CN1777665B - 净化液体介质的方法 - Google Patents

净化液体介质的方法 Download PDF

Info

Publication number
CN1777665B
CN1777665B CN03826241.XA CN03826241A CN1777665B CN 1777665 B CN1777665 B CN 1777665B CN 03826241 A CN03826241 A CN 03826241A CN 1777665 B CN1777665 B CN 1777665B
Authority
CN
China
Prior art keywords
sorbent material
compound
impregnated catalyst
catalyst particulate
particulate sorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN03826241.XA
Other languages
English (en)
Other versions
CN1777665A (zh
Inventor
V·M·别列祖特斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IQ Advanced Technologies Ltd.
Original Assignee
IQ ADVANCED TECHNOLOGIES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IQ ADVANCED TECHNOLOGIES Ltd filed Critical IQ ADVANCED TECHNOLOGIES Ltd
Publication of CN1777665A publication Critical patent/CN1777665A/zh
Application granted granted Critical
Publication of CN1777665B publication Critical patent/CN1777665B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/12Recovery of used adsorbent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/10Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen in the presence of metal-containing organic complexes, e.g. chelates, or cationic ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/14Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with ozone-containing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Abstract

净化液体介质的方法,包括用吸附剂吸附所述液体介质中所含的杂质、分离和除去被吸附的杂质和吸附剂的再生,其中使用浸渍了催化剂颗粒的吸附剂、通过混合液体介质与氧化剂来氧化所述杂质,吸附杂质的氧化物用颗粒催化剂浸渍的吸附来吸附,然后通过用极性溶剂洗涤浸渍催化剂颗粒的吸附剂来分离和除去所述杂质的氧化物,以及通过直接加热和/或热气体吹洗来再生所述吸附剂。

