CN1799498B - 磁共振成像快速广义自校准并行采集图像重建方法 - Google Patents

磁共振成像快速广义自校准并行采集图像重建方法 Download PDF

Info

Publication number
CN1799498B
CN1799498B CN200410082376.8A CN200410082376A CN1799498B CN 1799498 B CN1799498 B CN 1799498B CN 200410082376 A CN200410082376 A CN 200410082376A CN 1799498 B CN1799498 B CN 1799498B
Authority
CN
China
Prior art keywords
image
passage
ich
magnetic resonance
spatial data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200410082376.8A
Other languages
English (en)
Other versions
CN1799498A (zh
Inventor
汪坚敏
张必达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthineers Ltd
Original Assignee
Siemens Ltd China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ltd China filed Critical Siemens Ltd China
Priority to CN200410082376.8A priority Critical patent/CN1799498B/zh
Priority to US11/322,884 priority patent/US7279895B2/en
Publication of CN1799498A publication Critical patent/CN1799498A/zh
Application granted granted Critical
Publication of CN1799498B publication Critical patent/CN1799498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提出一种磁共振成像快速广义自校准并行采集图像重建算法,该算法将重建过程中的数据拟合和通道合并简化为一步线性运算,该线性运算所需的参数可以预先计算出来并存储,从而大幅提高图像重建的速度,解决了现有GRAPPA算法图像重建时间比较长的问题;该算法还可利用加权矩阵方便地比较基于图像域和频域的不同类型重建方法所引起的图像的信噪比损失。

