CN1668843A - 从流水产生动力的装置和方法 - Google Patents

从流水产生动力的装置和方法 Download PDF

Info

Publication number
CN1668843A
CN1668843A CNA038163942A CN03816394A CN1668843A CN 1668843 A CN1668843 A CN 1668843A CN A038163942 A CNA038163942 A CN A038163942A CN 03816394 A CN03816394 A CN 03816394A CN 1668843 A CN1668843 A CN 1668843A
Authority
CN
China
Prior art keywords
blade
platform
row
rotor
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038163942A
Other languages
English (en)
Inventor
科林·里甘
约翰·霍夫曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1668843A publication Critical patent/CN1668843A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/04Fluid current motor and generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种由水体中的水流产生动力的装置,包括:纵向延伸的漂浮平台,用于维持所述装置使其漂浮在水体中;和水轮机,其被平台可运转地承载,以响应于水体中的水流产生动力。所述平台被构造用于加强经过水轮机叶片的水流的流动,并且使各自具有相关水轮机或多个水轮机的许多相似平台以协作的方式排列。所述水轮机可包括水轮机转子,所述水轮机转子带有多个较窄的、柔性的细长叶片,所述叶片布置在沿着转子延伸的在圆周方向间隔开的各排中。在每一排中,叶片彼此连续地间隔开一个间距。各排可以互相交错排列,以便在给定的一排中的叶片沿着圆周方向与该给定排的沿圆周方向的紧向前方的排中的叶片之间的间距以及与该给定排的沿圆周方向的紧向后方的排中的叶片之间的间距对齐。