Description

净化液体介质的方法
技术领域
本发明涉及分离和除去液体中所含的杂质,即化学化合物或物质,它们在液体的存在是不希望有的。本文下面所说的液体介质是指碳氢化合物、含碳液体或水溶液。另一方面,本发明涉及浸渍催化剂的吸附剂组合物,依靠其高选择性,它们适用于从液流中分离出元素、化合物或物质。本发明的另一个方面涉及从流体流中除去杂质时使用的浸渍催化剂的吸附剂的生产方法。 
背景技术
本发明一般涉及处理污水、油类、碳氢化合物和含碳液流的处理方法,更具体地说涉及选择性地除去金属、含氮化合物、硫化氢和其他含硫化合物、芳烃化合物、多环芳烃化合物以及包括特殊的碳氢化合物的方法。这时,在这样的过程中使用浸渍了催化剂颗粒的、用于氧化所选原始物质或化合物的特殊吸附剂。 
在长时间过程中人们企图使用各种不同方法从水中和别的极性溶液中分离出碳氢化合物液体。特别是一直存在以有效和经济的方法从水介质中分离出油类或石油产品的需求。这种方法能有效地重复使用至少部分分离出来的烃类污染物。 
工业发达国家对石油产品不断的需求导致要运输愈来愈大量的石油产品,从而它们会相应泄漏到环境中。为了消除因石油产品排放到环境中造成的有害的经济和生态的影响,出现了几个指向限制污染环境的油类和石油产品排放的方法。实践证明,一般来说,所有这些方法花钱多,费力,且达不到最佳结果。 
为了避免高的费用及有时与液-液分离相关的难于克服的问题,往往使用促进碳氢化合物与水溶液分离的吸收剂。这些吸附物质吸收油类。相应地,有效的吸附剂应首先吸收碳氢化合物污染物,而不是水。换言之,为此目的的最好材料是一些既是疏水性的,又是对碳氢化合物稳定的。在推荐用于去除水中油类的吸附材料中,曾用过木屑、刨花、某些黏土、聚合材料、纤维素材料及其它东西。用于这些目的大多数材料不够有效,不可能重复使用。因此,要把 它们与吸附的石油产品一起抛弃或毁掉。 
需要特别强调的是,现有的使用类似材料的最本质的缺点之一在于有时所有准备措施的费用难以接受及吸附剂不能循环再利用。人们曾企图克服那些与用于被碳氢化合物污染的水体中的吸附材料有关的困难,使用过对碳氢化合物稳定的吸附剂,它们与普通吸附剂的区别在于把有关的液体碳氢化合物以薄膜的形式喷布在吸附颗粒的表面。相反,吸收与液体碳氢化合物被整个固体吸附剂的吸收增量有关,这一点直接取决于吸附材料结构孔隙的多少。 
为这些目的经常使用这样一些吸附材料,如细砂、黏土、无机固体化合物、聚合物或经处理过的天然纤维,例如,棉纤维、椰子壳、泥炭纤维、黄麻、毛状物,它们可以在表面由碳氢化合物稳定的材料涂盖,如橡胶或石腊以保证吸附剂的浮动性。但是,类似的有外部涂层的纤维吸附剂制备起来非常费力,制造它们需要使用很复杂的技术设备。此外,这些吸附剂不可能重复循环使用,因而使它们使用起来非常昂贵。其它吸附剂是类似的情况,例如,聚合物,大量使用可能太贵,而且,如果它们不被细菌作用而分解,则同样对环境也有有害的影响。 
在美国专利No.3891574中较详细地描述了由多孔贝壳组成的空心碳粒。得到这种碳粒一开始要用碳覆盖有芯子(核)的物质,然后经热分解除去这个核。根据所提供的数据,这个过程产生堆比重约275g/1的凝胶层,活性的内、外表面。在其他应用中,这个过程得到的材料还可用氧吸附原油。但是,除了这个材料较重外,它还有一个低的负载容量,在它与石油长时间相互作用后,仅约为自己重量的1.5倍。 
根据以上所述,本发明的主要目的是要提供一个现实和有效的方法,通过使用不太贵的、可以在重复循环中重复利用的吸附剂来从水和其它极性液体介质中分离出碳氢化合物。除上面所指的材料外,正是本发明公开了这样一个事实,即掺入了催化剂颗粒的碳,可以作为水环境中液态碳氢化合物的有效吸附剂。 
得到的包含有催化剂颗粒的碳不是大晶体形状,其尺寸大大小于天然石墨遇到的。这些有催化剂颗粒的碳材料的吸附性质一般与内表面大小和浸渍催化剂的选择性有关。 
污染水一般有很高的溶解铁含量(2价和3价铁含量)和以溶解形态存在 的一些其他主族元素和/或有过渡金属(不含2价和3价铁),例如,铜、锌、铝、锰、银、铅、镉、金、镍、砷和其它存在于工业废水中的物质。被这些金属污染的水的化学组成与污染源或水源本身有很大关系。 
采矿和矿物加工工业遇到的最重要问题之一是要提供对含硫化物的矿渣的处理和管理。在某些情况下,含有黄铁矿、白铁矿和磁黄铁矿的矿渣会产生特殊的问题,因为它们由于风化很快被氧化,以酸性水污染矿井排水。氧化程度与硫化物含量水平、地貌、细菌活性、3价铁浓度和氧的存在有关。矿井排水中的酸性水含有高浓度的铁和其它溶解的金属,酸性水的pH值是它们有过剩的酸性的标志。理想的是所有含有重金属的废水,镀锌废液、电镀废液、淬硬后的废水以及酸洗溶液和洗涤溶液都应该把其中的污染金属除去,达到它们可以排放的河流及其它水体的程度。 
为了净化被酸性性水污染的矿井排水,曾使用了2个主要方法。实施了防止污染的下列措施,即想法除去硫化物,监控细菌的作用和氧气的扩散,在硫化物颗粒上涂层及使矿渣凝聚。为了去除污染物实施了下列措施:中和,氢氧化物沉淀,与硫化物一起沉淀,吸附和去除。在净化和从矿井酸性排水中回收重金属离子时所用的经典方法曾经是用石灰中和,以使金属氢氧化物沉淀。这时,沉淀出来的氢氧化物很难过滤。金属氢氧化物是化学不稳定的,把它们置于容器中并在将来处置。 
基于硫化物沉淀的方法能利用硫化物作为固化剂并生成在化学上比氢氧化物更稳定的金属硫化物。金属硫化物很难从溶液中过滤出来,此外,在一定的条件下,当有过量的、作为沉淀剂使用的硫化钠时,在沉淀过程中常常生成有毒的硫化氢H2S气体。为了把可能的危险减少到最少并确保安全,工作时需要有密闭、带有可靠排气装置的反应釜。在以前已知的工艺中所使用的过程中,硫化物和其它含硫化合物的消耗量由于硫化物对氧的灵敏性,是非常高的。包括含硫有机化合物的金属沉淀物过滤起来比无机硫化物容易,因而促使它们目前广泛应用于废水的净化。 
但是,如果在废水流中含有大量的、净化水时须除去的金属,则使用这些有机沉淀剂往往认为经济上是不合算的。 
总的来说,现有的工艺之所以不上算是因为它们没有选择性,在这些过程中产生大量的沉淀,并要求在高pH值和高温下(60~70℃左右)时有高含量的 2价铁离子。它们需要过长的反应时间以便氧化和铁素体的形成顺利地进行。在过去工艺中使用的共沉淀过程的另一个本质性的缺点是过长的反应时间,一般2~3天,这个时间对铁素体获得磁性是必需的。只有在这个时间以后,磁性铁素体才可以借助于磁选机与铁素体的非磁性颗粒分离开。 
这样的一个事实是很明显的,即必须改进从污染水中除去金属的方法。除金属外,还希望从废水中除去金属氧化物或盐类。还有一点也是显而易见的,即如果能有效地研制出这样一个净化废水(例如酸性矿井和矿山废水)的工艺,使得最终产品或产品不仅容易从大量溶液中除去,而且有效地被回收,使净化了的水在质量方面符合标准,并可排放到自然环境中。因此,本发明不仅能解决一个而且许多的问题,因为消除了过去工艺固有的一些缺点。 
本发明提出的工艺过程能通过氧化选择性地除去和回收污染水中的大多数金属。任何一个在实践中使用了这些工艺过程的人,不仅可氧化污染水中大多数金属,而且如果污染水有氧化-还原电位,还可保持每一金属的正电位。 
从液流中除去处在悬浮状态的固体颗粒的主要方法之一是用于净化污水和液体的过滤。其中,在实施净化废水的措施时,存在悬浮状态的固体颗粒往往是最大的工艺问题。从传统方法的角度,为了降低水流中的这些颗粒的浓度和/或把它们除去,大多数使用过滤方法。这时,把滤砂器安装到下游或上游,以及广泛使用双层或混合介质过滤器,它们在使用中显示出既经济又有效。但实践证明,滤砂器和混合介质过滤器只有在悬浮状态的固体颗粒在水中浓度不高的条件下才能有效地除去它们。这些固体颗粒在经过过滤器的液流中的浓度应低于每升100~200毫克。在悬浮状态的固体颗粒浓度高于这个水平时,将会堵塞过滤层,并在其中造成压降。 
为了除去像属于有毒有机化合物类的化学物质污染物,通常使用吸附剂层,含有被吸附污染物的液流通过吸附剂层。其中,广泛使用合成树脂和碳作为吸附介质,因为它对液流中的许多有机和无机污染物有很大的选择性。这些或那些树脂都具有可装入柱装置里去的形状,使水可以通过给定的吸附介质,不需要以后把固体物质与液体分离的步骤。但是,粒状碳不可以再生,合成树脂往往被物质颗粒污染。通常,用于净化废水的相类似的粒子尺寸非常大,把液体保持在吸附剂层所需的时间为30~60分钟。为避免吸附剂层的堵塞,必须进行待净化液体的预过滤。此外,在就地再生在经济上证明是合理的以前,必 需充分使用吸附剂。例如,在定量的基础上,在就地再生证明碳吸附剂费用是合理的以前,碳利用率必需每天大于500磅。 
为了解决与经过吸附剂层的上游预过滤有关的问题,在过去的工艺中曾建议使用膨胀床或流化床方式的吸附剂层。这种操作方式能净化低固体颗粒含量的液体,例如,小于1升120毫克的悬浮固体颗粒,而对高浓度固体颗粒的液体仍需要进行过滤。甚至在净化低固体含量液体时,在可以使用膨胀床或流化床情况下,从吸附剂出来的液体流还会有很高浓度的悬浮固体颗粒。 
过去的工艺曾建议利用活性污泥工艺,使用粉状吸附剂除去净化废水时可吸附的污染物。在这时,粉状吸附剂,例如碳,直接加到有废水的曝气池中。在这些情况下,粉状碳或其它吸附剂与生物活性的污泥固体颗粒混合,结果必须使吸附剂与这些固体颗粒一起脱水和再生,这从净化的成本费用和运行***的复杂性角度,认为是不合算的。此外,使用这种方法仅导致作用不大的再净化,即除去被净化液体中的待吸附污染物。 
按照以上所述,本发明的主要目的是提供一种使用颗粒催化剂浸渍的吸附剂处理含有悬浮固体和可吸附污染物的液体的改进的和联合的方法。本发明的其它目的和优点根据下面所述的以及附后的专利权利书将会很清楚。 
与本发明有关的过去所用的工艺的另一方面是结构形状。通常,微滤料具有微孔的结构,它或者由结晶的、在化学方面相似于黏土和属于沸石一类物质的长石的硅铝酸盐组成,或者由结晶的、从包含有有机胺或季铵盐的混合物中制得的磷铝酸盐组成,或者由结晶的、从含有化学活性的二氧化硅、氧化铝和磷酸盐反应混合物经水热晶化得到的硅磷铝酸盐组成。微滤料有广泛的用途。它们可用来干燥气体和液体;用于选择性的分子分离(根据分子的大小和极性性质);离子交换剂;用作裂化、加氢裂化、歧化、烷基化、氧化、异构化、以及含氧化合物化学转化成碳氢化合物,尤其是醇或二烷基醚转化成烯烃中的催化剂;用作气相色谱中的化学载体以及在石油工业中用来除去馏分油中的正构烷烃。 
微滤料是经化学反应得到的,参加化学反应有几个化学组分。用于反应过程中的组分之一应有一个模板,虽然可以有多于1个的模板参加反应。模板参加到反应中是为了在结构中形成孔道。这种结构称为微孔结构。除去模板时,留下开口的微孔结构,在化学组合物的体积小到可放入孔道的条件下,它们就 可以进入到微孔结构。微滤料把大分子从那些可以进入分子孔结构的小分子过筛和过滤出来,从而分离开。 
微滤料特别适用于作为催化剂。作为催化剂,它们在自己微孔结构内有催化段。当取走模板时,体积小得足以进入孔道内的化学试剂流与催化段相接触,发生反应后生成产品,如果它不是太大从而可以穿过微孔结构时,它就可以经任何孔道或孔从微滤料出来。 
在大部分的催化微滤料中,孔尺寸约为2~10埃(
Figure S03826241X20060217D000061
)。 
虽然,成品吸附剂的微滤料颗粒比碳组成的颗粒硬,但它们还是可能由于在得到成品吸附剂颗粒时的化学反应过程中发生的碰撞所产生的物理应力而受到损坏。这种损坏将导致吸附剂颗粒的实际机械磨损或破碎成部分(粉末),直到它们太小而不能进行有效的重复利用。然后,把磨损的颗粒作为废物从使用的***中扔掉。在得到成品吸附剂颗粒时,还可能会得到太小而不能在反应***中随后使用的颗粒。例如,由于设备使用不正确或在生产批量吸附剂的一操作循环的开始或末了工作在不稳定工况时,在设备的壁上或底部可能生成微滤料或原始物质的团块或层。团块作为生产吸附剂过程中得到的损耗而扔掉。从经济观点扔掉磨损的吸附剂颗粒和尺寸过小的团块仍然是一个非常现实的问题。因此,很需要有一些有效回收和重复利用这些磨损颗粒和团块的方法。 
