CN1785489A - 纳米筛网及其制造方法 - Google Patents

纳米筛网及其制造方法 Download PDF

Info

Publication number
CN1785489A
CN1785489A CN 200410077422 CN200410077422A CN1785489A CN 1785489 A CN1785489 A CN 1785489A CN 200410077422 CN200410077422 CN 200410077422 CN 200410077422 A CN200410077422 A CN 200410077422A CN 1785489 A CN1785489 A CN 1785489A
Authority
CN
China
Prior art keywords
nano
screen
film
filter opening
nanometer filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410077422
Other languages
English (en)
Other versions
CN100444939C (zh
Inventor
翁维襄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNB2004100774225A priority Critical patent/CN100444939C/zh
Publication of CN1785489A publication Critical patent/CN1785489A/zh
Application granted granted Critical
Publication of CN100444939C publication Critical patent/CN100444939C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供一种纳米筛网,其包括一薄膜及用于固持该薄膜的底盘,在该底盘周缘形成有侧壁。其中,该薄膜包括具有方向性规则排列的纳米滤孔结构的氧化铝膜,纳米滤孔孔径为5~400nm。另外,本发明还提供上述纳米筛网的制造方法。本发明所提供的纳米筛网所用薄膜具有方向性规则排列的纳米滤孔结构,可提高薄膜有效利用面积,从而提高纳米筛网的筛选效率。该纳米筛网可广泛应用于各种纳米级粉体的过滤和筛选。