Description

从流水产生动力的装置和方法
技术领域
本申请涉及由碰撞水轮机的叶片的水流动来产生动力,包括机械动力或电力。本发明进一步涉及用于这样的水轮机的漂浮平台。
背景技术
在现有技术中已知适于利用流水的动力的各种水轮机设计。这些设计包括水轮机,所述水轮机具有多个沿圆周方向间隔开的水轮机叶片,每个叶片连续地延伸大约水轮机转子的整个长度并从水轮机转子沿径向向外延伸。同时,它们包括具有多组水轮机叶片的水轮机,所述水轮机叶片沿着水轮机轴彼此纵向间隔开。在每一组中,多个沿圆周方向间隔开的叶片从轴向外径向延伸。后一种水轮机的例子可见于美国专利No.5,834,853,授权于1998年11月10日(Ruiz等人);及美国专利No.5,946,909,授权于1999年9月7日(Szpur)。
然而,这些设计不能提供对经过水轮机叶片的水流的加强,以及由此产生的动力输出的提高。它们也没有提供这样的支撑结构,该支撑结构非常适于在水体中移动,并且可被构造为能进一步提高经过叶片的水流的流动。并且,它们确实提供的结构不能被以任意的协作方式排列。
发明内容
在本发明的一个方面中,提供了一种从水体(例如,河流或运河)中的水流产生动力的装置,该装置包括:纵向延伸的漂浮平台,用于维持所述装置使其漂浮在水体中;和水轮机,其被平台可运转地承载,以响应于水体中的水流而产生动力。所述平台包括具有相对发散侧的向前部,所述发散侧从前端顶点向外和向后延伸到第一和第二细长向后部,第一向后部从向前部向后纵向延伸,第二向后部大体上平行于第一向后部且从向前部向后纵向延伸;以及在第一和第二向后部之间通过平台的向下开口。所述水轮机包括水轮机转子和多个水轮机叶片。所述转子横跨转子相对端部之间的向下开口而纵向地延伸,并可转动地安装到平台上,用于绕转子轴线转动。水轮机叶片从转子向外延伸,以便通过所述开口与水流可操作地连通。
在所有情况下,通过平台的向下开口优选被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与所述叶片连通的水流。
具有如上所述的向前部和第一和第二向后部的平台可被改造以可运转地承载多于一个水轮机。例如,所述平台可包括第三细长向后部,其位于第一和第二向后部之间并大体上平行于第一和第二向后部且从向前部向后纵向地延伸。第一纵向开口在第一和第三向后部之间通过平台向下延伸。第二向下开口在第二和第三向后部之间通过平台向下延伸。如上所述的第一水轮机被安装到平台上,其转子横跨第一向下开口延伸,如上所述的第二水轮机被安装到平台上,其转子横跨第二向下开口延伸。优选的是,第一向下开口被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与第一水轮机的叶片连通的水流。类似地,优选的是,第二向下开口以相对的向下和纵向延伸的内侧壁为侧向边界,用于引导与第二水轮机的叶片连通的水流。
根据情况,在平台上设置多于一个水轮机被认为或不被认为是有益的。冗余是一种可能的优点。如果一个水轮机出现故障或需要维修或只是停机,则其它水轮机可用于连续地输送动力。在平台上设置多于一个水轮机的一个缺点是增加了复杂性,因为每个水轮机将需要自己的固定件和相关的动力输出装置。
在本发明的进一步方面中,提供了一种从水体(例如河流或运河)中的水流产生动力的方法,这样的方法包括:
—提供第一动力发生工作站(power generation station),所述工作站包括:纵向延伸的漂浮平台,用于维持在水体中漂浮的工作站;和水轮机,其被平台可运转地承载,以响应于水体中的水流而产生动力;
—使工作站漂浮在水体中,并使平台的向前端朝向水流的上游;和
—可控地抑制平台向下游移动。
根据本方法,所述平台包括具有相对发散侧的向前部,每个发散侧从平台的前端顶点向外和向后延伸到第一和第二细长向后部。第一向后部从向前部向后纵向延伸到第一远端;第二向后部大体上平行于第一向后部且从向前部向后纵向延伸到第二远端。纵向开口在第一和第二向后部之间通过平台向下延伸。
所述水轮机包括水轮机转子和多个水轮机叶片。所述转子安装到平台上,以绕着转子轴转动,并横跨向下开口延伸。水轮机叶片从转子向外延伸,以便通过所述开口与水流可操作地连通。
在水流具有相当大的宽度的情况下(例如,在宽的河流中),可采用若干这样的工作站。有益的是,工作站可排列成工作站阵列。例如,所述方法可进一步包括:
—提供第二和第三动力发生工作站,每个包括大致与第一动力发生工作站的漂浮平台相同的漂浮平台;
—使第二工作站漂浮在水体中,并使第二工作站的平台的前端顶点位于第一工作站的平台的第一远端附近;和
—使第三工作站漂浮在水体中,并使第三工作站的平台的前端位于第一工作站的平台的第二远端附近。
为便于第二和第三动力工作站邻近第一动力工作站的第一和第二远端的这种定位,优选第一动力工作站的远端具有锥角,该锥角与平台的向前部的发散两侧从平台前端顶点向后延伸的角度一致。
附加的动力发生工作站可以类似地定位在第二和第三动力发生工作站后面。