为了减少生产过程中或在使用过程中产生的含有微滤料的磨损过的颗粒的损耗,本发明推荐使用在一定尺寸的碳结构中浸渍了催化剂大颗粒的吸附剂或使用含粘结物的其它组合物。 
另外的、有不希望杂质或污染物且必须把它们除去的液流是碳氢化合物液流成含碳源液流。 
在污染物中有这样一些金属,如钒、镍、铁,以及氮、硫化合物和芳香族化合物。 
推荐的从碳氢化合物液体中除去上述污染物的这个过程称为加氢脱硫。虽然碳氢化合物液流加氢脱硫可以除去这些不希望的化合物,但可以饱和大部分(如果不是所有)包含在汽油中的烯烃。烯烃的存在大大地影响辛烷值(研究法辛烷值和马达法辛烷值)。这些烯烃由于加氢脱硫的条件而被部分饱和,这些条件对除去噻吩类化合物,例如,噻吩、苯并噻吩、烷基噻吩、烷基苯并噻吩和烷基二苯并噻吩是必须,噻吩类化合物被认为是最难除去的化合物。此外, 除去噻吩类化合物所需的加氢脱硫条件还可以饱和芳香烃化合物。 
考虑到与愈来愈增长的生产更清洁的汽车燃料必要性相关的问题,曾提出各种各样的为达到此目的和得到在指标方面与具有联邦政府委托样品相一致的汽车燃料工业化生产方案的工艺过程。然而,至今在建立有效的、经济上合理的降低裂化汽油、柴油燃料、煤油、石脑油、减压馏分油、锅炉燃料及其它碳氢化合物液体产品中污染杂质浓度水平的工艺方面未取得成就。因此,在今日依然存在进一步改进工艺的必要性。 
由上所述可得出这样的结论,即需要有这样的工艺过程,在这个过程中可以把硫除去而不氢化芳香烃化合物,如果达到这个目的,则净化碳氢化合物液流的过程将会变得更经济。 
因此,本发明的目的是提供一种最新的浸渍了催化剂颗粒的吸附剂,用于从这些液体,如裂化汽油、柴油燃料、煤油、石脑油、减压馏分油、锅炉燃料、轻瓦斯油、原油、重瓦斯油、减压瓦斯油、催化裂化轻瓦斯油、焦化瓦斯油、重油和石脑油和其它碳氢化合物液体产品中除去以上所述的杂质。 
本发明提出的第二个目的是要提供一种制造新一代、浸渍催化剂颗粒、在分离和除去以上液流中杂质所用的吸附剂的工艺。 
最后,本发明的第三个目的是要建立一个工艺***,用来从裂化汽油、柴油燃料、煤油、石脑油、减压馏分油、锅炉燃料和其它碳氢化合物液体产品中除去含硫化合物,并使烯烃和芳香烃化合物饱和减少到最小。 
根据以下所述以及本发明的权利要求书将会理解本文中所研究分析的其它方面以及本发明的目的和其它优点。 
发明概述 
本发明不仅解决以上列出的问题,而且改进了工艺,保证使它有更现代化的分离和除去杂质的方法,而且提供浸渍了催化剂、并有由单个颗粒组成的结构的最新吸附剂。在该工艺中还使用氧化;控制原料或液流的输送量;连续吸附,其目的是为了提高从液体中除去有害杂质和污染物的工艺的效率。这些与“催化剂-吸附剂”和吸附工艺有关的先进改进的目的在于使吸附净化的产品有最大限度的产率,提高它的质量及由于使用了最好的再生工艺和最好的装置,减少了处理液流所要求使用的公用工程消耗(低温和压力)。另一个必须指出的优点在于本工艺的使用不只限于碳氢化合物和含水液体,还可以用于以前使用的工艺不可能用的各种各样的液流。
最新的处理方法和本文中对过程的描述关系到净化液流所用的工艺***,其目的是为了从中除去有害的杂质和污染物。此时,待氧化的杂质或污染物对催化剂比液体中存在的其它化合物有更大的选择性。 
从以上所述可以理解,改进用于除去污染水中的金属的工艺是非常有益的。同时,最好选择性地从废水中除去金属及其氧化物或盐类。还将会理解,研究出净化污染水,例如矿井酸废水和矿山工业中所使用过的废水,从而得到最终产品或可以从溶液中取出的和有效回收的产品的工艺过程是非常有利的。这种产品或这些产品可能会有很大的需求量和/或很快找到用途。由于这样的工艺过程,在质量方面净化过的水将会满足所要求的规范和标准,可以排放到环境中去。 
在使用建议的、本文中说明的工艺过程时,达到这些及另一些目的,其结果我们得到分离碳氢化合物液体及把它们与水和其它极性溶液分开的方法。其中包括本发明有助于顺利解决与曾用来把石油产品与水溶液分开的旧方法相关的问题。用于本工艺的物质可以进行二次循环的连续使用,从而降低费用和减少有效分离污染液体所需的物质数量。此外,使用该方法时回收的碳氢化合物液体可以再处理,并根据开始规划的用途使用,因而解决了把废物排排放到环境中去的问题。 
本发明的目的还有是通过把指定的元素和化合物(杂质和污染物)氧化使它们分离和除去。尺寸为微米级的泡状氧化用气体通过液流或其它进料流。尺寸为1微米的氧化用气体泡分布在含有有效地被氧化的杂质的液流中,杂质被转化成氧化物。由于微米大小的泡,氧化用气体表面积大大增加,因而提高了氧化反应的效率。 
本工艺的主要目的是氧化指定的元素或化合物(杂质或污染物),第二个目的是同时进行金属、硫化合物、含氮化合物和芳香烃化合物与液流的分离,以达到剩余芳香烃化合物和低浓度硫和氮的最好结合。这时的工作条件在整个循环过程中从分离开始到脱除一直很温和,这时的压力接近环境压力,而在整个循环过程中温度低于80~90℃。 
以后,液流进入里面有浸渍催化剂颗粒的吸附剂固定层的反应器,与多孔的吸附剂颗粒相接解。这时,接触的总时间足以使指定的元素或化合物(杂质或污染物)被吸附剂吸附,与从液流中分离和除去指定元素或化合物的催化剂 形成弱的共价键。这导致生成杂质和污染物浓度降低的净化过的液流以及剩余下的、浸渍了催化剂的、与杂质化学结合的吸附剂。一般,净化过的液流作为具有所要求性质的、处理过的现成产品从反应器出口输出。例如,经处理过的柴油流,作为净化过的产品,将会是无色、透明的,无任何不好气味,硫化合物,如硫醇、噻吩、苯并噻吩和二苯并噻吩含量很低,含氮化合物含量降低,芳香烃化合物和多环芳香烃化合物含量较少,金属含量(钒、镍和铁)百分数不高,十六烷值较高。 
本发明的显著特点是浸渍了催化剂并用于反应器中的吸附剂为催化剂和吸附剂颗粒相互化学连接的混合物。作为催化剂用的吸附剂可以碳、二氧化硅、矾土、沸石、珍珠岩形式或者其它多孔固体吸附剂。催化剂可以是金属,碱金属或碱土金属,金属氧化物及双金属化合物(金属复合物)。例如,由沸石构成的吸附剂,沸石依靠离子交换载有特殊的催化金属——银,在接近常温下表现出优良的吸收硫化合物的特性。 
指定元素或化合物分离后,可以洗涤吸附剂,洗去极性有机或无机溶剂,恢复它的活性。由于被催化剂大颗粒浸渍的吸附剂经这样的洗涤,所有残余物与给定元素或化合物分开。经加热或热氮气干燥恢复浸渍了催化剂的吸附剂的吸收能力,准备重复使用。有机或无机极性溶剂与指定元素或化合物一起可以经蒸馏分开。 
本发明不仅对液体碳氢化合物,如油类与水溶液的分离和分开非常有益,而且可用来把任何指定元素或化合物(杂质,污染物)与碳氢化合物液体分离开。利用本发明工艺能与杂质分离的碳氢化合物液体的实例远不限于以下的清单:重油、汽油,柴油燃料,石脑油,煤油,减压馏分油,锅炉燃料,原油,烷烃蒸馏物,苯、二甲苯,甲苯,苯乙烯,烷基苯,萘,液体有机聚合物,植物油等。在这些碳氢化合物液体中存在的杂质的实例也不限于以下的清单:金属(钒、镍、铁),含氮化合物,硫化合物(硫醇、噻吩、苯并噻吩和二苯并噻吩),芳香烃化合物,多环芳香烃化合物等。 
可以变化工艺流程图,使它适应于各种不同的初始碳氢化合物流。但因为必须回收溶剂重复使用,所以原料沸腾的温度范围在很大程度上将决定具体的溶剂或溶剂组合的适合性。本发明的特点是可以有几个工艺流程图方案,制定出几个达到最大经济效益的方法。例如,根据对最终产品的要求和原料的质量, 在氧化的第一阶段可以除去较轻的部分或多数噻吩和芳香烃化合物,留下第二部分以进行下一步的氧化和分离。 
依靠选择氧化过程后反应器内降低的体积速度和分离成以上两部分,增大始流进料,包括回收溶剂和重复循环的费用之间最佳关系,达到工艺流程的最大经济效率。 
根据本发明,在自己的组分中含有重金属、硫化合物、杂质或污染物的水,任何极性含水液流,碳氢化合物或其它含硫液流可以靠它们一开始的氧化及以后的含杂质的水与浸渍了催化剂大颗粒的吸附剂相接触明显降低其中所含的以上杂质,指定元素或化合物的浓度。对本发明可提供的浸渍催化剂的吸附剂最好使用下面说明的方法。所得的有催化剂的吸附剂对从水中或极性水流中除去氧化过的指定元素或化合物是特别有效和有益的。这时,在一般与使用固定吸附层技术相关的条件下,吸附剂与含有杂质的液流或始流接触。按照本发明,使用相似条件下的这些结构,结果对从液流或始流中除去氧化过的指定元素或化合物达到出乎意料的高水平。 
在详细的发明说明中,给出较详细的、用于制备浸渍催化剂大颗粒的吸附剂的方法以及按照本发明使用分离和除去杂质用的催化剂吸附剂载体方法的特点。实践证明,与上述的现有工艺相比,使用本发明可以有巨大的、有时是未预见到的工业意义的结果。采用本发明将提高工艺的经济性,同时,与其它可供选择的方法和工艺过程相比,本方法依然是很简单的。 
具体实施方式
发明的工艺应用于除去任何指定的元素或化合物,它们可以在大多数的极性介质中、水中、其它含水液体中、碳氢化合物中、碳氢副产品或液体含碳物质中被氧化。在本工艺中使用碳、沸石、珍珠岩或其它固体和多孔吸附剂能进行氧化、分离、除去、回收和随后的净化分离的混合物,具有一系列优点,还能再生回收浸渍了催化剂颗粒的吸附剂。因此,本发明在工业中找到了运用,用来进行分离和净化的过程。该工艺的专利目的是要指出既可使用整个方法,又可组合和部分利用个别子***和本发明组成部分的实用性、新颖性和效率。 
在本节开始给出简要的关系吸附剂组分及根据组分制备它的资料。更详细的发明的描述放在单个节中。然后给出工艺本身的描述,解释工艺流程图及指出处理水和碳氢化合物相对的一些特点。
吸附剂参与下的这种吸附氧化和吸收过程的优点在于它们在正常温度下进行,为了完成自己的任务——除去杂质,不要求过度的冷却或加热。 
在液相中的吸收与气相中的吸附差别是扩散速度,它在液相中比在气相中至少慢2个数量级。在液相中组分的扩散要求在其中停留的附加时间。杂质被固体吸附剂吸收,是因为它表面上的吸引力大于把杂质保持在周围液体中的那个引力。液体吸收可以称为附着的变种,它在热力学意义上发生在能在液体中吸收杂质的固体内表面。其结果是导致相对提高进入吸收剂颗粒孔中并移动到催化剂中心的待吸收杂质的浓度,这或者是靠了因正负电性引力或范德华力的物理吸收或者是靠了因化学或共价力产生的化学吸收。 
在分离和净化氧化/吸附时对除去多少杂质作出决定和选择,是一个经济问题,取决于这两个操作的可比费用。吸收剂可以以单独的一层、几个层放入或放在几个反应器中(这里有许多方案)。必须比较液流速度或体积速度和包括回收溶剂和第二循环在内的两个分离阶段的费用,找到最佳方案。根据经济要求,这些工艺阶段可以轮流、同时或连续地进行。吸收剂可以依靠在温度30至90℃时经它们的层循环一定数量的极性有机或无机溶剂及在冷却后重复把含有指定元素或化合物的液流经过分离出溶剂的区段或蒸馏区段的办法再生。 
在本发明中使用的并在本工艺中有效地用来分离和除去杂质的吸附剂组合物,可以用如下的方法制备: 
1)混合原始组成,最好是由沸石或膨胀珍珠岩和氧化铝组成,或由碳颗粒结构组成,这样,得到类似以下任何稠度的混合物:湿混合物,浆,膏,糊等。 
2)把混合物喷布在颗粒上,最好把它喷雾干燥以生成大颗粒,粒子,球,微球等,其中最好是微球。 
3)如这里所述的,在干燥条件下干燥颗粒以便得到干的颗粒。 
4)在如这里所述的灼烧条件下灼烧干燥过的颗粒。 
5)最好用这里指出的催化剂组成浸渍灼烧过的颗粒,以得到在载体组分内浸渍催化剂的颗粒。 
6)在本文中说明的干燥条件下干燥活化的颗粒以得到浸渍了催化吸附剂的干燥颗粒; 
7)在本文中所说明的灼烧条件下灼烧干燥的活化颗粒,以得到浸渍了催 化吸附剂的灼烧了的颗粒。 
8)用合适的还原剂还原灼烧过的颗粒,以便得到包含了化合价降低的催化组分的吸附组合物,有化合价降低的催化组分的含量足以能有效地在含烃液体、水和任何极性含水液流或碳液流与吸附剂组合物接触时,按照本发明的工艺从中除去一定的指定元素或化合物。 
吸附剂最佳尺寸和颗粒的停留时间是在实际工艺杂件下实验研究的对象。 