Description

纳米筛网及其制造方法
【技术领域】
本发明关于一种筛选装置,特别涉及一种纳米级筛网及其制造方法。
【背景技术】
目前,纳米技术的生产和应用越来越广泛,而在许多纳米粉体的应用上,往往要求粉体粒径的一致性。常用纳米粉体的制造方法有化学还原法、气相沉积法、溶胶凝胶法等,由于反应条件影响和反应过程难以控制,使这些方法并不能获得粒径单一的纳米粉体,因而需借助于其它方法,例如,通过筛选由上述方法所制备的纳米粉体产物,只要使筛网的网孔直径一致即可筛选出粒径一致的纳米粉体。
请参阅图1,为传统筛网结构示意图。该筛网1包括一底盘2以及由底盘2周缘向上延伸的侧壁3。底盘2包括一位于中央的网格状筛盘4以及和该筛盘4周缘相接合的周盘5。此传统筛网1采用网格状筛盘4,仅能对宏观粉末微粒进行筛选,而对于纳米级粉体,该筛网1已不适用,必须采用一些具有纳米级多孔结构材料的筛网。
2002年2月28日公开的中国第02110938.9号专利揭露一种以锰结核、富钴结壳为原料合成钡钙锰矿型分子筛的方法。利用新鲜锰结核或富钴结壳和氧化剂反应,以提高原料中锰元素的氧化态;然后将镁离子植入锰矿物晶格,使其发挥模板剂作用;经过高温水热反应,原料中各种铁锰氧化物、氢氧化物均转变成钡钙锰矿型分子筛。该方法所得分子筛具有3×3型隧道孔结构,筛孔直径约0.69纳米,该纳米筛膜孔径小,可广泛应用于化工催化、环境工程、高性能电池等领域。但是其孔径太小且过于单一,不能满足不同孔径需求的纳米级筛网。
2001年2月28日公开的中国第01109223.8号专利申请揭露一种纳米筛膜,其包括陶瓷材料支撑体及在该支撑体上烧结而得的γ-MnO2纳米筛膜。陶瓷支撑体具有微米级滤孔,筛膜平均孔径为2~3nm,γ-MnO2原始粒径为20~30nm,聚集粒径为100~500nm,膜层厚度为10~15微米。反应器用陶瓷支撑体将γ-MnO2纳米筛膜间隔为两个空间,涂覆γ-MnO2纳米筛膜一面是催化反应区,另一面是开放式负压区。该纳米筛膜孔径较小,有利于负载催化剂粒子,提高催化性能。但是其孔洞是由分子的间隔形成,因而孔洞面积相对于整个纳米筛膜的面积较小,即开孔率较小,不能充分利用其有效面积,造成该纳米筛膜筛选速率降低,因而过滤效率低下。
有鉴于此,提供一种有效利用面积高、筛选效率高的纳米筛网及其制造方法实为必要。
【发明内容】
为克服现有技术中纳米筛网有效利用面积低、筛选效率低等不足,本发明的目的在于提供一种有效利用面积高、筛选效率高的纳米筛网。
本发明的另一目的在于提供上述纳米筛网的制造方法。
为实现上述第一目的,本发明提供一种纳米筛网,其包括一薄膜及用于固持该薄膜的底盘,该底盘周缘形成有侧壁;其中,该薄膜包括具有方向性规则排列的纳米滤孔结构的氧化铝膜。
而且,所述纳米滤孔之间相互平行且基本垂直于所述薄膜表面。
所述纳米滤孔按六边形分布排列。
所述纳米滤孔的孔径范围为5纳米~400纳米。
所述纳米滤孔的开孔率在1011个/cm2以上。
所述薄膜厚度范围10纳米~100纳米。
为实现上述第二目的,本发明提供上述纳米筛网的制造方法,其包括以下步骤:
提供一铝基材;
在铝基材一表面形成具有方向性规则排列纳米滤孔结构的氧化铝薄膜;
去除铝基材,获得自支撑氧化铝薄膜;
使薄膜固持在一具周缘侧壁的底盘中央位置,构成纳米筛网。
其中,所述薄膜形成方法采用阳极氧化法。
所述阳极氧化法的电解液采用硫酸、草酸、磷酸、铬酸或其混合酸。
所述铝基材采用组份及其质量分数对应为:磷酸∶乙酸∶硝酸∶水=72%∶15%∶8%∶5%的混合溶液蚀刻去除。
与现有技术中的纳米筛网相比,本发明提供的纳米筛网采用具有纳米滤孔结构的氧化铝薄膜,该薄膜可通过调整电压来控制其孔隙间距,以获得密集分布且按一定方向性规则排列纳米滤孔结构,能增加薄膜有效利用面积,加快纳米筛网的筛选速率,从而提高其筛选效率。
【附图说明】
下面结合附图对本发明作进一步详细说明。
图1是传统筛网结构示意图。
图2是本发明的纳米筛网结构示意图。
图3是本发明的纳米筛网中薄膜的表面结构放大示意图。
图4是本发明的纳米筛网的制造过程示意图。
【具体实施方式】
请参阅图2,本发明提供的纳米筛网10包括一薄膜11、用于固持该薄膜的底盘12以及形成在底盘12周缘的侧壁13。其中,底盘12是中央为空的底座,从而可使薄膜11固持在底盘12中央部位。侧壁13具有一定高度,可盛装一定量待筛选的粉末(图未示)。薄膜11是一种多孔性氧化铝薄膜,在其厚度方向形成有按一定方向规则排列的纳米滤孔14。
请参阅图3,为纳米筛网10中薄膜11的表面结构放大示意图。薄膜11由许多具有六面柱体状的晶胞15组成(如图中虚线所示),每个晶胞15中央包含一个圆柱孔状纳米滤孔14,每个晶胞15周围按六边形排布有六个与其相同的晶胞,即各晶胞所含滤孔的中心连线为一六边形(如图中实线所示)。其中,纳米滤孔14为一贯穿薄膜11且垂直于其表面的圆柱通孔,纳米滤孔14之间相互平行、尺寸相同,且按六边形分布排列。上述纳米滤孔14的结构可采用阳极氧化法制得,并通过控制阳极氧化的制备条件,如调节氧化电压、时间等制备条件,即可获得各种尺寸的纳米滤孔14,通常在5纳米~400纳米范围内,深度约为10纳米~100纳米,等同于薄膜11的厚度,纳米滤孔14的开孔率至少为1011个/cm2
本发明提供的纳米筛网10可根据需要预先选择和待筛选粉末颗粒相同尺寸的纳米滤孔14,从而可筛选出粒径均匀一致的纳米颗粒。筛选时可配合其它震动装置如超声波震荡器等一起使用,必要时还可采用冲水过滤的方法筛选粉末。由于纳米滤孔14密集分布且按一定方向性规则排列,增加了薄膜11有效利用面积,同时加快了纳米筛网10的筛选速率,最终提高纳米筛网10的筛选效率。
请参阅图4,为纳米筛网10的制造过程示意图,其包括以下步骤:
(1)提供一铝基材16:选取一块纯度较高的平整铝基材16(也可用铝合金),并对其进行预处理,如热处理、表面脱脂处理及电化学抛光处理等,以使预形成薄膜的表面成为一平整光滑的平滑表面17,以利于进行对其进行阳极氧化处理。
(2)在铝基材16表面形成具有方向性规则排列的纳米滤孔14结构的氧化铝薄膜11:在硫酸、草酸、磷酸、铬酸或其混合酸等酸性电解液中对铝基材16进行阳极氧化,使其平滑表面17形成多孔氧化铝薄膜11。为获得孔径均匀一致,分布均匀的纳米滤孔14,可去除薄膜11之后重复上述阳极氧化步骤,进行二次阳极氧化,最终可获得具有规则排列的纳米滤孔14结构的薄膜11,而且纳米滤孔14相互平行,由薄膜一表面延伸至另一表面。陆梅等人在《兰州大学学报》(自然科学版),2002,38(4),47-54,“多孔氧化铝膜的制备及其表征”一文中指出,多孔氧化铝膜的孔间距及孔径均随所加氧化电压的增加而增加。因而,可利用电压与孔隙间隔大小成正比的关系,通过调整电压来控制孔隙间距,以调节纳米滤孔14的分布状况,从而获得密集分布纳米滤孔14的薄膜11,使薄膜11具有较高有效利用面积。同时通过控制阳极氧化条件,如电解液种类、氧化电压、温度、时间以及电流密度等因数,可获得不同孔径的纳米滤孔14,通常在5纳米~400纳米之间。如当以硫酸为电解液时,所得纳米滤孔14的孔径较小,通常在20纳米左右;而以草酸为电解液时,所得纳米滤孔14的孔径较大,通常在40纳米以上。
(3)去除铝基材16,获得自支撑氧化铝薄膜11:去除铝基材16的方法可采用蚀刻法,并以混合酸为蚀刻液,该混合酸中各种酸组份及其所含质量分数对应为:磷酸∶乙酸∶硝酸∶水=72%∶15%∶8%∶5%。蚀刻去除铝基材16之后,剩下自支撑的氧化铝薄膜11,该薄膜11厚度范围为10纳米~100纳米。如欲获得足够大孔径的纳米滤孔14,还可对该自支撑薄膜11进行扩孔处理。
(4)使氧化铝薄膜11固持在一具周缘侧壁13的底盘12中央,构成纳米筛网10:取一具周缘侧壁13的底盘12,该底盘12中央为空,薄膜11即可固定在底盘12的中央,从而构成具纳米筛孔的纳米筛网10。
另外,薄膜11使用前还可进一步对其进行表面处理或热处理,以提高其硬度、抗脆性等相关性能。
与现有的纳米筛网相比,本发明提供的纳米筛网10采用具有纳米滤孔14结构的氧化铝薄膜11,该薄膜11可通过调整电压来控制其孔隙间距,以获得密集分布且按一定方向性规则排列纳米滤孔14结构,能增加薄膜11有效利用面积,加快纳米筛网10的筛选速率,从而获得较高的筛选效率。