在本发明的另一方面中,提供了一种水轮机,所述水轮机优选与前述的装置或方法结合使用,但是其也可以用在固定(即非漂浮安装)位置,有益的是在该位置从水轮机转子向外延伸的水轮机叶片是较窄的、柔性的细长叶片,并且排列在沿着转子延伸的沿圆周方向间隔开的各排中。在每一排中,叶片彼此连续地间隔开一个间距。叶片接合并减慢水流,越靠近水轮机轴减速效果越强。所产生的结果是沿着叶片长度的水流。所述叶片被作用在叶片上的压力向前弯曲,导致一定程度的经过叶片的和在叶片周围的水流的均衡。水流产生涡流效果,所述涡流效果有助于水沿着叶片流动,并且与上述的减速效果相结合,有助于增加动力输出。产生的动力随着驱动水流的深度而增加。
优选的是,各排可以互相交错排列,以便在给定的一排中的叶片沿着圆周方向与该给定排的沿圆周方向的紧前方的排中的叶片之间的间距以及与该给定排的沿圆周方向的紧后方的排中的叶片之间的间距对齐。这样,与各排内的叶片不交错的情况比,在一排中的叶片之间流动的水将以更大的速度碰撞随后的排中的叶片。这种排列的结果是更均匀的水流减速、在叶片一侧上的压力和在叶片相对侧上的抽吸力。
以下将参照附图描述本发明的前述和其它特征和优点。
附图说明
图1是本发明的第一实施例的透视图;
图2是图1示出的实施例的俯视图;
图3是图1示出的实施例的侧视图;
图4是透视图,更详细地示出了图1示出的实施例中的水轮机转子和传动齿轮形成部分;
图5是透视图,示出了图1示出的实施例中的水轮机叶片形成部分的相对位置;
图6是透视图,示出了图4中示出的水轮机转子的一部分和连接到其上的相关的水轮机叶片;
图7是图1中示出的漂浮平台的俯视图;
图8是图1中示出的平台的前视图;
图9是图1中示出的平台的端视图;
图10是图1中示出的平台的侧视图;
图11是类似于图7中示出的平台的三个漂浮平台的排列阵列的俯视图,每一个平台用于承载根据本发明的水轮机;
图12是类似于图7中示出的平台的六个漂浮平台的排列阵列的俯视图,每一个平台用于承载根据本发明的水轮机;
图13是本发明的第二实施例的透视图;
图14是图13示出的实施例的俯视图;
图15是本发明的第三实施例的透视图;
图16是图15示出的实施例的俯视图;
图17是图13-16中示出的任一水轮机的剖面图;
图18是图17中示出的任一水轮机叶片的透视图;和
图19示出了图17中示出的水轮机之下的水流的方向和作用。
具体实施方式
图1-12示出了全文用100来标示的动力发生工作站,包括纵向延伸的漂浮平台10,用于保持工作站使其漂浮在水体(未示出)中,以及全文用标号101表示的水轮机,其被平台可操作地承载,以响应于水体中的水流产生动力。水轮机101包括水轮机转子110和多个具有不同长度的较窄的细长水轮机叶片120,所述叶片从转子向外延伸以便与水流操作连通。所述转子包括轴111(图4)。当平台被适当定位时,水流通常沿着箭头F的方向沿轴的横向流动。
平台10包括具有相对发散侧13、14的向前部12,发散侧从前端顶点11向后和向外延伸到第一和第二细长向后部15和18。向后部15从向前部12纵向向后延伸到锥形远端16,并包括后面将要讨论的相关的罩17。向后部18大体上平行于向后部15且从向前部12纵向向后延伸到锥形远端19,并包括后面将要讨论的相关的罩20。纵向开口21在向后部15、18之间通过平台向下延伸。通常,平台10关于其纵向中心线22(图2)的任一侧是对称的,所述纵向中心线二等分前端顶点11。
通常,平台10布置为其前端顶点11朝向上游(即,与箭头F相反的方向)。偏转器25安装在平台上顶点11的紧前方,以保护该端部并帮助偏转可能在水中向下游漂浮的木头或其它碎片。向前部12的发散侧13、14(其用于在水流中提供流线型)也用于控制木头或其它碎片使其平滑地离开平台。这些特征减小了漂浮碎片被迫在平台10之下朝向水轮机叶片120的可能性。
从图11-12将会更好地理解,平台10的整个形状使得动力发生工作站的阵列以这样的方式排列,该方式提供整个的流线型,从而任意的给定平台为从该给定平台向下游延伸的平台提供碎片偏转屏蔽或部分偏转屏蔽。更具体而言,在图11中示出了通常为三角形阵列的三个平台,第一和第二尾端平台10已经被这样定位,其各自的前端顶点11与引导平台10的远端16、19紧邻,一个尾端平台的向后部15紧邻另一尾端平台的向后部18。在图12中,图11所示的阵列已被延伸,从而包括三个平台的第三线,总共有六个平台。这种阵列可用于开发较大的总能量输出。
水轮机101的叶片120排列在沿圆周方向间隔开的八排中,即各个交错的排125、126、125、126,等(在图5和6中更好地示出)。每一排沿着水轮机转子110的长度延伸。在任一给定排中的相邻叶片彼此以间距122分开。如图5中更好地示出的那样,各排之间这样交错,即,在任一给定排中的叶片120与其紧向前方的排中的叶片之间的间距122对齐,并且与其紧向后方的排中的叶片之间的间距122对齐。这样,当水流的一部分碰撞给定排中的叶片120而流动时,剩余的一部分将流过在该给定排中的间距122,并且开始朝向下游的下一排中的叶片120流动。