Description

磁共振成像快速广义自校准并行采集图像重建方法
(一)技术领域
本发明涉及一种广义自校准并行采集(GeneRalized Autocalibrating Partially ParallelAcquisitions,GRAPPA)图像重建(reconstruction)算法,更具体地说涉及一种磁共振成像(Magnetic Resonance Imaging,MRI)快速GRAPPA图像重建算法。
(二)背景技术
在磁共振成像技术中,成像的速度是非常重要的参数。早期的检查常常需要花费若干个小时,随后由于在场强、梯度硬件以及脉冲序列方面技术的改进,成像的速度有了一个较大的提升。但是,场梯度快速变换以及高密度连续射频(Radio Frequency,RF)脉冲会带来人体生理极限无法承受的特殊吸收率(Specific Absorption Rate,SAR)以及器官组织的致热量,因此,成像速度的提升遇到了瓶颈。
随后,研究人员发现,借助应用复杂的电脑图像重建算法以及相配合的线圈阵列,磁共振的成像速度可以被大大的提升,该种技术通常被称为并行成像(parallel imaging)技术。并行成像技术的种类包括空间谐波并行采集(SiMultaneous Acquisition of Spatial Harmonics,SMASH)、灵敏度编码并行采集技术(SENSitivity Encoding Parallel AcquisitionTechniques,SENSE)以及广义自校准并行采集(GeneRalized Autocalibrating PartiallyParallel Acquisitions,GRAPPA)等,并行采集图像重建是一种用于快速采集的图像重建(reconstruction)技术,它利用相控阵线圈的空间灵敏度(sensitivity)差异进行空间编码,并用相控阵线圈同时采集,获得比常规磁共振成像快2-6倍甚至更高的成像速度。采用并行成像技术,对磁共振成像***提出新的要求,如需要多个接收通道、多元阵列线圈及线圈灵敏度校准、用特殊的数据处理和图像重建方法等等。
SMASH是一种利用线圈灵敏度拟合空间谐波函数并填充欠采样数据的并行采集重建方法。其算法的特征包括将所有通道的数据直接相加并作为多通道拟合的基准和对象。上述算法的拟合计算存在较大的误差,从而导致SMASH图像的残留伪影(artifact)严重和信噪比(signal-to-noise ratio,SNR)低的问题。
GRAPPA是一种增强型SMASH,其算法的特征在于GRAPPA利用所有通道的采样数据拟合并填充每一个通道的欠采样数据,并将拟合后每个通道的满采样图像进行通道合并,即对每幅图像求平方和后相加并开平方得到最终图像。GRAPPA算法降低了拟合的计算误差,改善了图像的质量。但由于拟合全通道数据的时间正比于通道的数量,故导致这种方案的图像重建时间比较长。随着磁共振设备中用于并行采集的通道数量的逐渐增加,GRAPPA在图像重建速度方面的缺点也逐渐变得突出。
因此,如何提供一种快速GRAPPA图像重建算法以大幅加快GRAPPA图像重建的计算速度,以及计算基于图像域和频域的并行采集图像重建算法引起的图像信噪比损失已经成为业界亟待解决的问题。
(三)发明内容
本发明的一个主要目的是在于提供一种磁共振成像(Magnetic Resonance Imaging,MRI)快速广义自校准并行采集(GeneRalized Autocalibrating Partially Parallel Acquisitions,GRAPPA)图像重建(reconstruction)算法,以大幅加快GRAPPA图像重建的计算速度。
本发明的另外一个目的是在于提供一种磁共振成像快速广义自校准并行采集图像重建算法,以计算基于图像域和频域的并行采集图像重建算法引起的图像信噪比(signal-to-noiseratio,SNR)损失。
为达到上述目的,本发明提出一种磁共振成像快速广义自校准并行采集图像重建算法,该算法包括以下步骤:
1)将频域通道的拟合计算表示为通道的卷积运算并转化到图像域;
2)将图像域的通道合并运算转化为各通道图像与线圈灵敏度函数的线性运算;以及
3)将1)、2)两步的线性运算合并为加权矩阵。
其中,在步骤1)中,将通道的拟合计算转化为通道的卷积运算的公式为:
Figure G2004100823768D00031
其中,rawdatakCh full表示经过卷积后被拟合的第kCh个通道满采样的k空间数据;rawdataiCh ppa表示用来拟合的第iCh个通道的欠采样的k空间数据;FiCh,kCh为通过拟合参数导出的卷积核。
对FiCh,kCh求傅立叶变换后,卷积又可以转化为图像域的点乘运算:其中,imagekCh full为第kCh个通道的满采样图像;imageiCh ppa为iCh个通道的欠采样图像;fiCh,kCh为FiCh,kCh的傅立叶变换。
在步骤2)中,平方和合并的公式为:
Figure G2004100823768D00033
当第iCh个通道的灵敏度函数为siCh时,该平方和合并又可以表示为:其中,ISOS为线圈灵敏度函数经过平方和合并后得到的图像,该图像是原始图像乘以线圈的ISOS得到的。
在步骤2)中,平方和的合并也可采用基于线圈灵敏度函数复共轭相乘(SCS)的合并方法,其公式为:其中,imageSCS为利用SCS方法合并出的图像;siCh SOS为基于ISOS求出的线圈灵敏度函数;为线圈灵敏度函数经过平方和合并后得到的图像;该siCh SOS的计算公式为:
Figure G2004100823768D00036
在步骤3)中,由于步骤1)、2)中的运算是线性的,那么它们分别可以表示为两个稀疏矩阵的连续作用,将这两步运算合并相当于这两个稀疏矩阵相乘,从而省略了运算的中间步骤,起到加快运算速度的作用;所述两个稀疏矩阵相乘的加权矩阵为: w kCh = Σ iCh = 1 · · · nCh f iCh , kCh · s iCh SOS * .
本发明磁共振成像快速广义自校准并行采集图像重建算法,进一步包括在频域实现加速运算的步骤;其中在频域实现加速运算的方法为:经过步骤1)的运算之后,各通道数据再与线圈灵敏度函数的傅立叶变换做卷积,再经过傅立叶变换后得到合并后的图像;其公式为:其中,siCh SOS与SiCh SOS为一傅立叶变换对。