Claims (10)

1.一种纳米筛网,其包括一薄膜及用于固持该薄膜的底盘,该底盘周缘形成有侧壁;其特征在于:该薄膜包括具有方向性规则排列的纳米滤孔结构的氧化铝膜。
2.如权利要求1所述的纳米筛网,其特征在于:所述纳米滤孔之间相互平行且基本垂直于所述薄膜表面。
3.如权利要求1所述的纳米筛网,其特征在于:所述纳米滤孔按六边形分布排列。
4.如权利要求2或3所述的纳米筛网,其特征在于:所述纳米滤孔的孔径范围为5纳米~400纳米。
5.如权利要求2或3所述的纳米筛网,其特征在于:所述纳米滤孔的开孔率在1011个/cm2以上。
6.如权利要求1所述的纳米筛网,其特征在于:所述薄膜厚度范围10纳米~100纳米。
7.一种纳米筛网的制造方法,其包括以下步骤:
提供一铝基材;
在铝基材一表面形成具有方向性规则排列纳米滤孔结构的氧化铝薄膜;
去除铝基材,获得自支撑氧化铝薄膜;
使薄膜固持在一具周缘侧壁的底盘中央位置,构成纳米筛网。
8.如权利要求7所述的纳米筛网的制造方法,其特征在于:所述薄膜形成方法采用阳极氧化法。
9.如权利要求8所述的纳米筛网的制造方法,其特征在于:所述阳极氧化法的电解液采用硫酸、草酸、磷酸、铬酸或其混合酸。
10.如权利要求7所述的纳米筛网的制造方法,其特征在于:所述铝基材采用各组份及其质量分数对应为:磷酸∶乙酸∶硝酸∶水=72%∶15%∶8%∶5%的混合溶液蚀刻去除。
CNB2004100774225A 2004-12-09 2004-12-09 纳米筛网及其制造方法 Expired - Fee Related CN100444939C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100774225A CN100444939C (zh) 2004-12-09 2004-12-09 纳米筛网及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100774225A CN100444939C (zh) 2004-12-09 2004-12-09 纳米筛网及其制造方法