我们不限于特定机理的描述,要指出,在氧化过程中杂质在吸附剂上发生催化转换,结果形成分子量较高的物质。例如,硫醇氧化成硫化物和/或聚硫化物。然后,分子量较高的这些硫化合物被这些浸渍了催化剂颗粒吸附剂吸收。然后,由于这些硫化合物分子量较高,在吸附剂上的物理吸收增强。作为本发明的研究对象,吸附剂得到了术语“浸渍了催化剂颗粒的吸附剂”,因为在本发明中硫化合物在吸附剂上的吸收分二步进行,即在第一阶段是被硫污染的化合物的催化氧化变化,在第二阶段是催化变化了的产品的物理吸收。 
杂质的分离和除去过程由以下阶段组成: 
1)分馏:在原介质中不同形式的杂质,在有不同沸点的馏分范围内,有各种不同的浓度,这可能是影响分离和除去阶段效率的综合函数。 
2)氧化:从原介质中以最好的方法选择杂质进行氧化分离。氧化效率愈高,留在原介质中的指定元素和化合物的含量水平愈低。 
3)分离:然后,其中有杂质的原介质进入如上所述的、含有浸渍了催化剂颗粒的吸附剂的反应器,这个吸附剂靠对指定元素和化合物高选择性吸附,因而把它们从原介质中分离出去。 
4)去除:用极性有机溶剂或无机溶剂洗涤吸附剂,从浸渍了催化剂颗粒的吸附剂去除杂质。用溶剂洗涤冲洗反应器直到从吸附剂除去期望数量的杂质。 
5)再生:浸渍了催化剂颗粒的吸附剂,然后通过加热或用热的氮气把它干燥再生。气体溶剂用真空方法从反应器里抽吸,冷却和冷凝。之后,溶剂返回到容器中重复使用。如果为这些目的使用热氮,则把它收集再次使用。 
6)再循环:被溶剂洗下来的杂质,通过蒸馏与溶剂分开。然后,分离出来的溶剂返回到溶剂贮存容器供再次使用。 
7)净化:分离出的杂质可以以极高的浓度再次输入到工艺***,通过分离任何的和理论上所有留下的原介质,达到净化到更低的体积。如果原介质为 碳氢化合物流或燃料,则杂质可作为燃料在任何一个建议的工艺过程阶段使用。 
根据本发明的分离和分开(两种东西)阶段在如下条件下进行,即(1)总的压力在整个过程保持不变并在环境压力的水平上或稍高;(2)根据所用的溶剂或几个溶剂,在氧化和分离时温度保持在70~80℃左右的低工作水平,在分开、再生和再循环阶段为40~140℃;(3)小时空速根据希望的指定元素和化合物的含量水平确定,对小流量应为2.0~3.0左右,对大流量为10.0~15.0。 
在这些条件下,浸渍了催化剂颗粒的吸附剂组合物可从原介质中分离和除去杂质。 
含有悬浮固体颗粒和待吸附污染物的液流通过吸附剂固定床,一直继续到至少吸附剂层部分被沉淀下的固体颗粒和吸收的污染物充填。之后,沉淀下的固体颗粒和充填了吸收物质的吸附剂用极性溶剂冲洗以再生吸附剂,只有在这之后才重新进行吸收操作工序和一般的连续分离。 
强化的吸附氧化伴随放出热,因为吸附质的分子稳定在吸附剂的表面。对有限数的在新原料中的杂质,液体温度的升高受一般所存在的待吸附杂质数量制约,即其它液体组分热含补偿由引起工艺过程温度提高不多的杂质产生的放热。在工艺过程保持如下的工作条件:温度约为20~90℃,压力为环境正常压力,它只是因泵压升高。例如,在20℃碳氢化合物和吸附剂相之间噻吩-二氧化物的分配系数为1,而在70℃下增加2倍。最佳的氧化温度与吸收剂组合物、噻吩和噻吩二氧化物分子组成、原始碳氢化合物的分子量分布、组分以及在很大程度上与芳香烃化合物百分含量有关。所以,必须根据实验的氧化和分离数据,把每一个始流的萃取过程最佳化。氧化可在脉冲的或无脉冲的定期搅拌下在填充塔或多层蒸馏柱内进行。这时,可以使用任何合适的单级或多级固定层。还可能有其它超出以上范围限值的数值。 
干燥蒸馏柱及经柱吹洗热气体,最好在上升气流中用氮通过吸附剂填实层、再生吸附剂固定层,从吸附剂除去溶剂。用于这种再生的气体温度可以在120℃至140℃范围之间变化,在出口压力约为8磅/英寸2(55.2千帕)时,气流速度为15毫升/分钟左右。 
蒸发出来的溶剂可以引到或用真空抽吸到冷却柱,再冷凝,收集在容器中重复使用。 
吸附剂固定层再生的可供选择的别的方法是使用具有高溶解系数和低挥 发性的第二溶剂以溶解第一溶剂。然后,将两种溶剂的混合物送到蒸馏装置分离,再循环再次使用。以后,反应柱利用加热器或隔离的壳体表面加热到40℃。蒸发的第二溶剂可从***取出或经真空泵送到冷却柱,再冷却和收集到容器重复使用。 
在本发明中所用的方法规定使用有固定层的柱式反应器,它充填了适用于上述条件的材料,轮换工作,即当一个充填了吸附材料的反应器达到自己最大吸收容量时,可以从工作***断开进行再生,而同时第二个反应器接入***过程。 
为设计考虑到吸收容器数值和尺寸的反应器,可以使用传统的工程原则。充填了浸渍催化剂颗粒的吸附剂的反应器的尺寸和容量值应与工艺***液流速度一致,而液流本身在柱中也应有必需的停留时间进行净化。由于吸附剂的多孔性,吸附剂层可能是较高的。 
分离反应柱可运行在很宽的温度、各种组分的溶剂及有不同空速液流的范围内。因此,反应柱可适用于各种组分的原料和产品的规格。 
反应过程既可在一个反应区又可在许多串联的或并联的反应区进行,与美国专利No.5730860相比,在***中使用吸附剂时有可观的优点。 
可这样设计和操作蒸馏柱,从柱底部出来的溶剂与重复循环的溶剂要求一致。得到的溶剂不必绝对纯的,可能含有少量的或痕量的其它化合物。 
注意:在沸石柱中一定数量的加热空气的热能被硅烷-沸石键吸收,从而恢复它们重复稳定吸附层的力。填充层冷却,注入来自环境中的水,重新接入***随后使用,同时,与填充层并联工作的吸附容器已经填满。 
在原料质量需要再生导致一些数量的剩余碳氢化合物积累的情况下,不大的从循环溶剂流分离出来的少量旁路流,可作为该过程燃料使用。 
因此,我们发现了在使用浸渍了催化剂颗粒的吸附剂时强化吸附氧化、随后分离和除去指定元素和化合物的方法。 
氧化过程的评述 
在本文给出的工艺方法中,在氧化阶段包括送入氧化用气体,在这种情况下使用空气、氧、臭氧、过氧化氢或其它已知可在氧化过程中使用的气体。在本发明详细说明过的氧化用气体为空气,但实际上根据愿望还可以使用其它氧化用气体。
然后,把原料混合物在反应柱的固定层中加热到希望的反应温度。这个阶段的氧化反应器可以是填充柱,1个或一串联反应器,或是其它相似结构形状的反应器,后者要充分保证与氧化用气体表面接触、最少的返混和所要求的15~30分钟停留时间,以便在氧化过程中得到希望的转化率。 
空气和氧化用气体气泡分散在氧化柱中,之后,始流中的指定元素或化合物立即氧化,生成一氧化物或二氧化物。微米大小的空气或氧化用气体的气泡在很大程度增加了在始流中氧化用气体相表面面积,因而极大地提高了氧化反应的效率。氧化剂与指定元素的比例可以根据化合物的性质和化合物的化学活性、产品的规格、工作温度及选择的催化剂变化。反应混合物可以在一个或两个液相中,这取决于所用氧化剂的数量和类型。氧化过程中反应温度应保持在80℃的水平上,使杂质定量地变化成氧化的化合物。随着氧化反应的结束,始流继续流向反应柱的固定层以便使氧化过的指定元素或化合物吸附。假设,在氧化反应过程中完全消耗掉全部空气或氧化用气体。如果不这样,多余的空气或氧化用气体或者可以重新送入氧化柱,或者排放到出口。 
必须指出,推荐有催化剂颗粒的吸附剂特别适用于有机分子的氧化反应,这是因为它们具有良好的吸附性质,从而可能为氧化反应保持足够的停留时间。使用了有催化剂颗粒的吸附剂,氧化反应也可在液相中实现,方法是把氧化的指定元素或化合物混合物在有固定层的反应器中通过有催化剂颗粒的吸附剂。 
有关在本发明中使用的溶剂的评述 
本发明中使用的溶剂混合物应:容易回收,具有重复使用的能力,有化学稳定性,价格低,低毒性和高极性。溶剂混合物还应对与原料液流的反应是惰性的。 
对本发明工艺合适的有这样的有机和无机溶剂,如芳香烃化合物、卤代芳香烃化合物、有机氯代化合物、酮和醇、例如甲苯、二氯苯、二氯甲烷、二氯乙烷、丙酮、乙醇、甲醇等。 
在溶剂分离或萃取阶段,溶剂含量约为80~90%,杂质10~20%左右。可用蒸馏把溶剂与杂质分离开。从经济观点选择该过程的设计方案,它取决于这样一些指标,如最初的原料特性、企业的设计能力、溶剂的选择、沸点、相密度差别,这些对有足够实际经验的企业工作人员来讲是显而易见的。 
溶剂重要的优势是它与氧化反应的相容性。此外,如果这是必须的,则一 个或几个组分的溶剂在该过程中可作为氧化反应中间试剂参加。这种组分的例子是乙酸和它的同系物,它们与过氧化氢生成过氧酸中间氧化物。高萃取选择性、极性、溶解系数、使用的安全性、工艺相容性和低价是在选择工业用溶剂时的主要指标。 
在工艺设计中可作一些修改,使它对碳氢原料为经济最佳化,这点具有工作经验的设计-工艺人员都可做到。例如,根据对最终产品和原料要求,在分离的第一阶段可以除去较轻的部分,而其它部分留在下游氧化和分离。通过选择液流速度或空速和两个分离(包括溶剂回收和重复循环阶段)费用之间的最佳比例关系达到最佳设计。 
对工艺流程图可以调整并使之适用于不同的原料液流。但是,因为了重复循环分离溶剂的必要性,原料沸腾限值在很大程度上决定了具体溶剂组分的适合性。工艺过程最佳化的另一实例是为了溶剂回收同时进行两个分离过程的可能性。在这个过程中大大地降低了复杂程度,因为部分的设备可省去。 
溶剂回收后,根据碳氢化合物原料的特性,回收的萃取物大约由10~25%含硫化合物、10~30%的脂肪烃化合物组成,其余部分为芳香烃化合物。 
水净化过程的评述 
对本发明预见到的大多数情况是其中固体物质和待吸收的杂质是在水中,例如,城市公用水或工业废水的净化,最优选使用碳作为吸附剂,它可以是粉末、颗粒或微球形状。在净化其它类型水时,吸附剂可以是沸石,膨胀珍珠岩或其它多孔结构的固体吸附体。 
按本发明工艺待处理净化的水,一般被金属铁、铁氧化物和/或含2价铁或3价铁盐形式的铁污染。此外,在这些水的组分中还可以有非2价铁、3价铁的金属,金属氧化物和/或铜、锌、铝、锰、银、铅、镉、金、镍、砷等以及镧系和锕系金属的盐。因此,如在本发明工艺所指出那样,在任何阶段金属的氧化都包括金属和它的氧化物及盐的分离。根据本发明,污染的水应含有金属,从中可以得到氧化物。因此,污染水应含有任何一个由Zn,Mn,Mg,Cu,Ni,Cd,Pb等的组合,和/或它们的氧化物和盐,目的是上述金属可以被氧化和分离。在大多数情况下,在净化用过的和废水时,这些金属称为“重”金属。这是过渡族金属,有毒,在它们进入河流、湖泊和其它自然水体时,对环境带来严重的损害。但是,从原介质分离时可回收的金属不仅仅限于“重金属”类。在金 属分离阶段过程中,往污染水中至少加入一种氧化剂,使水的氧化-还原电位向更正的方向增加来转化金属。例如,水中存在的的铁将转化为含3价铁的离子,以这种形态从水中沉淀出来。在用吸附剂分离时,金属沉淀从水中除去。在有些情况下,往往要求选择性地从污染水中除去和回收具有价值的和经重新熔炼可出售的金属。 
在生产用于净化水的吸附剂中所用的固体载体的直径尺寸,一般可从微米或几十分之一毫米到几个毫米之间变化。尺寸较大的吸附剂颗粒的优点是它们确保较小的水流阻力及较少堵塞。缺点是较小的单位体积的表面面积,所以,在给定尺寸的柱子中可以填充较小的表面层。从本发明的上下文看某些大的吸附剂的附加限制是层流化所需的移动力随吸附剂颗粒尺寸增加而增大(对于一定介质密度)。根据具体的固体载体情况,不断增长的大颗粒剪切力可以使它表面涂层损坏。 
本发明工艺主要适用于从极性介质或水中除去任何碳氢化合物液体。如上所述,使用浸渍了催化剂颗粒的吸附剂能成功地回收、然后净化分离出的碳氢化合物液体以及再生浸渍了催化剂的吸附剂。因此,本发明在生产中的分离和净化过程和实验室装置上有广泛的用途。然而,由于缺少类似的可供选择的其它方法,预计本发明会在这样的重要领域内,如从水介质中提取污染的碳氢化合物找到自己的用途。但是,它的使用领域不限于此。 
经过催化沸石吸附剂的污染水流的速度可在每分钟0.05-0.2层体积范围内。最优选的污染水流的速度为每分钟约0.1层体积,这可以与在线的正常净化速度相比。基于BTEX关于污染水输入和通过催化沸石吸附剂的液流速度信息的经验数据及简单的试验帮助确定充分使用由催化剂颗粒组成的沸石吸附剂容量直到苯或烷基苯穿透所需的时间周期。可以进行这个液流的分析,从而可帮助实施对过程的自动监测。 
