from the wind
Ragheb Modern wind generators
JP2005147086A (ja) 水平軸風車のブレード
Elistratov et al. The application of adapted materials and technologies to create energy systems based on renewable energy sources under harsh climatic conditions
Awasthi Wind power: practical aspects
Kadlec Characteristics of future vertical-axis wind turbines
Musial Offshore wind electricity: A viable energy option for the coastal united states
Lyons et al. Wind Turbine Technology–The Path to 20% US Electrical Energy
Rivkin et al. Wind Turbine Technology and Design
CN201023849Y (zh) 风力发电机叶片输送用工装
Divone Evolution of modern wind turbines part A: 1940 to 1994
Weisbrich et al. WARP: a modular wind power system for distributed electric utility application
Sola Advanced structural modelling and design of wind turbine electrical generators
Rose et al. Energy Management in Smart Cities by Novel Wind Turbine Configurations
Küçükkaraca et al. Life cycle assessment of wind turbine in Turkey
Speed Wind turbine
CLASS DESIGN, CONSTRUCTION OF HORIZONTAL AXIS WIND TURBINE FOR THE ELECTRIFICATION OF ELECTRICAL CLASS
Manwell et al. Wind Energy Explained: On Land and Offshore

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120801

Termination date: 20140331