Publications (2)

Publication Number Publication Date
CN1785489A true CN1785489A (zh) 2006-06-14
CN100444939C CN100444939C (zh) 2008-12-24

Family

ID=36783153

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100774225A Expired - Fee Related CN100444939C (zh) 2004-12-09 2004-12-09 纳米筛网及其制造方法

Country Status (1)

Country Link
CN (1) CN100444939C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079646A (zh) * 2010-08-19 2013-05-01 浦项工科大学校产学协力团 口罩以及制造口罩的方法
CN104389000A (zh) * 2014-11-05 2015-03-04 芜湖金龙模具锻造有限责任公司 一种轴承表面的阳极氧化保护方法
CN107838025A (zh) * 2016-09-20 2018-03-27 嘉义钢铁股份有限公司 筛网

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125891C (zh) * 1996-08-26 2003-10-29 日本电信电话株式会社 多孔性阳极氧化的氧化铝膜的制备方法
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6972146B2 (en) * 2002-03-15 2005-12-06 Canon Kabushiki Kaisha Structure having holes and method for producing the same
CN1271248C (zh) * 2003-05-19 2006-08-23 中国科学院物理研究所 一种纳米孔氧化铝模板的生产工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079646A (zh) * 2010-08-19 2013-05-01 浦项工科大学校产学协力团 口罩以及制造口罩的方法
CN103079646B (zh) * 2010-08-19 2015-06-10 浦项工科大学校产学协力团 口罩以及制造口罩的方法
CN104389000A (zh) * 2014-11-05 2015-03-04 芜湖金龙模具锻造有限责任公司 一种轴承表面的阳极氧化保护方法
CN104389000B (zh) * 2014-11-05 2018-05-08 芜湖金龙模具锻造有限责任公司 一种轴承表面的阳极氧化保护方法
CN107838025A (zh) * 2016-09-20 2018-03-27 嘉义钢铁股份有限公司 筛网

Also Published As

Publication number Publication date
CN100444939C (zh) 2008-12-24

Similar Documents

Publication Publication Date Title
Petrii Electrosynthesis of nanostructures and nanomaterials
Sun et al. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template
Sulka et al. Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid
Wu et al. Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures
US20100126870A1 (en) Controlled electrodeposition of nanoparticles
Zaraska et al. Growth and complex characterization of nanoporous oxide layers on metallic tin during one-step anodic oxidation in oxalic acid at room temperature
Leontiev et al. Arrays of rhodium nanowires based on anodic alumina: Preparation and electrocatalytic activity for nitrate reduction
Sulka Introduction to anodization of metals
Chung et al. Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature
Li et al. Self-organization process of aluminum oxide during hard anodization
Rheima et al. Aluminum oxide nano porous: Synthesis, properties, and applications
CN1609283A (zh) 有序多孔阳极氧化铝模板的制备方法
Li et al. Platinum nano-flowers with controlled facet planted in titanium dioxide nanotube arrays bed and their high electro-catalytic activity
Wang et al. Fabrication of nanostructure via self-assembly of nanowires within the AAO template
ZHOU et al. Alumina nanostructures prepared by two-step anodization process
Huang et al. Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting
KR100619354B1 (ko) 양극산화알루미늄 템플레이트를 이용한 나노 입상 필터 및그 제조방법
CN104947167B (zh) 两面一致多孔阳极氧化铝纳米模板的制备方法
CN100444939C (zh) 纳米筛网及其制造方法
Zaraska et al. Synthesis of nanoporous anodic alumina by anodic oxidation of low purity aluminum substrates
Wang et al. Growth orientation control of Co nanowires fabricated by electrochemical deposition using porous alumina templates
JP4222861B2 (ja) 陽極酸化ポーラスアルミナおよびその製造方法
Zhou et al. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties
Huang et al. Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance
CN101812712B (zh) 超小孔径多孔阳极氧化铝膜的高速制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081224

Termination date: 20141209

EXPY Termination of patent right or utility model