转子110横跨开口21延伸,以绕转子轴转动,转子的一端可转动地安装到平台10的向后部15,转子的相对端可转动地安装到平台10的向后部18。如图4中更好地示出的那样,转子110具有模块结构,包括一系列轴向对齐的圆形凸缘112,它们沿着转子的长度沿纵向间隔开。相邻的一对凸缘112由纵向延伸的矩形凸缘114、116邻接,所述矩形凸缘114、116沿径向离开转子轴并绕转子轴沿圆周方向间隔开。如图6所示,凸缘114被改造以使单个水轮机叶片120能够连接,而凸缘116被改造以使两个水轮机叶片120能够连接。更具体而言,每个凸缘114包括位于凸缘相对端部之间的中心处的单个螺栓孔阵列115。在径向向内的端部处带有相应孔阵列的叶片120被用螺栓(未示出)栓接到凸缘114上,所述螺栓通过凸缘、通过叶片和通过同样包括相应孔阵列的保护面板119而延伸。相反,每个凸缘116包括两个螺栓孔阵列117、118,每个阵列位于凸缘的一端处。这些阵列便于将两个叶片120栓接到凸缘116上,方式与将单个叶片120连接到凸缘114的方式相同,包括使用面板119。(注意,在图4中示出的面板119的位置是它们用于栓接叶片120至转子110时所具有的位置。另一方面,它们是独立元件)。
如图4更好地示出地那样,一对传动齿轮130安装在水轮机转子110的相对端,以使它们在轴111上转动。如图1-2所示,每个齿轮130通过齿轮和传动组件135机械连接到动力发电机140的轴上,齿轮和传动组件135决定发电机相对于转子的转速和由此而产生的电能。每个齿轮和传动装置135包括链齿轮132,其在相关传动齿轮130的轮缘上接合链环131。传动齿轮本身被安装在平台10的相对内侧上的罩17、20屏蔽。
应当注意,罩17、20不仅用于屏蔽传动齿轮,而且用于确定平台10的相对的向下和纵向延伸的内侧壁,该内侧壁横向地限定向下开口21在平台中的边界。这样的内侧壁用于引导和约束或导流与水轮机叶片120连通的水流。
水轮机叶片120可被下降或升高以改变水流内的深度。具体而言,参照图1-4,水轮机101由一对标示为60的相对升降梯运载,每个升降梯包括固定到平台10上的框架62。每个这样的框架包括轨道65,其相对于平台10的表面以大约45度的上升角延伸。轴111被支撑在由轨道65可滑动地承载的轴箱内。因此,包括叶片120的水轮机101相对平台10的上升由轴箱沿着轨道65的定位来决定。该位置可由链条66和滑轮67的机构来固定和改变。
每个齿轮和传动组件135被安装在一对全文用标号70、71标示的升降梯上,并可以沿着相关轨道与水轮机沿着轨道65的运动串联地移动或者独立地移动。允许这种独立的运动使得任一个或两个发电机140都能够根据需要从相关传动齿轮130拆开。
绞盘50被安装到平台10上,系缆51被可卷绕地卷在绞盘上,以便连接到位于水体的河床上的锚基(未示出)上,其中所述平台在该水体中漂浮。从而抑制平台在水体中向下游移动。绞盘和系缆也能够使平台10的位置相对于锚基被调节。不仅在平台第一次移动定位时,而且在水位随后改变时,所述调节都是可希望的。
水轮机叶片120优选是柔性的。当在平台10被固定的同时水流流过叶片120时,叶片阻碍和减慢流速。这种减速效果在靠近转子110处最显著,因为任意给定叶片的表面随着逐渐接近转子必须较慢地移动。因此,水的流动倾向于沿着叶片的长度从转子向叶片的外端发展。叶片的柔性引起沿着它们的长度的一定程度的水流均衡。一部分水流同时通过间距122经过叶片周围。通过一个排125、126中的间距122的水的流动允许直接朝向紧邻的下游排126、125的叶片而流动,并产生抽吸和涡漩效果,导致相对于具有刚性叶片的情况具有增加的动力传输效率。在叶片之间的间距122还产生湍流,该湍流提高水的氧合作用。当作用在转子上的直接的流动力在连续的叶片排之间被分开,而不是冲击单一表面时,排内的叶片的间距和排之间的叶片的交错也导致更均匀的水流利用。因此,下游排的叶片不会被上游排的叶片直接屏蔽而经受直接的流入水流,而在每一排用连续的不间断表面代替时会出现所述情况。
关于水轮机叶片120的改变的长度,应当注意到,在所图示的实施例中,在任一给定排中的叶片的长度大体上平滑地从位于朝向转子110相对端的那些叶片的较短长度变化到位于朝向转子中心的那些叶片的较长长度。这种变化在下述情况下被认为是所希望的,即,自然水流的强度沿着工作站100的宽度方向以相应的方式改变。在工作站的影响下,当自然水流被内侧壁17、20捕获并被朝向水轮机叶片引导时,自然水流将被加速到相当的程度。这种加速具有抛物线的轮廓,朝向内侧壁之间的中线具有最大值,沿着内侧壁具有最小值。优选的是,叶片120的长度以相应的抛物线形式改变。
在操作中,工作站100漂浮在水体的水流中的期望位置处;平台10的前端顶点15朝向水流的上游(即,沿着箭头F的相反方向),优选的是,位于水流最大的点处。通过将系缆51固定到锚基上,而限制工作站向下游的移动。通过从绞盘上展开缆绳或将缆绳卷回到绞盘上,能够用绞盘50可调节地控制所述位置。
水轮机101通过它在平台10上的安装而被升至相对于水的表面而选择的位置。当水轮机响应于水流而旋转时,机械动力通过传动齿轮130和传动组件135被输送到发电机140,以产生电力。为了对应给定的水流速对改变的水流速进行补偿或调节转子的动力输出或转速,通过升降梯60的运动,水轮机101可相对于水表面被提升或降低。这种运动改变叶片120在水中突出的深度,从而改变作用在叶片上的力。
如果需要,可提供附加的动力发生工作站,最好具有如上所述的平台阵列。
第一实施例(图1-12)对于可用的水流较慢(例如,1米/秒)的情况而言被认为是优选的。第二实施例示出在图13-14中,并优选用于较快的水流。第三实施例示出在图15-16中,也被优选用于较快的水流,此外,用于那些希望在单个漂浮平台上提供多于一个水轮机的情况也是优选的。在第二和第三实施例的情况中,相关水轮机被它们各自的漂浮平台可转动地支撑在固定位置。发电机和它们至水轮机轴的联接装置未示出。