本发明磁共振成像快速广义自校准并行采集图像重建算法,还可利用加权矩阵方便地比较基于图像域和频域的不同类型重建方法所引起的图像的信噪比损失: SNR rel = Σ k = 1 · · · nCh w kCh · s kCh SOS Σ k - 1 · · · nCh | s kCh SOS | 2 · Σ k = 1 · · · nCh | w kCh | 2 .
综上所述,本发明所提供的磁共振成像快速广义自校准并行采集图像重建算法不仅可将重建过程中的数据拟合和通道合并简化为一步线性运算,该线性运算所需的参数可以预先计算出来并存储,从而大幅提高图像重建的速度;而且还可利用加权矩阵方便地比较基于图像域和频域的不同类型重建方法所引起的图像的信噪比损失,从而解决了现有GRAPPA算法图像重建时间比较长的问题。
(四)附图说明
图1是本发明磁共振成像快速GRAPPA图像重建算法的欠采样数据拟合全采样数据的原理图。
(五)具体实施方式
下面结合附图对本发明进行详细描述。
在功能成像应用中,需要多次采集相同成像参数下相同组织在相同位置、不同时间的多幅图像。在上述条件下,线圈的灵敏度函数保持不变。于是,本发明磁共振成像(MagneticResonance Imaging,MRI)快速广义自校准并行采集(GeneRalized Autocalibrating PartiallyParallel Acquisitions,GRAPPA)图像重建(reconstruction)算法将重建过程中的数据拟合和通道合并简化为一步线性运算,该线性运算所需的参数可以预先计算出来并存储,从而大幅提高图像重建的速度。
本发明磁共振成像快速GRAPPA图像重建算法包括以下步骤:
1)将频域GRAPPA的通道的拟合计算表示为通道的卷积运算并转化到图像域。
请参阅图1,图中以4个线圈的4个通道的欠采样数据拟合第4个通道全采样数据为例说明本步骤,将频域GRAPPA的拟合计算表示为卷积运算并转化到图像域的原理,但并不以此为限;其中白色的点代表未被填充的欠采样数据,灰色的点代表正被拟合的方法填充的数据,黑色的点代表实际采样的数据,由于数据拟合是线性运算,因此4个通道的拟合运算可以被转化为4个通道的卷积运算。
rawdata kCh full = Σ iCh = 1 · · · nCh rawdata iCh ppa ⊗ F iCh , kCh
其中,rawdatakCh full表示经过卷积后被拟合的第kCh个通道满采样的k空间数据。在图1中,kCh=4。rawdataiCh ppa表示用来拟合的第iCh个通道的欠采样的k空间数据。FiCh,kCh为通过拟合参数导出的卷积核。对FiCh,kCh求傅立叶变换后,卷积又可以转化为图像域的点乘运算。
image kCh full = Σ iCh = 1 · · · nCh image iCh ppa · f iCh , kCh
其中imagekCh full为第kCh个通道的满采样图像,imageiCh ppa为iCh个通道的欠采样图像。fiCh,kCh为FiCh,kCh的傅立叶变换。
2)将图像域的通道合并运算转化为各通道图像与线圈灵敏度函数的线性运算。
平方和合并方法的公式如下:
image SOS = Σ iCh = 1 · · · nCh image iCh · image iCh *
若第iCh个通道的灵敏度函数可以表示为siCh,则平方和合并又可以表示为:
image SOS = | image | Σ iCh = 1 · · · nCh s iCh · s iCh * = | image | · I SOS
其中ISOS为线圈灵敏度函数经过平方和合并后得到的图像。不难证明平方和合并得到的图像是原始图像乘以线圈的ISOS得到的。
基于线圈灵敏度函数复共轭相乘(SCS)的合并方法的公式如下:
image SCS = Σ iCh = 1 · · · nCh image iCh · s iCh SOS * = | image | · I SOS
其中,imageSCS为利用SCS方法合并出的图像,siCh SOS为基于ISOS求出的线圈灵敏度函数。公式如下:
s iCh SOS = image iCh / Σ iCh image iCh · image iCh *
上述两种合并方法的等价性不难证明。
3)将1)、2)两步线性运算合并为加权矩阵。
由于1)、2)中的运算是线性的,那么它们分别可以表示为两个稀疏矩阵的连续作用。将这两步运算合并相当于这两个稀疏矩阵相乘,从而省略了运算的中间步骤,起到加快运算速度的作用。
加权矩阵的表示如下:
w kCh = Σ iCh = 1 · · · nCh f iCh , kCh · s iCh SOS *
4)在频域实现的加速运算。
前面提到的三步运算完全可以在频域实现,具体方法是:经过公式①的运算之后,各通道数据再与线圈灵敏度函数的傅立叶变换做卷积,再经过傅立叶变换后得到合并后的图像:
rawdata SCSfull = Σ iCh = 1 · · · nCh rawdata iCh full ⊗ S iCh SOS *
其中siCh SOS与SiCh SOS为一傅立叶变换对。在频域进行加速运算和在图像域进行加速运算基本上是等价的,其主要差别在于用频域卷积SiCh SOS时的截短误差。
5)利用加权矩阵计算图像的信噪比损失。
利用加权矩阵可以方便地比较基于图像域和频域的不同类型重建方法所引起的图像的信噪比损失。在本方法提出之前,信噪比的损失问题仅仅在基于图像域的并行重建方法中被提及。公式如下:
SNR rel = Σ k = 1 · · · nCh w kCh · s kCh SOS Σ k - 1 · · · nCh | s kCh SOS | 2 · Σ k = 1 · · · nCh | w kCh | 2
综上所述,在本发明磁共振成像快速GRAPPA图像重建算法的一个实施例中,假设通道数为8,满采样时图像的分辨率为256x256,利用本发明快速GRAPPA图像重建算法执行上述步骤1)至5)后重建出一幅图像所需的计算量仅为8次二维傅立叶变换、256x256x8次复数乘法和256x256x7次复数加法。而且,与现有技术的GRAPPA相比,由于不需要求逆,本发明快速GRAPPA图像重建算法的重建时间可以缩短一个数量级以上。