碳氢化合物杂质分离过程的评述 
在本发明中提出的提高碳氢化合物质量的方法可用作或者是净化碳氢化合物的单个过程,或者与现有的加氢处理方法结合。其中,在使用本发明时,加氢处理后除去在加氢处理后留下的芳香烃化合物,从而提高柴油燃料的十六烷值。 
例如,在碳氢化合物原料中存在的杂质可以包含有杂原子的化合物,例如 含氮、氧和硫的化合物。 
含硫化合物包括,例如,脂肪烃的、环烃的、芳香烃的硫醇,硫化物(如硫化氢,羰基硫化物),二硫化物(如二硫化碳)和多硫化物,噻吩及其更高级的同系物和类似物以及苯并噻吩和二苯并噻吩。其它杂质可以是由含氮化合物构成的。碳氢化合物原料的特点是杂原子杂质中有极性原子,它们便于选择性地吸收。 
对适合于本发明的碳氢化合物混合物,原料和原液流,副产品,重碳氢化合物和含碳液体原料,而且不仅仅它们,可以用下列术语来定义:“汽油”,“裂化汽油”,“柴油燃料”,“重油”。用术语“汽油”定义在温度从30℃开始到205℃沸腾的碳氢化合物混合物以及它们的任何馏分。这些汽油的实例可以是石油加工厂里的碳氢化合物液流,即石脑油(以及直接蒸馏得到的石脑油),炼焦石脑油,催化汽油,减粘石脑油,烷基化产物,异构化产物,重整产品等以及与它们的组合,虽然这是远不完整的名单。用术语“裂化汽油”定义在温度从38℃开始到205℃下沸腾的碳氢化合物混合物以及它们的任何馏分。它们或是热过程或催化过程的产物,由于这些过程大分子碳氢化合物裂解成较小分子。合适的热过程的实例包括但限于下面的:焦化,热裂化,减粘裂化等以及它们的组合。合适的催化裂化过程可以是(但不仅仅是)流化催化裂化,重油裂化等以及它们的组合。因此,裂化汽油的实例可以是(虽然不仅仅是)焦化汽油、热裂化汽油、减粘裂化汽油、流化催化裂化汽油、重油裂化汽油等和它们的组合。这里使用的术语“柴油燃料”表示由在温度从150℃到近370℃下沸腾的碳氢化合物组成的液体或它们任何的馏分。这些碳氢化合物液流包括轻循环油、煤油、喷气燃料、直馏柴油燃料、加氢处理柴油燃料。 
使用的术语“重油”表示由在温度约为275℃和更高时沸腾的碳氢化合物混合物组成的液体或它们的馏分。这些碳氢化合物液流包括锅炉燃料、沥青、铺路油和渣油。 
在某些情况下,裂化汽油在除去含硫化合物以前分馏和/或加氢处理,虽然它在本发明的方法中用作含烃的流体。 
在本发明中具有有低化合价的催化剂组成的浸渍了催化剂颗粒的吸附剂组合物是有能力参加到与硫化合物化学反应和/或物理作用的组分。吸附剂最好还从裂化汽油中除去二烯烃和其它生成胶质的化合物。
浸渍催化剂颗粒的吸附剂结构 
吸附剂载体结构 
催化剂载体可以是碳、沸石、膨胀珍珠岩或其它任何的多孔结构的固体吸附剂。催化剂浸渍到载体设计好的结构范围内。载体表面面积、载体孔大小、在载体同心性中心方向的催化剂四周的孔密度,所有这些在构成载体结构中都是同一程度上的重要因素。通常表面面积在约500到2500m2/g之间变化。孔大小在5到100埃之间,孔密度沿到载体中心方向增加。最佳化的载体将有最大表面面积(2500m2/g),向着载体外部的最大孔尺寸为100埃,在载体有结合的催化剂的中心方向保持这尺寸。载体最佳化的原则是要使所有参数达到极值,同时不要失去结构的完好性。作为催化剂可以是金属,碱金属、碱土金属,金属氧化物,双金属组合物金属组合物)。 
在适用于作为本发明中所述的催化剂微粒载体的非晶体碳材料中,有已知名为“葱碳”的产品或者要不然就是微球形碳结构物。它们的结构类似直径100埃或大一点的葱结构,它们牢牢地掺入到四周的碳中,是灵敏的催化剂浸渍中心或表面区域。 
就整个而言,浸渍催化剂的碳吸附剂化合物是把额外的原子或分子掺入到初始结构中形成的,而同时在这种情况下不破坏原材料的化学键。 
石墨中的碳原子位于六面体晶格的结点,由于较强的共价键保持在原位上。六面体晶格则相反,彼此间置换,靠较弱的范德华力保持在原位。晶格与许多断裂之间较低的键能使石墨粒子容易感受催化剂渗入。为了生产浸渍催化剂颗粒的碳吸附剂,石墨粉在气体或液体试剂存在下加热处理。开始实际浸渍的压力与石墨极性和结构无秩序有关。所以,可以把颗粒尺寸增大到开始时的100倍以上。 
在本发明中可以使用的沸石中,合成的八面沸石结构内,钠阳离子被催化剂,优选是被Zn,Ag,Cu,Ni,Co和Sn或它们的组合置换,从而增加合成的八面沸石对一定的指定元素和化合物的吸附能力1.5~3.0倍。还要指出,基于合成八面沸石的催化剂吸附剂甚至在很低的指定元素和组成的浓度下也增加吸附能力,甚至在低于1ppm时。这样高的除去指定元素和化合物的能力结果得到更高的净化原料的水平。适用的沸石应有较高的二氧化硅与氧化铝的比例,孔直径尺寸大于10埃。在合成的沸石中适合用的有,X,Y,L,ZK-4,ZK-5,E, H,J,M,Q,T,Z,α和β,ZSM和ω沸石。优选是这样一些八面沸石,沸石Y和沸石X,特别是那些孔直径大于10埃的沸石。例如,沸石Y和X的孔尺寸约为13埃,即大到足以使指定元素和化合物的分子进入沸石孔,而较大的转化的(被氧化的)的指定元素的化合物的分子从孔中出来。 
本发明的特点是在八面沸石结构中催化剂离子的离子交换的合适范围约为50~75%。在小于50~75%置换水平时,指定元素和化合物的污染物转化效率较低。因此,离子交换水平50%到75%的八面沸石的催化剂形态具有吸附一定量指定元素和化合物的能力,从而保证从液流中吸附这些化合物的高水平。 
优选,在八面沸石结构中留下的离子是碱和/或碱土金属:相应为25~50%。希望它是这样一些碱或碱土金属:钾、钠、钙和镁。必须提出,该催化剂吸附指定元素和化合物是可逆的。与金属氧化物,如氧化锌和氧化锰(相应Zn,Ag,Cu,Ni,Co,Sn)或它们的组合被其它沸石转化相反,八面沸石X和Y吸附大量的指定元素和化合物是靠物理吸附。这些催化剂和双金属组合可用极性的有机或无机溶剂洗涤脱附指定的元素和化合物。因此,曾发现,这些浸渍催化剂的吸附剂可以用作具有高吸附指定元素和化合物能力的可再生吸附剂。 
这里所用的术语“珍珠岩”是氧化硅火山岩石的岩石学名称,这种岩石是在自然条件下形成的,金世界到处可见。使它不像其它火山矿物质的显著特点是在把它加热到一定温度,它具有把自己原来的体积膨胀增加4~20倍的能力。在加热到高于815~875℃时,由于有与粗珍珠岩相结合的水存在,磨碎的珍珠岩就膨胀。结合的水在加热过程中汽化,在由于加热软化的玻璃状的结构中产生大量微小的气泡。这些玻璃中小的气泡使珍珠岩重量减轻。珍珠岩的重量可以达到每立方英尺不超过2.0磅(32kg/m3)。 
可以在本发明中使用的珍珠岩,一般在吸附剂载体组合物中的量为15到30%(重量)。在制备本发明中这类吸附组合物时,一般,以相应的比例,用任何一个合适的方法或用保证载体组成密切混合、能产生非常均匀的由氧化锌、氧化锡、珍珠岩和氧化铝组成的结构方法,把载体组成化合物,氧化锌、氧化锡、珍珠岩和氧化铝混合制备载体组合物。为了使这些组分分散,可以使用把它们混合的任何手段,例如:混合滚筒,固定离心机,定期和连续工作的混合器,冲击混合器等。 
结果,产生能从极性水溶液、碳氢化合物、碳氢化合物副产品和其它含碳 液体化合物中吸附或吸收指定的元素和化合物,过滤除去由颗粒组成的材料的吸附剂物质。本发明保证获得浸渍催化剂颗粒的耐磨损的吸附剂,它在一般遇到的在吸附或吸收指定元素或化合物之后吸附剂物质进行再生的条件时,依然保持稳定。 
尺寸较小的吸附剂颗粒甚至在变化了的操作过程条件下,增强原料的传热和传质。 
尺寸较小的颗粒比大的较难破坏,因为小颗粒较少损坏、损伤或断裂。一定尺寸的多孔颗粒比相同尺寸的非多孔颗粒更有弹性,较少龟裂。 
较小颗粒的缺点是对变化了的条件(液流类型、出口温度和吸附剂饱和率)要求横截面较小的液流。这个要求由较大直在对一定层高需要较多吸附剂藏量来补偿。增加层高可以补偿有较小细粒的缺点。 
如果浸渍催化剂颗粒的吸附剂没有这些独特的物理特性,就不可能得到本发明具有的那些优点。其它材料不可能把浸渍含碳催化剂的吸附剂低的体积密度与它的高吸附能力、低的从原料的制备费用和高的吸收能力结合在一起。由于碳在以前就得到使用,设计了几个可以有效地用在本发明中的这些材料的低成本制造方法。大多数这些制造过程与碳作为原始物质使用有关。 
浸渍催化剂颗粒的吸附剂的制造 
可用任何适合的方法将催化剂组分加到灼烧的优选喷雾干燥的吸附剂结构中,所述的方法用于将催化剂组分加到这样的基材中,例如干燥和灼烧的颗粒中,得到催化剂浸渍的吸附剂组合物。这种组合物可在任何适用的条件下干燥,在灼烧条件下灼热,最终生成干燥的、灼烧过的浸渍活化催化剂颗粒的吸附剂。然后,干燥、灼烧的活化颗粒用还原剂进行还原,优选用氢气,以保证生成符合本发明的吸附剂组合物。为了加入催化剂组分,可以使用这样一些方法,如浸渍、喷射及其组合。 
催化剂金属 
在吸附剂组合物中可以通过用含有所选双金属催化剂的金属、金属氧化物或含金属化合物的水溶液或有机溶液浸渍混合物的方法将金属、金属氧化物或含金属的化合物加到组合物中。 
含10到1000个原子的金属颗粒能生成本发明催化剂特有的弱的共价键。在有较大尺寸的金属颗粒时,化学键强度降低。随着金属颗粒尺寸增加,最终 化学键强度降到这样的一个量,对给定尺寸的金属颗粒它的数值比一般碳载体的化学键强度不再重要。 
在本发明中术语“催化剂”理解为由一种金属或几种金属、金属氧化物或金属氧化物前体生成的催化剂混合物。对此选择如下的金属:钴,镍,铁,锰,锌,铜,钼,银,锡,钒,钨,锑,它们的双金属催化组合物大大地降低了价态,而且催化剂以有效地保证从原始介质除去指定元素和化合物的量存在。在本发明的上下文中低价金属理解为处在零价、一价和二价状态的金属。双金属催化剂组合物有独特的、对这里描述的所发明的吸附剂化学重要的物理和化学性质。这些双金属催化剂组合物是通过直接交换或溶解金属原子与结晶结构中的溶剂-金属的原子相互交换形成的。存在三个有利于形成双金属催化键的基本因素:(1)这两个组分的负电性相同;(2)两种元素的原子半径彼此间应在20%内;(3)两相的晶体结构应相同。优选本发明的吸附剂组合物中使用的催化金属(以及如元素金属和金属氧化物)至少满足上述三个要求中的两个。希望化合价低的催化剂组分是还原的镍、钴、银、铜、锡、锌或双金属组合物。化合价低的催化剂组分的数量一般应在组合物总量的15~40%的范围内。如果在催化组成中有双金属催化化合物,则产生这种化合物的两种金属的比例应约为1∶10至10∶1。在实现本发明的这个方案中,催化组分是由重量比约为1∶1的银和铜、重量比约为1∶1的镍和钴、或者重量比约为2∶1的锌和锡构成的双金属催化化合物。 
为了用催化剂颗粒浸渍,优选使用催化组分的水溶液。把以金属盐,如金属氯化物、金属硝酸盐、金属硫酸盐及其组合形态的含金属化合物溶解在诸如水、醇类、酯类、醚类、酮类及其组合的溶剂中,结果得到进入生成的水溶液中的、希望的浸渍溶液。必须使金属催化组分与这种水溶液的水介质的重量比在2.0∶1到2.5∶1范围内。 
在灼烧过的吸附剂颗粒或吸附载体浸渍催化组分后,结果得到的组合物首先在所要求的条件下干燥,然后灼烧。其结果是得到干燥过的灼烧催化吸附剂颗粒,利用合适的还原剂,优选是氢气进行还原,目的是要得到在自己的组分中有化合价低的、最好是零的催化组分的组合物。这种零化合价的催化组分能从原始的液态介质中除去指定的元素或化合物。 
在载体组分中可以或者在干燥和灼烧前,或者在最初干燥和灼烧后用含有 元素金属、金属氧化物或含金属的、所选催化组成的水或有机溶液浸渍干燥的和灼烧过的载体颗粒办法,添加双金属催化化合物。 
组成加入的最好方法是浸渍。为此,使用任何标准的浸渍含水材料(即材料的孔完全被加入元素的溶液饱和)的方法。把有希望浓度的催化组分浸渍溶液浸渍吸附载体颗粒,然后可进行干燥和灼烧,之后,用还原剂,如氢气进行还原。浸渍溶液可以是任何水溶液,用预见到完全浸渍载体颗粒的数量来浸渍,从而可以得到相应数量的催化剂组分,保证在其用还原剂还原后得到一定数量的、足以可用来从原始介质中除去指定元素和化合物的还原催化组分,条件是这种液体是按照本发明的工艺进行净化的。 