更具体而言,第二实施例(图13-14)包括纵向延伸的漂浮平台210和水轮机301,其被平台可操作地承载,以响应于水体中的水流产生动力。水轮机301包括水轮机转子310和多个较窄的细长水轮机叶片320,所述叶片从转子向外延伸以便与水流操作连通。所述转子包括轴311,其被支撑在安装在转子相对端处的平台210上的轴箱313内。
类似于如上所述的平台10的情况,平台210包括具有相对发散侧213、214的向前部212,发散侧从前端顶点211向后和向外延伸到第一和第二细长向后部215和218。向后部215从向前部212纵向向后延伸到锥形远端216。向后部218大体上平行于向后部215且从向前部212纵向向后延伸到锥形远端219。纵向开口221在向后部215、218之间通过平台向下延伸。
平台210包括一对平台开口250、251,通过所述开口系缆或锚线(未示出)可落下。与参照第一实施例指出的单个系缆和绞盘的情况相反,在水流较快的情况下,多于一个锚定点被认为是理想的。一对开口250、251提供用于两个独立锚定线(未示出)的通道。
应该指出的是,包括发散侧213、214和锥形远端216、219的平台210的结构允许许多这样的平台以类似于图11-12所示的方式被组装。并且,应当指出的是,平台210包括内侧壁217、220,它们确定开口221的侧向边界,并用于引导和限制或导流与水轮机叶片320连通的水流。
第三实施例(图15-16)包括纵向延伸的漂浮平台410和一对水轮机501,其被平台可操作地承载,以响应于水体中的水流产生动力。每个水轮机501包括水轮机转子510和多个较窄的细长水轮机叶片520,所述叶片从转子向外延伸以便与水流操作连通。每个转子包括轴511,其被支撑在安装在转子相对端处的平台410上的轴箱513内。
类似于如上所述的平台10的情况,平台410包括具有相对发散侧413、414的向前部412,发散侧从前端顶点411向后和向外延伸到第一和第二细长向后部415和418。向后部415从向前部412纵向向后延伸到锥形远端416。向后部418大体上平行于向后部415且从向前部412纵向向后延伸到锥形远端419。如同平台210的情况,平台410包括一对平台开口450、451,通过该开口系缆或锚线(未示出)被放下。
第三实施例(图13-14)不同于第二实施例(图15-16)之处在于,它包括两个水轮机501而不是单个水轮机301。并且,与平台210相反,平台410包括第三细长向后部460,其位于第一和第二向后部415、418之间的中路。向后部460大体上平行于第一和第二向后部415、418且从向前部412纵向向后延伸,一对纵向开口421、471通过平台在向后部415、418之间向下延伸,并被向后部460分开。
应当指出的是,包括发散侧413、414和锥形远端416、419的平台410的结构允许许多这样的平台以类似于图11-12所示的方式被组装。并且,应当指出的是,平台410包括内侧壁417、420和437、440,它们分别确定开口421、471的侧向边界,并用于引导和限制或导流与水轮机叶片520连通的水流。
图17是用标号601表示的水轮机的剖面图,其可被认为代表水轮机301或水轮机501的对应剖面。图18是图17所示的水轮机叶片620之一的透视图。如图所示,水轮机601的转子包括大致圆柱形的外和内管650、655,它们通常绕轴(未示出)的轴线611逆时针转动。水轮机叶片620从管650向外突出,并且每一个叶片被细长轴625支撑,所述细长轴625反过来由管650、655朝向其相对端被支撑。优选叶片被可转动地支撑,从而在它们的表面621和水流动方向之间的入射角可被改变以对水流动提供或多或少的阻力。通过旋转叶片,对给定的水的流速,水轮机的转速和产生的动力输出可被调节。类似地,可进行调节以补偿水流速的改变。
在水轮机601之下流动的水的一般性质在图19中示出。水水平地进入并与在区域680处叶片区域形成接触,并在区域681处以上升角(即羽状水柱角)排出。当水进入时,它与水轮机转子(其外管650)相遇,所述水轮机转子倾向于作为水坝将转子前的水位从L1提升到L2。其结果是产生较高的压头,其用于加快作用在叶片620上并通过叶片620之间的水的流速。连续的流动遵循转子之下的路径,所述转子对水施加压力,该压力在点P1处发展到最大值。随着抽吸力的发展,并随着朝向出口区681的流动的加速,压力开始减小。
如第二和第三实施例示出的工作站的整个尺寸可以是相当大的。例如,在典型的情况中,平台210具有大约115米的总长度,大约70米的总宽度,和大约16米的总高度。内侧壁217、220之间的间距大约为50米。转子310具有大约20米的外鼓轮直径和大约12米的内鼓轮直径。叶片320的尖端距离转子轴线大约18米。第三实施例可以具有类似的尺寸范围。当然,应当理解,总体尺寸、包括叶片长度等的水轮机尺寸可以从一种情况到另一种情况有显著不同。适用的标准将包括水深、预期水流和期望动力输出。
在权利要求书的实质和范围内,各种改造、变化和修改是可能的并且对本领域技术人员是显而易见的。本发明不限于在此描述的特定实施例。