Claims (5)

1.一种磁共振成像快速广义自校准并行采集的图像重建方法,应用于多通道成像中,使用各通道的欠采样k空间数据来拟合满采样k空间数据并转化到图像域后得到满采样图像,合并所述各通道的满采样图像从而实现图像重建,其特征在于:拟合时通过所述欠采样k空间数据与一通过拟合参数导出的卷积核的卷积得到所述满采样k空间数据并转化到图像域,通过各通道图像与线圈灵敏度函数的线性运算实现所述通道合并,并通过稀疏矩阵的相乘来合并前述的拟合以通道合并从而加速图像重建速度。
2.根据权利要求1所述的磁共振成像快速广义自校准并行采集的图像重建方法,其特征在于:对所述卷积核进行傅立叶变换后,将所述卷积转化为图像域的点乘运算:其中,imagekCh full为第kCh个通道的满采样图像;imageiCh ppa为iCh个通道的欠采样图像;fiCh,kCh为所述卷积核的傅立叶变换。
3.根据权利要求2所述的磁共振成像快速广义自校准并行采集的图像重建方法,其特征在于:采用平方和合并方式来实现所述的通道合并。
4.根据权利要求2所述的磁共振成像快速广义自校准并行采集的图像重建方法,其特征在于:采用基于线圈灵敏度函数复共轭相乘(SCS)方法来实现所述的通道合并。
5.一种磁共振成像快速广义自校准并行采集的图像重建方法,应用于多通道成像中,使用各通道的欠采样k空间数据来拟合满采样k空间数据并转化到图像域后得到满采样图像,合并所述各通道的满采样图像从而实现图像重建,其特征在于:拟合时通过所述欠采样k空间数据与一通过拟合参数导出的卷积核的卷积得到所述满采样k空间数据,通过所述各通道满采样k空间数据与线圈灵敏度函数的傅立叶变换做卷积来在频域中加速计算速度,然后再经过傅立叶变换得到合并后的图像来实现所述通道合并。
CN200410082376.8A 2004-12-31 2004-12-31 磁共振成像快速广义自校准并行采集图像重建方法 Active CN1799498B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200410082376.8A CN1799498B (zh) 2004-12-31 2004-12-31 磁共振成像快速广义自校准并行采集图像重建方法
US11/322,884 US7279895B2 (en) 2004-12-31 2005-12-30 Fast generalized autocalibrating partially parallel acquisition image reconstruction algorithm for magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200410082376.8A CN1799498B (zh) 2004-12-31 2004-12-31 磁共振成像快速广义自校准并行采集图像重建方法

Publications (2)

Publication Number Publication Date
CN1799498A CN1799498A (zh) 2006-07-12
CN1799498B true CN1799498B (zh) 2010-04-28

Family

ID=36809868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410082376.8A Active CN1799498B (zh) 2004-12-31 2004-12-31 磁共振成像快速广义自校准并行采集图像重建方法

Country Status (2)