为了制备喷雾干燥的吸附材料,催化组分可以在其喷雾干燥后作为起始混合物组分加到吸附材料中,或者可以在最初干燥和灼烧原始混合物后加入。如果催化组分加到干燥过的吸附材料是在经喷雾干燥和灼烧之后,已经干燥过的吸附材料应二次干燥和灼烧。第二次干燥应在温度90℃到300℃下进行。第二次干燥所需的时间周期在1.5到4小时范围内,最好,干燥过程在大气压力下进行。喷雾干燥后吸附材料进行灼烧,最好在有氧或空气存在的氧化气氛中,在所要求的条件下进行。 
可以使用任何已知的干燥方法,例如,用空气、热及其类似手段或它们的组合干燥。对灼烧条件预计把温度保持在480℃到约780℃范围内,绝对压力保持在约7磅/英寸2到150磅/英寸2,时间周期为约2到15小时。 
在一个优选实施方案中,为干燥浸渍催化剂颗粒的吸附剂,把吸附剂加热到15℃到150℃,温度取决于洗涤吸附剂所用的极性溶剂的蒸气压力。 
对于颗粒载体的浸渍,可以使用所选金属的溶液,它们是由金属本身、金属氧化物或其前体制备。这样的浸渍可分阶段进行,之后,把载体干燥,或者在向载体加入第二金属组分前进行干燥和灼烧。 
在用相应的双金属催化剂浸渍组合物之后,结果所得到的浸渍大颗粒在上述条件下,在有还原剂优选是氢气存在下进行还原前,干燥和灼烧。 
在双金属催化剂加到载体颗粒后,金属的化合价可通过干燥所得到的组合物、之后进行灼烧、最后用合适的还原剂最好是氢气还原的方法来降低,目的是为了最终得到含有化合价大大降低的、其数量足以保证从原始介质中除去指定元素和化合物的组合物。 
如果希望,双金属催化剂组分可单独加到载体,而不是通过共同的浸渍的办法。
最终得到的产品是吸附剂组合物,能从极性水溶液、碳氢化合物、碳氢化合物副产品或其它含碳液体基质中吸附或吸收指定元素或化合物和过滤除去材料粒子。本发明能得到耐磨损的、浸渍催化剂颗粒的吸附剂,在实践中一般遇到的条件下,即当吸附剂物质在吸附或吸收杂质后进行再生时,吸附剂依然是稳定的。 
碳的评述 
得到非结构性碳的最好的方法是在密闭容器中蒸发纯石墨,容器中至少有2个电极和惰性气氛来生产蒸发的组合物。必须快速冷却蒸气,使组合物沉积在容器和/或电极的表面,然后用溶剂萃取的方法除去组合物中的任何杂质。 
本发明中所说的含金属的催化剂的优良催化性质解释为所有催化活化的材料都固定在本发明工艺过程氧化吸附部分中所用的催化吸附剂颗粒的表面,因此,参加反应的被氧化组分是极容易接近的。相反,在有浸渍催化剂颗粒的吸附剂碳化合物的情况下,大部分催化活化的金属是在浸渍碳吸附剂的催化剂大颗粒的内部,这相应地提高了参加反应的被催化组分的选择性。按照本发明,与普通的碳吸附剂相比,含金属的催化剂的卓越的稳定性解释为与金属或双金属组合物生成的弱的共价键。 
本发明特别有趣方面涉及可以在化学结合的金属的催化性质中得到的质的变化。可以显示出,在本发明说明的***中所包含的金属颗粒的结构性质很明显地区别于普通碳吸附剂***的性质。这些结构上的差别解释为金属颗粒与所说的碳载体***之间性质上不同的相互吸引力。但是,金属粒子中的结构差别不仅仅关系到它们的几何性质;假定,在电子结构中也有差别,其结果是在金属表面出现活性中心,据认为这是多相催化反应的决定因素。 
本发明另外的研究目标是生产其它催化剂的方法。按照本发明中使用的方法,碳利用电弧在非氧化气氛中蒸发,电弧是在至少2个石墨电极之间在真空装置中点火的。在这个过程中一个电极①在压力100Pa或更小的真空装置中用交流或直流电流工作,真空装置壁冷却,产品沉淀在冷却壁上,或②在压力1至100kPa、电弧长度0.1至20mm下用直流电工作。这种情况下的产品收集在与电源负极相连接的电极上或③在压力1至100Pa、电弧长度0.1至20mm下用交流电工作,产品积聚在碳电极上。 
按照实现本发明的方案之一,作为选择如以上所建议的那样,①,②,③ 产品可以与金属、金属氧化物、低价化合物或催化活化的金属组合物反应。 
使用的石墨应尽可能纯。最好在隋性气体的气氛中工作,最可取的是氦或氩或者是氦与氩的混合物。 
如果非结构性碳因方案①得到,则合适的是把真空装置的壁用水冷却。但是,也可以使用其它方法或冷却器。为了准备得到非结构性碳,使用两个碳电极也是有利的,因为有这样装备的装置在市场上出售。但是,对推荐的方法还可使用改进的装有2个以上电极的电弧设备。 
碳与金属化合物的反应最好在没有空气时进行,这时原始的碳在可溶解金属化合物的溶剂中呈悬浮状态。在温度提高时工作是有利的,优选在溶剂回流的温度下。在这些条件下,反应一般进行15~25小时。如果载体材料含有某些杂质,则它们必须在进入反应前除去,优选用合适的有机溶剂通过萃取除去。 
碳与金属的反应温度限值是在溶剂凝结温度和它的沸点之间。溶剂的沸点因使用高压可稍稍高一点。 
在按照本发明工艺制造浸渍催化剂颗粒的碳吸附剂过程中,在以前生成的浸渍碳化合物层中温度升高。以前的文献中也曾描述碳氧化和膨胀的过程,任何一个碳材料制造方面的专家都是熟悉的。在氧化溶液有足够数量把颗粒物质分散为悬浮状态和确保有效的浸渍的条件下,氧化溶液的体积不是那样重要。在大规模的工业生产中可以需要较大的体积和较长的时间进行混合。 
有时,为了加快氧化过程,可把温度提高到50~100℃水平。在形成浸渍需要催化剂的吸附剂后,把吸附剂颗粒仔细地在水中洗涤,然后快速加热到约1000℃温度。这种最终导致进一步膨胀的加热一般是在电炉中进行的,这时可得到大量的膨胀颗粒。 
根据所用的制造工艺过程,浸渍催化剂的吸附剂的堆密度可以改变。这些性质在它们与浸渍催化剂颗粒的吸附剂吸附性质有关时是非常重要的。就是说,堆密度愈低,比面积愈高,因此,对指定元素和化合物的吸收容量愈高。与其它浸渍催化剂颗粒的化合物相似,如上面所提到那样,这些浸渍碳的吸附剂颗粒,对温度、老化和许多腐蚀性介质是稳定的。如果浸渍催化剂颗粒的吸附剂没有这些独特的物理特性,就不可能达到本发明有的那些许多的优点。其它材料不能把浸渗催化剂的吸附剂的低堆密度与它的高吸附容量、低的从现成材料制造的费用、高的吸收容量结合在一起。由于碳很早就被使用,曾研究出了几 个不贵的生产可应于本发明的材料的方法,这些工艺中的大多数都是基于使用不贵的碳作为原始材料。 
有关沸石的评述 
为了在本发明中把沸石用作吸附剂,按照离子交换方法,必须使它起到下面列出的一种或更多种金属的载体作用:银,铜,锌,锡,钴和镍。就是说,银、铜的化合物等溶解在水中,得到使用时发生离子交换的水溶液。金属化合物应与沸石阳离子交换离子,因此,这应该是能溶解在水中和在水溶液中作为金属离子存在的化合物。该水溶液与沸石相接触,按照包括(1)混合过程、(2)浸渍过程和(3)排出过程在内的离子交换通则,沸石的阳离子与金属离子发生交换。之后,沸石也用水洗净,按照本发明的工艺干燥得到吸附剂。尽管沸石在干燥后可以灼燃,但这往往是不需要的。 
为了得到最终的催化剂吸附剂,沸石粉然后与粘合剂混合。作为粘合剂可以用一般的矿物或一些合成材料,如黏土(高岭石、膨润土、蒙脱石、活性白土、绿土及其它),二氧化硅,氧化铝,氢氧化铝,三水氧化铝,硅酸铝,水泥及其它。 
把混合物仔细混合,用占约18~35%的水研磨,以生成糊膏,然成形成颗粒、小球、微球等。然后,产品用去离子水清洗除去多余的离子,干燥,在温度约250℃~550℃下灼烧。 
按照本发明,催化剂吸附剂可保证在大规模工业生产过程中更好地和更可靠地保护好催化剂。 
一般,沸石的二氧化硅与氧化铝的克分子比是2左右,孔的平均直径为3至15埃。一般,沸石还含有诸如碱金属钠和/或钾的阳离子和/或碱土金属镁和/或钙的阳离子。为了提高沸石的催化活性,要求把晶体沸石的碱金属含量降到小于约0.5%(重量)。从实践中知道,降低碱金属含量可通过交换成元素周期表中VIII族至IIB副族中的一种或更多的阳离子来实现。 
有关珍珠岩的评述 
制备可用于分离和除去过程的本发明珍珠岩吸附剂组合物的工艺包括以面几个阶段: 
(1)把载体组分混合成结果可得到在稠度方面像有水的物质、面团、膏、糊及其类似物或它们的组合物;
(2)把混合物分布成粒状,最好使用喷雾干燥得到形状为粒子、小球,微球及其类似物的大颗粒,但优选是微球。 
(3)在如上所述的要求条件下干燥颗粒,生成干燥过的颗粒; 
(4)在如上所述的要求条件下灼烧干燥颗粒,生成灼烧过的颗粒; 
(5)优选用浸渍的方法把催化组分掺入到灼烧过的颗粒中,生成浸渍催化剂的吸附剂; 
(6)在如上所述的要求条件下干燥吸附剂颗粒,生成干燥过的、浸渍了催化剂的吸附剂; 
(7)在如上所述的要求条件下灼烧干燥过的吸附剂颗粒,生成灼烧过的、浸渍催化剂的吸附剂;最后 
(8)用合适的还原剂还原灼烧过的、浸渍了催化剂颗粒的吸附剂,得到含化合价降低的催化组分的吸附剂组合物,在组合物中催化剂组分的量足以在按照本发明方法在含有指定元素和化合物的液体与吸附混合物接触时能有效地从原始介质中除去这些指定的元素和化合物。 
在珍珠岩选择用作吸附剂时,作为基础载体中氧化铝组分,可以使用合适的、具有与帮助混合物颗粒彼此粘合的水泥性质相似性质的这种氧化物组分。在这种情况下更优选是氧化铝,但也可以使用胶溶了的氧化铝、胶体氧化铝溶液以及经氢氧化铝脱水得到的该氧化物组成。 
载体的所有组分混合成得到的混合物在稠度方面像是含水的物质、面团、膏、糊等。然后使生成的混合物颗粒具有下列形态:这可以是粒子、小球或微球。例如,如果结果得到的混合物是含水的物质,则可以把它增稠,在上面所述的干燥条件下干燥,在上面所述的灼烧条件下灼烧,然后进行造型或造粒,使干燥过的、灼烧过的混合物喷布成颗粒,最终生成微球。以及,例如,如果载体组分混合物最终有面团和膏的稠度,则可把它造型,喷布成粒子。结果所得到的粒子在如上所述的干燥条件下干燥,然后在灼烧条件下灼烧。更理想的混合物稠度是浆液,因为在这种情况下是用喷雾浆液的干燥方法达到获得颗粒,最终生成尺寸约为10至500微米范围的微球。然后,在如上所述的干燥条件下干燥、在灼烧条件下灼烧这些微球。 
如果为了生成颗粒使用喷雾干燥的方法,则可以使用分散组分,它可以是任何合适的化合物,如果在混合物按外形像浆液的情况下,这些混合物可用喷 雾干燥方法干燥。其中,这些分散组分用来防止固体粒子在液体介质中沉积、沉淀、沉降、积聚、附着、结块。 
为获得这些吸附剂组合物所用的二氧化硅或者可以直接为二氧化硅形态,或者为一个或多个含硅化合物形态。在本发明的吸附剂组合物中可以使用任何合适类型的二氧化硅。这些类型的实例可以是硅藻土、硅质岩、二氧化硅胶体、火焰水解二氧化硅、水解二氧化硅、硅胶、沉淀二氧化硅,但优选是硅藻土。此外,也可以使用能转化成二氧化硅的含硅化合物,如硅酸、硅酸钠和硅酸铵。优选使二氧化硅呈硅藻土形态。一般,在吸附剂组合物中存在的二氧化硅的量在约20%(重量)到约60%(重量),其中重量百分数为二氧化硅的含量,而100%为吸附剂组合物的总重。一般,吸附剂混合物中氧化铝的含量在约5.0%(重量)到约20%(重量),其中重量百分数表示氧化铝的百分含量,而100%为吸附剂混合物的总重量。 
沸石和珍珠岩的使用是最佳和最理想的,特别是在吸附过程氧化阶段的吸附性质要求特别的、或由指定元素或组成、或原始介质决定的吸附性质的情况下。 
这样,吸附剂,改进了的制备这种吸附剂的方法以及指定元素和化合物能顺利地从污染的水流中、碳氢液体介质或其它原始形态的原料和其它含碳液体中提取出来或除去所依赖的工艺条件是本发明的成果。必须指出,本发明提出的所有目的和问题都被解决,而它的优点详细地叙述在上面。 
按照这些,所有上述的方法,它们的特性、特点和实现的手段应在实践中使用,不应只限于上面所指出的那些方案。虽然基于具体实例描述了本发明,但这决不意味着本发明就限于那些。应理解和显而易见的事实是本发明可进行一些改造或重组,它有许多可供选择的方法、变通方案,它的一些部分、单元和章节可被那些在本工艺中有实际经验和遵守这些说明的人作变更或在工作中补充,同时,不脱离本发明意图和超出其范围。由此得出结论:本发明包括所有可能的、下述权利要求适用的可供选择的方法、变通方案和方案及其等价替代。 
为在整个范围内保护自己的发明,发明人以本文件申请自己遵守等价物(等价替代)原则的意图。