Claims (25)

1.一种从水体中的水流产生动力的装置,该装置包括:
(a)纵向延伸的漂浮平台,用于维持所述装置使其漂浮在水体中,所述平台包括:
(i)具有相对发散侧的向前部,所述发散侧从前端顶点向外和向后延伸到第一和第二细长向后部,所述第一向后部从所述向前部向后纵向延伸,所述第二向后部大体上平行于所述第一向后部且从所述向前部向后纵向延伸;以及
(ii)在所述第一和第二向后部之间通过所述平台向下延伸的纵向开口;和
(b)水轮机,其被所述平台可运转地承载,以响应于所述水体中的水流产生动力,所述水轮机包括:
(i)水轮机转子,所述转子横跨转子相对端部之间的所述开口纵向地延伸,并可转动地安装到所述平台上,用于绕转子轴线转动;和
(ii)多个水轮机叶片,所述水轮机叶片从所述转子向外延伸,以便通过所述向下开口与所述水流可操作地连通。
2.根据权利要求1所述的装置,其特征在于,
(a)所述叶片是较窄的、柔性的细长叶片,并排列在沿所述转子延伸的沿圆周方向间隔开的排中;
(b)在每个所述排中,所述叶片彼此连续地间隔一个间距。
3.根据权利要求2所述的装置,其特征在于,所述各排互相交错排列,以便在给定的一个所述排中的叶片沿着圆周方向与该给定排的沿圆周方向的紧向前方的排中的叶片之间的间距以及与该给定排的沿圆周方向的紧向后方的排中的叶片之间的间距对齐。
4.根据权利要求2或3所述的装置,其特征在于,所述叶片具有这样的长度,该长度从对应朝向所述转子的所述相对端的那些所述叶片的较短长度大体上平滑地变化到对应朝向所述相对端之间的中心的那些所述叶片的较长长度。
5.根据权利要求4所述的装置,其特征在于,所述叶片的所述长度大致在所述相对端之间以抛物线形式变化。
6.根据权利要求1所述的装置,其特征在于,所述水轮机以相对所述平台可调高度的方式被所述平台承载。
7.根据权利要求1所述的装置,其特征在于,还包括用于调节所述水轮机相对所述平台的高度的装置。
8.根据权利要求1所述的装置,其特征在于,还包括安装在所述平台上的绞盘和可卷绕在所述绞盘上的系缆,所述系缆可连接到锚基上,从而抑制所述平台向下游的移动。
9.根据权利要求1所述的装置,其特征在于,还包括在所述前端处安装在所述平台上的偏转器,用于偏转在所述水体中漂浮的碎片。
10.根据权利要求1-9中任一项所述的装置,其特征在于,所述开口被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与所述叶片连通的水流。
11.一种由水体中的水流产生动力的装置,该装置包括:
(a)纵向延伸的漂浮平台,用于维持所述装置使其漂浮在水体中,所述平台包括:
(i)具有相对发散侧的向前部,所述发散侧从前端顶点向外和向后延伸到第一和第二细长向后部,所述第一向后部从所述向前部向后纵向延伸,所述第二向后部大体上平行于所述第一向后部且从所述向前部向后纵向延伸;
(ii)第三细长向后部,其位于所述第一和第二向后部之间并大体上平行于所述第一和第二向后部从所述向前部向后纵向地延伸;
(iii)在所述第一和第二向后部之间通过所述平台向下延伸的第一纵向开口;和
(iv)在所述第二和第三向后部之间通过所述平台向下延伸的第二纵向开口;和
(b)第一和第二水轮机,其被所述平台可运转地承载,以响应于所述水体中的水流产生动力,每个所述水轮机包括相关的水轮机转子,所述转子可转动地安装到所述平台上,用于绕着相关的转子轴线转动,以及多个相关的水轮机叶片,其中
(i)所述第一水轮机的所述转子横跨所述第一开口延伸,所述第一水轮机的所述叶片从所述第一水轮机的所述转子向外延伸,以便通过所述第一开口与所述水流可操作地连通;和
(ii)所述第二水轮机的所述转子横跨所述第二开口延伸,所述第二水轮机的所述叶片从所述第二水轮机的所述转子向外延伸,以便通过所述第二开口与所述水流可操作地连通。
12.根据权利要求11所述的装置,其特征在于,
(a)所述叶片是较窄的、柔性的细长叶片,并且排列在沿相关转子延伸的沿圆周方向间隔开的排中;
(b)在每个所述排中,所述叶片彼此连续地间隔开一个间距。
13.根据权利要求11或12所述的装置,其特征在于,
(a)所述第一向下开口被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与所述第一水轮机的所述叶片连通的水流;和
(b)所述第二向下开口被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与所述第二水轮机的所述叶片连通的水流。
14.一种水轮机,包括:
(a)水轮机转子,其在转子的相对端部之间纵向地延伸;和
(b)多个较窄的、柔性的细长水轮机叶片,所述叶片从所述转子向外延伸,以连通水流,其中:
(i)所述叶片排列在沿所述转子延伸的沿圆周方向间隔开的排中;
(ii)在每个所述排中,所述叶片彼此连续地间隔一个间距;和
(iii)所述各排互相交错排列,以便在给定的一个所述排中的叶片沿着圆周方向与该给定排的沿圆周方向的紧前方的排中的叶片之间的间距以及与该给定排的沿圆周方向的紧后方的排中的叶片之间的间距对齐。
15.根据权利要求14所述的水轮机,其特征在于,所述叶片的长度从对应朝向所述转子的所述相对端的那些所述叶片的最短长度大体上平滑地变化到对应位于所述相对端之间的中间位置的那些所述叶片中的至少一个叶片的最长长度。
16.根据权利要求15所述的水轮机,其特征在于,所述叶片的所述长度大致在所述相对端之间以抛物线形式变化。
17.一种由水体中的水流产生动力的方法,所述方法包括:
(a)提供第一动力发生工作站,所述工作站包括:
(i)纵向延伸的漂浮平台,用于维持所述工作站使其在水体中漂浮;所述平台包括:
(A)具有相对发散侧的向前部,每个所述发散侧从前端顶点向外和向后延伸到第一和第二细长向后部,所述第一向后部从所述向前部向后纵向延伸到第一远端,所述第二向后部大体上平行于所述第一向后部从所述向前部向后纵向延伸到第二远端;以及
(B)在所述第一和第二向后部之间通过所述平台向下延伸的纵向开口;和
(ii)水轮机,其被所述平台可运转地承载,以响应于所述水体中的水流产生动力,所述水轮机包括:
(A)水轮机转子,所述转子横跨所述转子的所述相对端部之间的所述开口纵向地延伸,并且可转动地安装到所述平台上,用于绕转子轴线转动;和
(B)多个水轮机叶片,所述水轮机叶片从所述转子向外延伸,以便通过所述向下开口与所述水流可操作地连通;
(b)使所述工作站漂浮在所述水体中,并使所述前端顶点朝向所述水流的上游;和
(c)可控地抑制所述平台向下游的移动。
18.根据权利要求17所述的方法,进一步包括:
(a)提供第二和第三动力发生工作站,每个包括大致与所述第一动力发生工作站的漂浮平台相同的漂浮平台;
(b)使所述第二工作站漂浮在所述水体中,并使所述第二平台的所述前端顶点位于所述第一平台的所述第一远端附近;和
(c)使所述第三工作站漂浮在所述水体中,并使所述第三平台的前端顶点位于所述第一平台的所述第二远端附近。
19.根据权利要求18所述的方法,其特征在于,所述第二和第三动力工作站的每一个包括大致与所述第一动力产生工作站的水轮机相同的水轮机。
20.根据权利要求17所述的方法,其特征在于:
(a)所述叶片是较窄的、柔性的细长叶片,并且排列在沿所述转子延伸的沿圆周方向间隔开的排中;
(b)在每个所述排中,所述叶片彼此连续地间隔一个间距。
21.根据权利要求20所述的方法,其特征在于:
所述各排互相交错排列,以便在给定的一个所述排中的叶片沿着圆周方向与该给定排的沿圆周方向的紧前方的排中的叶片之间的间距以及与该给定排的沿圆周方向的紧向后方的排中的叶片之间的间距对齐。
22.根据权利要求20或21所述的方法,其特征在于,所述叶片具有这样的长度,该长度从对应朝向所述转子的所述相对端的那些所述叶片的较短长度大体上平滑地变化到对应朝向所述相对端之间的中心的那些所述叶片的较长长度。
23.根据权利要求22所述的方法,其特征在于,所述叶片的所述长度大致在所述相对端之间以抛物线形式变化。
24.根据权利要求17-23中任一项所述的方法,其特征在于,所述第一和第二远端中的每一个具有锥角,该锥角与所述平台的向前部的所述发散两侧从所述平台的所述前端顶点向后延伸的角度一致。
25.根据权利要求17-23中任一项所述的方法,其特征在于,所述开口被相对的向下和纵向延伸的内侧壁侧向地界定,用于引导与所述叶片连通的水流。
CNA038163942A 2002-07-08 2003-07-07 从流水产生动力的装置和方法 Pending CN1668843A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39468502P 2002-07-08 2002-07-08
US60/394,685 2002-07-08