Country Link
US (1) US7279895B2 (zh)
CN (1) CN1799498B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309984B2 (en) * 2005-10-27 2007-12-18 Wisconsin Alumni Research Foundation Parallel magnetic resonance imaging method using a radial acquisition trajectory
US7840045B2 (en) * 2006-04-21 2010-11-23 The University Of Utah Research Foundation Method and system for parallel reconstruction in the K-space domain for application in imaging systems
DE102007015040B3 (de) * 2007-03-29 2008-10-02 Universitätsklinikum Freiburg Verfahren zur Beschleunigung der Datenaufnahme bei dynamischen Messungen der Magnetresonanz (MRT) mittels paralleler Bildgebung
CN101305908B (zh) 2007-05-17 2011-08-03 西门子公司 提高并行采集图像重建的信噪比损失的准确度的方法
CN100571620C (zh) * 2008-07-29 2009-12-23 四川大学华西医院 一种核磁共振成像设备稳定性及成像指标的测量方法
US8334694B2 (en) * 2009-01-20 2012-12-18 Mayo Foundation For Medical Education And Research System and method for embedded self-calibration within an inversion recovery pulse sequence
US8076938B2 (en) * 2009-03-31 2011-12-13 General Electric Company System and method of parallel imaging with calibration to a virtual coil
US8692549B2 (en) * 2009-05-27 2014-04-08 Siemens Aktiengesellschaft Method for reconstructing images of an imaged subject from a parallel MRI acquisition
US20110093233A1 (en) * 2009-10-21 2011-04-21 Case Western Reserve University Through-time radial grappa calibration
CN101915901A (zh) * 2010-08-17 2010-12-15 中国科学院深圳先进技术研究院 磁共振成像方法及装置
CN102096055B (zh) * 2010-12-14 2013-01-23 南方医科大学 一种用于磁共振成像非均匀采样数据的快速精确重建方法
DE102011081411B4 (de) * 2011-08-23 2013-04-11 Friedrich-Alexander-Universität Erlangen-Nürnberg Abtastmuster für iterative MR-Rekonstruktionsverfahren
CN102435966B (zh) * 2011-09-02 2014-07-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及***
CN103185878B (zh) * 2011-12-27 2015-04-15 上海联影医疗科技有限公司 磁共振图像并行采集以及图像重建方法
CN103529413B (zh) * 2012-07-04 2016-03-02 上海联影医疗科技有限公司 磁共振成像方法与装置、k空间的重建方法与装置
CN102798829B (zh) * 2012-08-14 2015-04-22 深圳先进技术研究院 基于机器学习的并行磁共振成像grappa方法
CN102937706B (zh) * 2012-10-31 2016-08-03 中国科学院深圳先进技术研究院 一种磁共振并行成像方法及磁共振成像仪
CN103901376B (zh) * 2012-12-30 2017-11-07 深圳联影医疗科技有限公司 磁共振成像方法与装置
CN104166110B (zh) * 2013-05-17 2017-12-26 深圳联影医疗科技有限公司 磁共振并行采集图像重建方法及设备
CN104181486B (zh) * 2013-07-05 2015-07-22 上海联影医疗科技有限公司 磁共振图像重建方法及装置
EP2866045A1 (en) 2013-10-23 2015-04-29 Samsung Electronics Co., Ltd Magnetic resonance imaging apparatus and method
CN105874346B (zh) * 2013-12-10 2019-10-18 皇家飞利浦有限公司 使用在放大视场中的内插计算mri rf线圈灵敏度
CN105334479B (zh) * 2014-06-10 2019-02-22 西门子(深圳)磁共振有限公司 一种磁共振成像方法和装置
CN106108903B (zh) * 2016-08-08 2019-02-05 江苏大学 一种改进的并行磁共振图像重建方法
CN107576925B (zh) * 2017-08-07 2020-01-03 上海东软医疗科技有限公司 磁共振多对比度图像重建方法和装置
CN110133557B (zh) 2018-02-09 2021-08-31 深圳先进技术研究院 一种新型的非线性并行重建的磁共振成像方法、装置及介质
CN111192663B (zh) * 2018-11-14 2021-08-31 深圳先进技术研究院 磁共振电影成像方法、装置、设备和存储介质
CN111951344B (zh) * 2020-08-09 2022-08-02 昆明理工大学 一种基于级联并行卷积网络的磁共振图像重建方法
CN114325524B (zh) * 2020-09-29 2023-09-01 上海联影医疗科技股份有限公司 磁共振图像重建方法、装置、***及存储介质
CN112834971A (zh) * 2020-12-31 2021-05-25 苏州朗润医疗***有限公司 一种基于奇异值分解的mri迭代自校准并行成像算法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450358A (zh) * 2001-12-14 2003-10-22 株式会社东芝 采用由多个单元线圈构成的多线圈的并行磁共振成像
US6734673B2 (en) * 2001-09-11 2004-05-11 Siemens Aktiengesellschaft Apparatus and method for magnetic resonance imaging employing partial parallel acquisition with formation of signal combinations and solving of an equation system based thereon
CN1537514A (zh) * 2002-10-04 2004-10-20 Ge医药***环球科技公司 多模态成像方法和装置
US6828788B2 (en) * 2002-01-14 2004-12-07 Siemens Aktiengesellschaft Apparatus and method for magnetic resonance imaging using partial parallel acquisition (PPA)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841998B1 (en) * 2001-04-06 2005-01-11 Mark Griswold Magnetic resonance imaging method and apparatus employing partial parallel acquisition, wherein each coil produces a complete k-space datasheet
DE10318682B4 (de) * 2003-04-24 2011-12-29 Peter M. Jakob Beschleunigte Magnet-Resonanz-Bildgebung im Rahmen der parallelen Akquisition von MRT-Daten
DE102004021772B4 (de) * 2004-04-30 2007-05-24 Siemens Ag Verfahren und Gerät zur verbesserten PPA-Magnet-Resonanz-Bildgebung mit radialer Datenakquisition sowie Computersoftwareprodukt
DE102004024459B4 (de) * 2004-05-14 2007-09-20 Siemens Ag Verfahren zur Magnetresonanz-Bildgebung mittels einer partiellen parallelen Akquisitionstechnik bei nicht-kartesischer Belegung des k-Raums