Claims (45)

1.净化碳氢化合物液体介质的方法,包括用浸渍催化剂颗粒的吸附剂氧化和吸附所述液体介质中所含的含硫的化合物和/或含氮的化合物的杂质、分离和除去所吸附的杂质,其特征在于使用浸渍催化剂颗粒的吸附剂通过所述液体介质与氧化剂混合来氧化所述杂质,吸附所述杂质的氧化物,并通过用极性溶剂洗涤所述浸渍催化剂颗粒的吸附剂来分离和除去所述杂质的氧化物,以及通过直接加热和/或热气体吹洗来再生所述浸渍催化剂颗粒的吸附剂,
其中浸渍催化剂颗粒的吸附剂中的催化剂由作为催化剂的一种或多种的金属或金属氧化物组成,所述催化剂浸渍到碳颗粒、二氧化硅、氧化铝、沸石、珍珠岩或者任何其它的多孔固体吸附剂上。
2.根据权利要求1的方法,其特征在于采用蒸馏所述溶剂的方法分离所述杂质的氧化物。
3.根据权利要求1的方法,其中所述的碳氢化合物液体介质选自如下物质:锅炉燃料、原油、重油、石脑油、煤油、柴油、甲苯、减压馏分油、锅炉燃料、轻瓦斯油、重瓦斯油、减压瓦斯油、催化裂化轻瓦斯油、焦化瓦斯油和汽油。
4.根据权利要求1的方法,其中所述含硫化合物的杂质选自:噻吩、硫醇、苯并噻吩、二苯并噻吩、萘并苯并噻吩和二萘并噻吩。
5.根据权利要求1的方法,其中所述碳氢化合物液体介质是液化煤。
6.根据权利要求1的方法,其中杂质的氧化是利用空气作为氧化剂进行的。
7.根据权利要求1的方法,其中杂质氧化是利用氧气作为氧化剂进行的。
8.根据权利要求1的方法,其中杂质氧化是利用臭氧作为氧化剂进行的。
9.根据权利要求1的方法,其中杂质氧化是利用过氧化物作为氧化剂进行的。
10.根据权利要求1的方法,其中通过氧化气体形成微米级气泡来提供氧化气体。
11.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂包含选自如下的催化剂金属:铜、锌、银、镍、钴、铁、锰、钼、钒、钨、锑和锡。
12.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂的催化组分包含双金属催化组分,所述双金属催化组分包含重量比为10∶1到1∶10的形成所述组分的两种金属。
13.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为银。
14.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为铜。
15.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为银和铜的混合物。
16.根据权利要求15的方法,其中银和铜的重量比为1∶1。
17.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为钴。
18.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为镍。
19.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为镍和钴的混合物。
20.根据权利要求19的方法,其中镍和钴的重量比为1∶1。
21.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为锌。
22.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为锡。
23.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂内,催化金属为锌和锡的混合物。
24.根据权利要求23的方法,其中锌和锡的重量比为2∶1。
25.根据权利要求11的方法,其中浸渍催化剂颗粒的吸附剂包括以该浸渍催化剂颗粒的吸附剂总重量计,15到40重量%的化合价低的催化金属的组分。
26.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂内,所述金属选自钠、钾、钙和镁。
27.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂中的多孔固体吸附剂为碳。
28.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂中的多孔固体吸附剂为沸石。
29.根据权利要求28的方法,其中所述沸石为八面沸石。
30.根据权利要求29的方法,其中所述沸石为孔径尺寸大于10埃的沸石Y和沸石X。
31.根据权利要求28的方法,其中八面沸石结构中催化剂离子的离子交换在50~75%范围内。
32.根据权利要求1的方法,其中浸渍催化剂颗粒的吸附剂的吸附剂多孔结构为珍珠岩。
33.根据权利要求32的方法,其中吸附剂载体中珍珠岩的量为15到30重量百分数。
34.根据权利要求1的方法,其中所述极性溶剂为极性有机溶剂。
35.根据权利要求34的方法,其中所述极性有机溶剂为甲苯。
36.根据权利要求34的方法,其中所述极性有机溶剂为丙酮。
37.根据权利要求34的方法,其中所述极性有机溶剂为甲醇。
38.根据权利要求34的方法,其中所述极性有机溶剂为乙醇。
39.根据权利要求34的方法,其中所述极性有机溶剂为二氯甲烷。
40.根据权利要求34的方法,其中所述极性有机溶剂为二氯乙烷。
41.根据权利要求34的方法,其中所述极性有机溶剂为二氯苯。
42.根据权利要求1的方法,其中所述极性溶剂为下列溶剂的组合物,包括芳香烃化合物、卤代芳香烃化合物、有机氯代化合物、酮和醇。
43.根据权利要求42的方法,其中所述极性溶剂的组合物选自如下一列:甲苯、二氯苯、二氯甲烷、二氯乙烷、环戊烷、丙酮、乙醇和甲醇。
44.根据权利要求1的方法,其中为干燥浸渍催化剂颗粒的吸附剂,把吸附剂加热到15℃到150℃,温度取决于洗涤吸附剂所用的极性溶剂的蒸气压力。
45.根据权利要求44的方法,其中除使用加热外还用热气体吹洗。
CN03826241.XA 2003-03-28 2003-08-07 净化液体介质的方法 Expired - Fee Related CN1777665B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EA200300311 2003-03-28
EA200300311A EA004234B1 (ru) 2003-03-28 2003-03-28 Способ очистки жидких сред
PCT/IB2003/003551 WO2004085576A1 (fr) 2003-03-28 2003-08-07 Methode de purification d'un milieu liquide