Publications (1)

Publication Number Publication Date
CN1668843A true CN1668843A (zh) 2005-09-14

Family

ID=30115754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038163942A Pending CN1668843A (zh) 2002-07-08 2003-07-07 从流水产生动力的装置和方法

Country Status (8)

Country Link
US (1) US7270513B2 (zh)
EP (1) EP1529164B1 (zh)
CN (1) CN1668843A (zh)
AT (1) ATE361421T1 (zh)
AU (1) AU2003281239A1 (zh)
CA (1) CA2492104A1 (zh)
DE (1) DE60313618T2 (zh)
WO (1) WO2004005708A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011375A (zh) * 2011-11-21 2014-08-27 卡洛·巴罗尼 具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机
CN108925254A (zh) * 2018-06-29 2018-12-04 陈霖 一种水动力杂草切碎设备

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507561B2 (en) * 2004-05-20 2009-03-24 Reliance Life Sciences Pvt. Ltd. Process for the production of polylactic acid (PLA) from renewable feedstocks
FR2879680A1 (fr) * 2004-12-17 2006-06-23 Marc Serge Brussieux Systeme de production d'energie hydroelectrique flottant
EP1831543A1 (en) * 2004-12-28 2007-09-12 Göran Emil Lagström An arrangement for converting kinetic energy of ocean currents into electric energy
MX2008008368A (es) * 2005-12-29 2008-09-08 Georg Hamann Dispositivo y sistema para producir energia hidraulica regenerativa y renovable.
US7540705B2 (en) * 2006-02-01 2009-06-02 Emshey Garry Horizontal multi-blade wind turbine
EP2047096A2 (de) * 2006-07-24 2009-04-15 Hoffmann, Johann Hydroelektrische einrichtung für wasserkraftanlagen
US20080044272A1 (en) * 2006-08-16 2008-02-21 Edward Robert Segal Utilizing alternative energy
US20090236855A1 (en) * 2007-01-08 2009-09-24 Michael Jordan Water Powered Generator and Method of using same
AT504753B1 (de) * 2007-01-30 2008-10-15 Hermann Riegerbauer Wasserkraftwerk
US8002523B2 (en) * 2007-10-26 2011-08-23 Borden Saxon D Turbine system and method for extracting energy from waves, wind, and other fluid flows
GB0724579D0 (en) * 2007-12-18 2008-01-23 Hydreau Ltd Waterwheel
JP5003759B2 (ja) 2008-01-24 2012-08-15 ユニマテック株式会社 フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤
AT507922A1 (de) * 2009-02-25 2010-09-15 Hermann Riegerbauer Wasserrad
SK288244B6 (sk) * 2009-03-30 2015-02-03 VLADIMĂŤR MĂśLLER Plávajúce vodné koleso, najmä ako multifunkčný generátor energie
CZ305010B6 (cs) * 2009-09-10 2015-03-25 Gwrd S.R.O. Náporový prvek
DK2507506T3 (da) * 2009-12-04 2020-01-06 Terry Henry Havenergidrevet anlæg
AU2011299053A1 (en) * 2010-09-10 2013-03-28 Future Force, Llc Apparatus and method for generating power from a fluid current
EP2751411B1 (en) * 2011-09-20 2016-03-09 Lightsail Energy, Inc. Compressed gas energy storage system using a turbine
CZ307781B6 (cs) * 2012-07-26 2019-05-02 UNIKASSET, spol. s r.o. Rotor náporové turbíny
US8957541B1 (en) * 2012-08-14 2015-02-17 David B. Jacobsen Spillway generator system
US9074491B2 (en) 2012-09-05 2015-07-07 General Electric Company Steam cycle system with thermoelectric generator
US9041235B1 (en) * 2012-10-18 2015-05-26 Amazon Technologies, Inc. Hydrokinetic power generation system
DE102012112929A1 (de) * 2012-12-21 2014-06-26 Heinrich Graucob Trommelstaudruckmaschine
CZ2014474A3 (cs) * 2014-07-09 2015-12-30 Metallkon Group S.R.O. Rotor náporové turbíny
DE102014110877B4 (de) 2014-07-31 2018-02-15 Heinrich Graucob Wasserkraft-Staudruckeinrichtung
RU2693346C1 (ru) * 2015-07-21 2019-07-02 Вячеслав Викторович Овсянкин Энергопоглащающий элемент Овсянкина для волновых электростанций
US10975832B2 (en) * 2017-06-02 2021-04-13 Donald Hollis Gehring Water current catcher system for hydroelectricity generation
WO2020140159A1 (es) * 2019-01-04 2020-07-09 Lopez Garrido John Turbina hidrocinética, para producir energía cinética y transformarla en energía eléctrica a través del caudal de presión y volumen de agua
AU2020236379B2 (en) 2019-03-08 2023-08-17 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US385261A (en) * 1888-06-26 Means for utilizing the current force of running water
US867192A (en) * 1906-09-13 1907-09-24 Robert W Gees Floating power plant.
US904892A (en) * 1907-12-17 1908-11-24 William J Pattosien Stream-power electric float.
US970196A (en) * 1909-08-02 1910-09-13 James T Dougine Hydraulic-power plant.
US972010A (en) * 1909-10-11 1910-10-04 Elijah R Mccreary Water-motor.
US1396609A (en) * 1920-05-04 1921-11-08 Said George P A Weisenborn Current or tide motor
US2442783A (en) * 1944-07-01 1948-06-08 Us Sec War Turbine rotor
US2413173A (en) * 1945-06-30 1946-12-24 Cote Romeo Ship propulsion
US2812737A (en) * 1956-10-12 1957-11-12 Hilton J Hoover Marsh boat
US3923416A (en) * 1974-04-04 1975-12-02 William L Frey Turbine
US3986787A (en) * 1974-05-07 1976-10-19 Mouton Jr William J River turbine
US4104536A (en) * 1976-04-27 1978-08-01 Anton Franz Gutsfeld Stream -or river-powered turbine
US4205943A (en) * 1978-01-25 1980-06-03 Philippe Vauthier Hydro-electric generator
US4241283A (en) * 1978-09-05 1980-12-23 Storer Richard R Sr Hydro-electric power plant
US4253795A (en) * 1979-02-16 1981-03-03 Mcqueen Sylvester Water wheel with level compensating buckets
US4383797A (en) * 1979-07-16 1983-05-17 Lee Edmund M Underwater turbine device with hinged collapsible blades
ES493868A0 (es) * 1980-07-31 1981-03-16 Martinez Parra Jose Sistema de produccion de energia electrica,mediante el apro-vechamiento de la fuerza que producen los movimientos de lasaguas del mar
US4335093A (en) * 1980-10-20 1982-06-15 Temple University Process of converting wind energy to elemental hydrogen and apparatus therefor
NL8101659A (nl) * 1981-04-02 1982-11-01 Arend Van Buytene Inrichting voor het benutten van de energie van stromend water.
US4446378A (en) * 1981-07-02 1984-05-01 Jose Martinez Parra System for the generation of electrical energy by utilizing the kinetic energy of seawater
JPS58104370A (ja) * 1981-12-16 1983-06-21 Toshizo Sakamoto 潮流利用の発電装置
DE3408959A1 (de) * 1982-11-10 1985-09-12 Rolf M. 1000 Berlin Schöpflin Oberflaechen-stroemungs-generator
US4590386A (en) * 1984-09-21 1986-05-20 Wiggs B Ryland Piggy back water power generator
DE4026638A1 (de) * 1990-08-23 1992-02-27 Friedrich Wilhelm Gondolf Anlage zur erzeugung von elektrischem strom aus wasserkraft
DE4112730C2 (de) * 1991-02-26 1998-07-23 Johann Christoph Riedel Vorrichtung zur Erzeugung von elektrischem Strom durch Wasserkraft
US5834853A (en) * 1994-07-25 1998-11-10 The Ruiz Law Firm Sea/river powered power plant
AUPN163795A0 (en) * 1995-03-10 1995-04-06 DIPNALL, David A device for extracting energy from moving water particles
US5946909A (en) * 1997-05-23 1999-09-07 Swort International, Inc. Floating turbine system for generating power