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734673B2 (en) * 2001-09-11 2004-05-11 Siemens Aktiengesellschaft Apparatus and method for magnetic resonance imaging employing partial parallel acquisition with formation of signal combinations and solving of an equation system based thereon
CN1450358A (zh) * 2001-12-14 2003-10-22 株式会社东芝 采用由多个单元线圈构成的多线圈的并行磁共振成像
US6828788B2 (en) * 2002-01-14 2004-12-07 Siemens Aktiengesellschaft Apparatus and method for magnetic resonance imaging using partial parallel acquisition (PPA)
CN1537514A (zh) * 2002-10-04 2004-10-20 Ge医药***环球科技公司 多模态成像方法和装置

Also Published As

Publication number Publication date
US20060184000A1 (en) 2006-08-17
CN1799498A (zh) 2006-07-12
US7279895B2 (en) 2007-10-09

Similar Documents

Publication Publication Date Title
CN1799498B (zh) 磁共振成像快速广义自校准并行采集图像重建方法
CN100396240C (zh) 频域灵敏度编码磁共振并行成像方法
Huang et al. A software channel compression technique for faster reconstruction with many channels
CN101308202B (zh) 并行采集图像重建的方法和装置
US7202663B2 (en) Method for generating fast magnetic resonance images
CN102159965B (zh) 用于mri的b1映射和b1l匀场
US6876201B2 (en) Magnetic resonance imaging apparatus and method
KR102236865B1 (ko) 자기 공명 시스템 작동 시퀀스 확립
US9317917B2 (en) Method, reconstruction device, and magnetic resonance apparatus for reconstructing magnetic resonance raw data
CN104661592B (zh) 磁共振成像装置以及图像处理装置
US9229081B2 (en) Accelerated MRI with nonlinear spatial encoding gradients
US8154289B2 (en) Method for joint sparsity-enforced k-space trajectory and radiofrequency pulse design
CN101305908B (zh) 提高并行采集图像重建的信噪比损失的准确度的方法
US20070096733A1 (en) Parallel magnetic resonance imaging method using a radial acquisition trajectory
CN105232046A (zh) 一种基于重叠回波的单扫描定量磁共振t2成像方法
JP4698231B2 (ja) 磁気共鳴診断装置
JP6762284B2 (ja) 磁気共鳴イメージング装置およびノイズ除去方法
Li et al. A parallel imaging technique using mutual calibration for split‐blade diffusion‐weighted PROPELLER
JPH0795972A (ja) 核スピン断層撮影装置
CN111062994B (zh) 一种化学交换饱和转移对比图像的重建方法及***
Griswold Advanced k-space techniques
US9389289B2 (en) Magnetic resonance imaging device
Wang et al. A Feasibility Study of Geometric‐Decomposition Coil Compression in MRI Radial Acquisitions
US20180286088A1 (en) Iterative reconstruction of quantitative magnetic resonance images
Banerjee et al. Elliptical magnetic resonance spectroscopic imaging with GRAPPA for imaging brain tumors at 3 T

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210114

Address after: Room 516, 5th floor, 38 Yinglun Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai 200031

Patentee after: SIEMENS HEALTINEERS Ltd.

Address before: 100102 No. 7 South Central Road, Chaoyang District, Beijing, China

Patentee before: Siemens (China) Co.,Ltd.

TR01 Transfer of patent right