Publications (2)

Publication Number Publication Date
CN1777665A CN1777665A (zh) 2006-05-24
CN1777665B true CN1777665B (zh) 2012-12-26

Family

ID=32087909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03826241.XA Expired - Fee Related CN1777665B (zh) 2003-03-28 2003-08-07 净化液体介质的方法

Country Status (11)

Country Link
US (1) US20060211906A1 (zh)
EP (1) EP1609842B1 (zh)
JP (1) JP2006521192A (zh)
CN (1) CN1777665B (zh)
AU (1) AU2003252589B2 (zh)
CA (1) CA2523006C (zh)
EA (1) EA004234B1 (zh)
ES (1) ES2449018T3 (zh)
NO (1) NO20054954L (zh)
UA (1) UA81310C2 (zh)
WO (1) WO2004085576A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087495A1 (en) 2003-10-22 2005-04-28 Parke Geary G. Adsorption system
US7820031B2 (en) * 2004-10-20 2010-10-26 Degussa Corporation Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby
US20060163113A1 (en) * 2004-12-23 2006-07-27 Clayton Christopher W Fuel Compositions
DE102005062354A1 (de) * 2005-12-23 2007-06-28 Basf Ag Verfahren zur Umsetzung eines aromatischen Kohlenwasserstoffs in Gegenwart von Wasserstoff
JP2008031306A (ja) * 2006-07-28 2008-02-14 Nippon Oil Corp 炭化水素系燃料の脱硫方法
US7763163B2 (en) * 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
US7799211B2 (en) * 2006-10-20 2010-09-21 Saudi Arabian Oil Company Process for upgrading whole crude oil to remove nitrogen and sulfur compounds
US8246814B2 (en) 2006-10-20 2012-08-21 Saudi Arabian Oil Company Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream
US8007660B2 (en) 2008-06-03 2011-08-30 Graftech International Holdings Inc. Reduced puffing needle coke from decant oil
US8007659B2 (en) * 2008-06-03 2011-08-30 Graftech International Holdings Inc. Reduced puffing needle coke from coal tar distillate
JP5492204B2 (ja) * 2008-08-15 2014-05-14 エクソンモービル リサーチ アンド エンジニアリング カンパニー 極性成分をプロセスストリームから除去して熱損失を防止する方法
US20110253595A1 (en) * 2010-04-20 2011-10-20 Esam Zaki Hamad Combined solid adsorption-hydrotreating process for whole crude oil desulfurization
WO2012027820A1 (en) 2010-09-03 2012-03-08 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Production of high-cetane diesel product
EP2649014B1 (en) * 2010-12-06 2017-10-25 Council of Scientific & Industrial Research Carbon bed electrolyser for treatment of liquid effluents and a process thereof
RU2443753C1 (ru) * 2010-12-28 2012-02-27 Общество с ограниченной ответственностью "ЭнергоСтройИнвест" Способ очистки жидких углеводородов
CN102284276B (zh) * 2011-06-28 2013-01-02 淮阴工学院 由废白土制备复合吸附剂的方法
CN102850164B (zh) * 2011-06-29 2014-08-27 中国石油化工股份有限公司 一种烯烃脱氧剂及其制备方法和应用以及烯烃脱氧方法
CN102850162B (zh) * 2011-06-29 2014-11-05 中国石油化工股份有限公司 一种烯烃脱氧剂及其制备方法和应用以及烯烃脱氧方法
CN102850165B (zh) * 2011-06-29 2014-08-27 中国石油化工股份有限公司 一种烯烃脱氧剂及其制备方法和应用以及烯烃脱氧方法
CN102850160B (zh) * 2011-06-29 2014-11-05 中国石油化工股份有限公司 一种烯烃脱氧剂及其制备方法和应用以及烯烃脱氧方法
RU2473529C1 (ru) * 2011-07-26 2013-01-27 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Способ очистки коксохимического бензола от азотсодержащих примесей
WO2014033676A1 (en) * 2012-08-31 2014-03-06 Indian Oil Corporation Limited Process for quality enhancement in hydrocarbon stream
GB201218103D0 (en) * 2012-10-09 2012-11-21 Lystek Internat Inc Process for removal of chemical contaminants from biological wastes
CN103773432B (zh) * 2012-10-24 2015-11-25 中国石油化工股份有限公司 一种汽油脱硫方法
CN103773431B (zh) * 2012-10-24 2016-01-20 中国石油化工股份有限公司 一种汽油脱硫方法
US9233856B2 (en) * 2013-04-20 2016-01-12 Uop Llc Use of zeolitic materials for removing mercury (+2) ions from liquid streams
CN103214152A (zh) * 2013-05-10 2013-07-24 陈卫国 废液再生机器
RU2529677C1 (ru) * 2013-07-18 2014-09-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ подготовки сероводородсодержащей нефти
US9222034B2 (en) 2013-11-19 2015-12-29 Uop Llc Process for removing a product from coal tar
US9745520B2 (en) * 2014-12-18 2017-08-29 Phillips 66 Company System for purifying crude oils
US20190161688A1 (en) * 2014-12-18 2019-05-30 Phillips 66 Company Solid adsorption process for removing particles from heavy, partially refined oils
CN104877705A (zh) * 2015-06-01 2015-09-02 四川天采科技有限责任公司 一种汽油液相常温吸附脱水的方法
CN105536695B (zh) * 2015-12-11 2019-08-27 中国海洋石油集团有限公司 一种吸附分离多环芳烃的吸附剂及制备方法
CN107227170A (zh) * 2017-07-27 2017-10-03 华东理工大学 一种旋流强化脱除油品中硫化物的***
CN109201105B (zh) * 2018-08-24 2021-12-07 山东法恩泰科技工程有限公司 一种深度脱硫催化剂的制备方法
CN111774044B (zh) * 2020-06-02 2021-04-09 武汉理工大学 一种蛋白土吸附剂的再生方法
JP2023545519A (ja) * 2020-10-16 2023-10-30 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 脂肪族炭化水素の回収
CN113976118A (zh) * 2021-11-30 2022-01-28 昂星新型碳材料常州有限公司 一种臭氧催化剂、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR760430A (fr) * 1932-11-25 1934-02-22 Mutosel Procédé de purification des pétroles ou autres liquides analogues
GB944054A (en) * 1960-07-04 1963-12-11 Shell Int Research Process for the preparation of hydrocarbon oils, entirely or substantially entirely freed from mercaptans
DE1218998B (de) * 1953-12-24 1966-06-16 Union Carbide Corp Verwendung von Zeolith X zum Abtrennen von Molekuelen
GB1083286A (en) * 1964-04-07 1967-09-13 Howe Baker Eng Sweetening of sour hydrocarbons
US6118037A (en) * 1997-04-22 2000-09-12 Snamprogetti S.P.A. Process for the removal of contaminant compounds containing one or more heteroatoms of sulfur, nitrogen and/or oxygen from hydrocarbon streams
US6521131B1 (en) * 1996-12-16 2003-02-18 Solmetex, Inc. Combined oxidation and chelating adsorption system for removal of mercury from water

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963441A (en) * 1944-11-23 1960-12-06 Frank E Dolian Sorbents and process for their preparation
US2925381A (en) * 1956-11-26 1960-02-16 Union Oil Co Removal of organic nitrogen compounds from hydrocarbons with a zeolite
US3686121A (en) * 1969-12-29 1972-08-22 Exxon Research Engineering Co Hydrocarbon conversion catalyst
US5035804A (en) * 1990-09-17 1991-07-30 Clnzall Corporation Oil spill water treatment
WO1995011196A1 (en) * 1993-10-18 1995-04-27 Mobil Oil Corporation Synthetic porous crystalline mcm-58, its synthesis and use
GB9607066D0 (en) * 1996-04-03 1996-06-05 Ici Plc Purification process
WO2000071249A1 (en) * 1999-05-21 2000-11-30 Zeochem Llc Molecular sieve adsorbent-catalyst for sulfur compound contaminated gas and liquid streams and process for its use
EA200200671A1 (ru) * 1999-12-13 2002-12-26 Дс2 Тек, Инк. Способ демеркаптанизации нефтяных дистиллятов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR760430A (fr) * 1932-11-25 1934-02-22 Mutosel Procédé de purification des pétroles ou autres liquides analogues
DE1218998B (de) * 1953-12-24 1966-06-16 Union Carbide Corp Verwendung von Zeolith X zum Abtrennen von Molekuelen
GB944054A (en) * 1960-07-04 1963-12-11 Shell Int Research Process for the preparation of hydrocarbon oils, entirely or substantially entirely freed from mercaptans
GB1083286A (en) * 1964-04-07 1967-09-13 Howe Baker Eng Sweetening of sour hydrocarbons
US6521131B1 (en) * 1996-12-16 2003-02-18 Solmetex, Inc. Combined oxidation and chelating adsorption system for removal of mercury from water
US6118037A (en) * 1997-04-22 2000-09-12 Snamprogetti S.P.A. Process for the removal of contaminant compounds containing one or more heteroatoms of sulfur, nitrogen and/or oxygen from hydrocarbon streams

Also Published As

Publication number Publication date
NO20054954D0 (no) 2005-10-25
NO20054954L (no) 2005-12-28
CA2523006A1 (en) 2004-10-07
ES2449018T3 (es) 2014-03-17
EA200300311A1 (ru) 2003-12-25
WO2004085576A1 (fr) 2004-10-07
UA81310C2 (uk) 2007-12-25
JP2006521192A (ja) 2006-09-21
CA2523006C (en) 2010-11-23
EP1609842A1 (en) 2005-12-28
AU2003252589B2 (en) 2009-03-05
AU2003252589A1 (en) 2004-10-18
EP1609842B1 (en) 2013-10-02
EA004234B1 (ru) 2004-02-26
US20060211906A1 (en) 2006-09-21
CN1777665A (zh) 2006-05-24

Similar Documents

Publication Publication Date Title
CN1777665B (zh) 净化液体介质的方法
Li et al. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: Synthesis, kinetics, isotherms, adsorption mechanism, and reusability
Ahmaruzzaman et al. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment
Yoo Metal recovery and rejuvenation of metal-loaded spent catalysts
CA2872696C (en) Process and device for treating catalyst discharged from bubbling bed hydrogenation of residual oil
CN102267695A (zh) 一种含油污泥制备超级活性炭的方法
CN105214625B (zh) 一种活化褐煤及应用该活化褐煤的焦化废水的处理工艺
Quan et al. Improvement of the pyrolysis products of oily sludge: Catalysts and catalytic process
Abatal et al. Carbonaceous material obtained from bark biomass as adsorbent of phenolic compounds from aqueous solutions
SA516371065B1 (ar) طريقة لتحضير مادة ماصــــة
US20020166794A1 (en) Apparatus and process for converting refinery and petroleum-based waste to standard fuels
Azeez et al. Review of biomass derived-activated carbon for production of clean fuels by adsorptive desulfurization: Insights into processes, modifications, properties, and performances
US11369922B2 (en) Catalyst mixture for the treatment of waste gas
Gholamifard et al. Experimental and numerical analysis of oily wastewater treatment using low-cost mineral adsorbent in a single and multi-fixed bed column
Ahmad et al. Adsorption of hydrocarbon pollutants from wastewater using Cu‐and Zn‐loaded activated carbon derived from waste tires
Visa Heavy Metals Removal on Dye–Modified Fly Ash Substrates
Girhe et al. Adsorption of metals using activated carbon derived from coal
Bao et al. Persulfate oxidation enhanced extraction to improve the removal of high concentration phenol wastewater
CN101264952A (zh) 利用天然沸石去除污泥填埋场渗滤液中氨氮的方法
Samarina et al. Geopolymers and Alkali-Activated Materials for Wastewater Treatment Applications and Valorization of Industrial Side Streams
Barua et al. Fundamentals of Adsorption Process onto Carbon, Integration with Biological Process for Treating Industrial Waste Water: Future Perspectives and Challenges
UA122415C2 (uk) Спосіб отримання адсорбенту вуглецевого, сорбційний засіб та спосіб регенерації використаного адсорбенту вуглецевого
MXPA05011391A (en) Method for purifying a liquid medium
Halder et al. A review on potential reusability of industrial solid wastes as adsorbents
Tan et al. The viable role of activated carbon for the effective remediation of refinery and petrochemical wastewaters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: 21 CENTURY TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: IQ ADVANCED TECHNIQUE CO., LTD.

Effective date: 20100613

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: NICOSIA, CYPRUS TO: CALIFORNIA, USA

TA01 Transfer of patent application right

Effective date of registration: 20100613

Address after: American California

Applicant after: IQ Advanced Technologies Ltd.

Address before: Cyprus Nicosia

Applicant before: IQ Advanced Technologies Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

Termination date: 20170807