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011375A (zh) * 2011-11-21 2014-08-27 卡洛·巴罗尼 具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机
CN104011375B (zh) * 2011-11-21 2017-12-05 卡洛·巴罗尼 具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机
CN108925254A (zh) * 2018-06-29 2018-12-04 陈霖 一种水动力杂草切碎设备

Also Published As

Publication number Publication date
US7270513B2 (en) 2007-09-18
AU2003281239A1 (en) 2004-01-23
ATE361421T1 (de) 2007-05-15
WO2004005708A2 (en) 2004-01-15
WO2004005708A3 (en) 2004-04-15
EP1529164B1 (en) 2007-05-02
US20040096310A1 (en) 2004-05-20
EP1529164A2 (en) 2005-05-11
CA2492104A1 (en) 2004-01-15
DE60313618D1 (de) 2007-06-14
DE60313618T2 (de) 2008-01-10

Similar Documents

Publication Publication Date Title
CN1668843A (zh) 从流水产生动力的装置和方法
DE69630218T2 (de) Spiralturbine zur erzeugung von elektrische oder antriebsenergie
US6420715B1 (en) Method and apparatus for improved mixing in fluids
RU2606211C2 (ru) Установка для преобразования потока текучей среды в энергию
US4722665A (en) Turbine
CN1167575C (zh) 带***的转子叶片的转子
CN101889128B (zh) 涡轮组件
CN1636111A (zh) 水力涡轮发电机
CN101443546B (zh) 风力涡轮机和风力设备
EP3071755B1 (en) Power platform
KR101259593B1 (ko) 부유형 수저 정화 장치
DE3312692A1 (de) Rotor und windmotor
EP0935068A2 (en) Device to funnel fluid flow into a turbine
CN110526387B (zh) 一种基于充氧式复合纤维人工水草的河道生态修复装置
DE102005040805A1 (de) Durchström-Wasserturbine für den Einsatz in freier Strömung
US20240011460A1 (en) Water-driven elongated-conveyor turbine and method of using a water-driven elongated-conveyor turbine
DE102011052667A1 (de) Schwimmkraftwerk
WO2018132020A1 (en) Device and technique for generating power from moving water
DE2444803A1 (de) Turbine zur umwandlung der energie eines stroemenden mediums in elektrische oder mechanische energie mit hoechstem wirkungsgrad
US9169827B2 (en) Apparatus for generating electricity from wind power
CN2158926Y (zh) 浮筒式流水发电装置
CA3004950A1 (en) Vane device for generation of electricity
JP7506768B2 (ja) 水駆動の長尺コンベヤタービンおよび水駆動の長尺コンベヤタービンを使用する方法
EP0181754A1 (en) Turbine
AU597755B2 (en) Wind turbine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication