CN1639445A - 用于控制滤筛的方法 - Google Patents

用于控制滤筛的方法 Download PDF

Info

Publication number
CN1639445A
CN1639445A CN 02821417 CN02821417A CN1639445A CN 1639445 A CN1639445 A CN 1639445A CN 02821417 CN02821417 CN 02821417 CN 02821417 A CN02821417 A CN 02821417A CN 1639445 A CN1639445 A CN 1639445A
Authority
CN
China
Prior art keywords
filter cake
proppant
degradation agent
fluid
cake degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 02821417
Other languages
English (en)
Other versions
CN100540844C (zh
Inventor
柯蒂斯·L·博尼
迪安·威尔伯格
马修·J·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Prad Research and Development Ltd
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/214,817 external-priority patent/US6837309B2/en
Priority claimed from US10/227,690 external-priority patent/US6938693B2/en
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1639445A publication Critical patent/CN1639445A/zh
Application granted granted Critical
Publication of CN100540844C publication Critical patent/CN100540844C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • C09K8/703Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

在地下地层压裂或联合进行的压裂与砾石充填中引起滤筛的方法,通过在处理过程的早期下放一滤饼,然后注入支撑剂浆液,然后在支撑剂浆液注入继续进行时利用一种或多种滤饼降解剂以及可选的滤饼降解剂辅助剂以化学方式来破坏所说的滤饼,从而使得泄漏增大,裂隙中的支撑剂浓度增大,于是支撑剂滤筛出。该方法中还包括附加使用桥接促进材料,这些桥接促进材料可以单独使用,也可以与滤饼降解结合使用。

Description

用于控制滤筛的方法
技术领域
本发明涉及增大流入或流出地下井的流体流量。更具体地说,本发明涉及促进流体从岩层流入井筒(wellbore)内。尤其是,本发明涉及一些用于在水力压裂(传统的或利用卷管(coiled tube))过程中、在随后接着进行砾石充填的压裂过程中、或在一个操作中完成压裂和砾石充填的过程所形成的裂隙的大小、形状、位置和质量进行控制的方法。
背景技术
水力压裂、砾石充填、或在一个操作中完成压裂和砾石充填的操作被广泛地用于促进从地层中对烃类物质、水、或其它流体的开采。这些操作涉及在水力压裂过程泵送“支撑剂(proppant)”浆液(在裂隙形成之后用于把裂隙撑开的天然材料或合成材料)或在砾石充填过程泵送“砾石”。在高渗透性地层中,水力压裂处理的目的通常是形成短而宽的高传导性裂隙,以便为了绕过(bypass)在钻井和/或完井(completion)期间造成的附近井筒的损坏区域,从而确保在岩层和井筒之间形成良好的连通,从而增大可用于使流体流入到井筒内的表面积。砾石也可以是天然的或合成的材料,这种材料可以与支撑剂相同,也可以不同于支撑剂。砾石充填被用于“沙土”控制。所说的沙土是指会被携带到开采设备内的那些来自地层的任何颗粒状物质,例如泥土。砾石充填是一种沙土控制方法,用于防止开采出地层沙土,在这种沙土控制方法中,在井筒内放置一钢制滤网(screen),并且在周围的环形空间(annulus)内充填预制的砾石,这些预制的砾石被制成具有特定尺寸大小,以便防止那些会堵塞地下设备和地面设备,并且减小流量的地层沙土通过,从而。砾石充填的主要目的是对地层进行稳定,同时使得对井的生产能力所造成的损害达到最小。
有时,在没有滤网的情况下来完成砾石充填。高渗透性的地层常常巩固性很差,因此,需要进行沙土控制。于是,在与砾石充填一起进行的单一的连续的操作(压裂和充填)中,常常联合采用了水力压裂处理,利用这种水力压裂处理来产生短而宽的裂隙。为了简明起见,在下面的描述中,我们可能只提到水力压裂、在一个操作中进行的压裂和砾石充填(压裂和充填)、或砾石充填中的任何一个,但是,意思是指上述这些操作的全部。
支撑剂或砾石在开采地层的上部对井筒的充填是不希望发生的。如果发生了这种不希望发生的现象,那么,就必须对井筒进行清除,以便可以进行其它各种诸如放置工具等的下井操作,以便可以对流体进行最佳地开采。此外,如果这种操作滤筛太迟或根本不进行,即,如果裂隙继续增大,使裂隙的长度和/或高度超出了所需要的和所期望的值,那么,就不会产生最佳的充填和期望的裂隙尺寸和形状,从而也就不能增大产量,也不能防止支撑剂或沙土的回流(flowback),这种情况是很不利的。
正如所说的那样,希望产生短而宽的裂隙。然而,利用传统的压裂处理并不总能获得短而宽的裂隙。用于特意地形成短而宽的裂隙的最常用的方法是在泵送操作期间引起末端滤筛(tip screenout)(TSO)。在末端滤筛中,由于流体泄漏(leak-off)到地层内,因此,在裂隙末端固体浓度变得很大,以致于浆液不再流动。这些浓缩的支撑剂浆液就把裂隙堵塞(plug)住,并且防止裂隙继续增大。在形成滤筛之后,向地层内再泵送支撑剂/流体浆液,使得裂隙变得更宽,并且在裂隙中放入每表面积具有大浓度的支撑剂。这些处理的设备依赖于对被处理地层的准确的机械特性、渗透性、储层压力和流体饱和度的了解。在执行大部分这些处理之前,执行小的压裂处理(有时被称作“数据压裂”或“小压裂”),以便对这些特性进行测量,并且地层对这些水力压裂处理的反应。常常在工作进行中对这些处理设计进行修改,以便采用这些新的信息。重要的设计参数有:填料(pad)大小、阶段(stage)的大小和数目、在每个后续阶段中支撑剂或砾石浓度、流体的性质、在每个阶段所用的添加剂的性质。通常借助于本行业中可获得的计算机模型来完成这种处理设计和修改。
填料是指不含支撑剂的流体,在包括起用支撑剂或砾石的一些阶段之前,这种不含支撑剂的流体被泵送,以便开始形成一裂隙并使裂隙延伸。这种填料通常还有另一种作用,在所形成裂隙的表面上形成一覆盖层,该覆盖层被称作“滤饼”。这个滤饼减小了从裂隙流入到地层内的流体流量(影响了工作的“效率”(见下面的描述))。滤饼可以由一些粘性剂来制成,这些粘性剂通常是,例如,聚合物。为了那个目的,尤其是,如果裂隙表面的孔很大,那么,滤饼也可以通过把一些添加材料添加到用于形成滤饼的流体中来制成。在这种使用中,被选择性地添加的材料通常被称作流体损失控制添加剂或FLA。
在水力压裂过程中,尤其是在低渗透性地层中,希望具有尽可能长的裂隙(以便形成尽可能大的裂隙表面,以便流体流入到裂隙内,并最终流入到井筒内),为了获得长的传导性的裂隙,通常避免采用会引起末端滤筛的操作模式。如果在整个设计处理液被泵送之前,在这种压裂操作中出现末端滤筛的情况,而该情况可由水压的升高而得知,那么,泵送速率就会被降低,或者是,处理最可能被停止,从而这种处理被认为无效。我们将把这种不希望具有末端滤筛和不发生末端滤筛的水力压裂工作设计和工作执行称作“传统的”压力压裂。
另一方面,有时希望具有末端滤筛。在希望具有末端滤筛的特殊情况中通常所采用的设计特征常常涉及这样一些方法,这些方法确保流体泄漏量相对于支撑剂注入的速率和量而言是很高的。这可以通过利用小填料、利用很少或没有流体损失添加剂、在处理的较早期利用较高浓度的支撑剂、较慢地泵送的方法、以及利用在压裂和组合的压力/砾石充填领域中普通技术人员熟知的方法来实现。
不幸的是,尽管在处理期间,由井下压力计所收集到的数据压裂信息、压力瞬时值表明在许多甚至大部分希望具有末端滤筛(TSO)的处理中并不发生所说的末端滤筛。流体在裂隙的末端仍然可流动,在整个处理过程中裂隙末端继续增大,于是,在裂隙中达不到期望的支撑剂浓度。因此,形成长而细的裂隙,于是,不能获得期望的裂隙传导性。通常,当希望末端滤筛时,必须通过降低泵送速率或增大支撑剂浓度来引起末端滤筛。
不能实现适当的末端滤筛有两个主要的原因。第一个原因是,对于支撑剂体积而言,裂隙可能太大。a)当填料太大,或b)当效率太高,或c)当在工作设计中支撑剂体积与浆液体积的比率不足够高时就会发生不能实现适当的末端滤筛。(当通过流体和基质的特性或通过添加流体损失控制添加剂来把流体泄漏控制到一个可接受的低的程度时,压裂操作的“效率”是高的;当泄漏程度高时,效率就低,从而必须泵送非常大量的流体,以便产生期望的裂隙尺寸和形状,并且放置规定量的支撑剂或砾石。)第二个原因是,对于支撑剂而言,裂隙宽度可能太大,从而在裂隙中不能形成一桥。这可能是由于初始设计不好(例如在选择支撑剂直径方面设计不好)或者是宽度增大超过了期望的值。
直到现在,除了把工作设计更得好以外,处理这些问题的主要方法是针对于对流体损失控制添加剂的选择以及使用这些添加剂的工作阶段进行选择方面进行优化,尤其是如果主要问题在于对于支撑剂体积而言裂隙太大的情况。
在压裂过程中利用纤维来控制支撑剂回流。在这种情况中,以最佳浓度来添加纤维,以便控制支撑剂回流,但并不显著影响裂隙传导性。如果利用玻璃纤维,例如,这个浓度大约为支撑剂重量的约1%。在玻璃纤维被正常使用的情况下,尤其是在低渗透性的地层中,在泵送期间,这个浓度不足以造成桥接(bridging)。有时,当流体粘度很低时,纤维也被用于帮助支撑剂的输送。在这些处理中,通常故意地去避免末端滤筛;通过仔细的预处理工作的设计,尤其是对泵送时间的选择,来保持低的支撑剂浓度。例如,在这些处理过程中,在传统的工作设计上,填料体积增大,以便确保在支撑剂/纤维浆液进入裂隙之前产生足够的裂隙宽度。
由于地层的真正性质是未知的而且是变化的,因此,在很大程度上,成功地获得末端滤筛的能力是很不确定的。理想地是,能获得一些方法来使得当需要末端滤筛时就能导致末端滤筛,并且导致末端滤筛更多地取决于操作者控制下的工作的特征(尤其是流体和和所用的流体损失控制添加剂的化学性质),而不是取决于地层的未知的变化性。因此,需要一些更可靠的方法来确保所期望的末端滤筛会发生,以便允许在设计末端滤筛处理方面具有更大的灵活性。
发明内容
在一个实施例中,当期望发生末端滤筛时,就通过向支撑剂浆液添加桥接促进剂来导致末端滤筛。在另一个实施例中,桥接促进剂(bridging-promoting agents)是一些纤维,这些纤维以高于用于回流控制常用浓度的浓度被添加到支撑剂浆液中,并且这些纤维在处理的早期被加入,以便引起支撑剂桥接,并在泵送期间造成末端滤筛。本发明的另外一个实施例是通过在增产(stimulation)处理的早期使用高浓度的桥接促进剂来特意地引起末端滤筛。本发明的另一个实施例是通过在增产/砾石充填的组合处理中尤其在水力压裂/砾石充填过程中,在处理早期使用高浓度的桥接促进剂来特意地引起末端滤筛。本发明的另外一个实施例是通过在使用环形滤网(annular screen)的增产/砾石充填联合处理中,在处理的早期使用高浓度桥接促进剂来特意引起末端滤筛。本发明的另一个实施例是除了在处理早期使用高浓度的桥接促进剂以外,利用对处理参数进行适当的选择,以增加发生末端滤筛的可能性,从而引起末端滤筛。另外的一些实施例是这样一些在先的方法,即在这些方法中,在处理后期添加桥接促进剂。另外的一个实施例是一种支撑剂浆液,这种支撑剂浆液包含足够的桥接促进剂,以便当这些桥接促进剂被注入到裂隙内时能使这些浆液进行筛滤。
本发明的另外一个实施例是这样一种方法,即,在对地层进行增产期间,通过支撑压裂、通过形成滤饼、然后在把支撑剂注入到裂隙内的同时利用一种或多种滤饼降解剂来使滤饼降解,从而形成滤筛。在一些实施例中,滤饼是由用于浆液中的载运流体的粘性剂制成的,或由流体损失添加剂(fluid loss additive)制成,或者是由所说的粘化剂和损失添加剂共同形成的。在一些实施例中,滤饼降解剂可以是氧化剂、酶、酸或它们的混合物。另外一个实施例是一种在地层增产处理过程形成滤筛的方法,其中的增产处理包括以高于压裂压力把支撑剂的浆液注入到载运流体中,以便形成一个或多个裂隙,这种方法包括:注入用于形成滤饼的填料流体;注入一个或多个包括载运流体中的支撑剂的第一浆液阶段,利用滤饼降解剂来对滤饼进行降解,同时注入一个或多个包括载运流体中的支撑剂的第二浆液阶段。在这种方法的其它实施例中,所说的填料流体包括流体损失添加剂、滤饼降解剂、滤饼降解剂辅助剂及它们的混合物中的一种或多种,只要对于所包括的滤饼降解剂而言,没有包括针对其的滤饼降解剂辅助剂即可;一个或多个第一浆液阶段包括流体损失添加剂、滤饼降解剂、滤饼降解剂辅助剂及它们的混合物中的一种或多种,只要对于所包括的降解剂而言,在第一浆液阶段中没有包括针对其的滤饼降解剂的辅助剂,或者在填料中没有滤饼降解剂辅助剂;所说的一个或多个第二浆液阶段包括滤饼降解剂、滤饼降解剂辅助剂及它们的混合物中的一种或多种。在另外的实施例中,填料流体和一个或多个第一浆液阶段均包括流体损失添加剂、第一滤饼降解剂和用于第二滤饼降解剂的滤饼降解剂辅助剂,在处理条件下,所说的第二滤饼降解剂比第一滤饼降解剂更具活性;所说的一个或多个第二浆液阶段包含第二滤饼降解剂。在另外的实施例中,滤饼包括聚合物,该聚合物在处理条件下易受到酶促和氧化的降解;第一滤饼降解剂存在于填料中,并且包括用于对聚合物进行降解的酶;第二滤饼降解剂存在于一个或多个第二浆液阶段中,并包括用于对聚合物进行降解的氧化化合物;对于第二滤饼降解剂而言,第二滤饼降解剂辅助剂存在于一种或多种填料流体中、一个或多个第一浆液阶段、一个或多个第二阶段中,并且是叔胺。在另一个实施例中,滤饼包括可酸溶解的固体颗粒化合物,第二滤饼降解剂存在于一外或多个第二浆液阶段中,并包括一种酸,在处理条件下,这种酸至少能对所说的可酸溶解的固体颗粒化合物进行部分溶解。在另外的实施例中,一种或多种填料流体、一个或多个第一浆液阶段、一个或多个第二浆液阶段包括桥接促进材料。在一个优选实施例中,滤饼包括聚合物,在处理条件下,该聚合物易受到酶促和氧化剂降解;第一滤饼降解剂存在于所说填料中,并包括一种酶,这种酶对所说聚合物进行降解;第二滤饼降解剂存在于一个或多个浆液阶段,并包括一种氧化化合物,这种氧化化合物对所说的聚合物进行降解;用于第二滤饼降解剂而言,第二滤饼降解剂辅助剂存在于一种或多种填料流体中,存在于一个或多个第一浆液阶段中,以及存在于一个或多个第二浆液阶段中,并且是一种叔胺;所说的一个或多个第一浆液阶段中的至少一部分包含桥接促进材料。在另外实施例中,在处理之前,放置一沙土控制滤网。在另外的实施例中,所说的处理是压裂/砾石充填的联合处理。本发明的另外的实施例提供了一些在处理过程中引起末端滤筛的方法,如果不采用本发明中的这些方法则是难以引起末端滤筛,或者是很昂贵或效率不高,甚至是不可能引起末端滤筛,那样就会为操作者提供了用于控制处理的附加的方式。
附图说明
图1表示出了具有流体损失添加剂没有流体损失添加剂情况下的典型的流体泄漏体积数据。
图2是具有泄漏添加剂和没有泄漏添加剂情况下的泄漏流体渗透到地层内的深度示意图。
图3表示出了在使用流体损失添加剂、滤饼降解剂和滤饼降解剂辅助剂的两种不同组合的一些实验中动态的流体损失体积和流体粘度与时间的函数关系。
图4表示出了在一个实验中停止添加流体损失添加剂并且没有滤饼降解剂或滤饼降解剂辅助剂的情况下动态的流体损失体积和流体粘度与时间之间的函数关系。
图5是一示意图,表示出了添加流体损失添加剂、纤维、滤饼降解剂和滤饼降解剂辅助剂对裂隙的形成所产生的作用。
优选实施例的描述
为了有助于理解通过工作设计在水力压裂以及联合的压裂/砾石充填操作过程中所产生的特意的末端滤筛,可参见M.Economides andK.notle,eds.,Reservoir Stimulation,3 rd edition,John Wiley & Sons,Ltd,New York(2000)pp 10-21 to 10-24;and F.L.Monus,F.W.Broussard,J.A.Ayoub and W.D.Norman,“Fracturing Unconsolidated Sand FormationsOffshore GulfofMexico,”SPE 24844,(1992)。我们已发现,我们能制造出这样一种情况,即,在这种情况中,通过改变浆液的两个特性中的一个或两个,使得裂隙中的浆液不再是可流动的。通过添加除支撑剂以外的固定材料,使得固体可以被改变(altered),从而使得与未添加所说材料时使浆液不再是可流动的浆液浓度相比,浆液在更低的浓度就不再是可流动的,或者是,可以增大流体泄漏,从而使得固体的浓度增大,或者两者都是。我们已找到这样一些方法,即,通过对注入流体的组成的操纵和/或通过添加诸如纤维等的桥接促进材料控制性地特意地在裂隙中产生滤筛。当不能筛滤的原因是由于对于支撑剂体积而言裂隙太大的缘故时,有一种方法是特别有效的,这种方法是先形成一滤饼,然后在适当的时间减小滤饼大小或者增大渗透性。我们所用的术语滤饼降解包括通过使滤饼的至少一种成分的至少一部***解或溶解来减小滤饼的大小或增大滤饼的渗透性。这可以这样来完成,例如,通过在工作中利用一种或多种适当的裂解剂(breaker)或溶解剂(dissolver)来使滤饼裂解或溶解,我们称其中的裂解剂和溶解剂为滤饼降解剂,有时这种滤饼降解剂具有附加的裂解剂或溶解剂辅助剂,我们称这种裂解剂或溶解剂辅助剂为滤饼降解剂辅助剂。裂解剂或溶解剂可以被延迟,例如利用迟延剂或通过胶囊化来使其被迟延。当对于支撑剂体积而言,裂隙太大时,在整个工作中或至少在工作的填料和/或早期阶段添加一种或多种裂解剂或溶解剂。
当不能筛滤是由于对于桥接的支撑剂而言裂隙太宽的缘故时,其它一些方法则特别有效。其中一个例子是,通过在工作的后阶段中添加一适当的裂解剂,有时该裂解剂还带有裂解剂辅助剂,或者在工作的后阶段中添加多种裂解剂或一种更好的裂解剂来降低在工作的后阶段中的效率。在这个实施例中,在填料或在早期支撑阶段中可以不用裂解剂。当滤饼对流体流动的阻力主要是由于这种流体中或流体损失控制添加剂(FLA)中的聚合物造成时,这些裂解剂是有效的。
如果滤饼对流体流动的阻力主要是由于流体损失控制添加剂中的碳酸钙或一种或多种其它的可酸溶解的材料时,通过向后阶段中添加酸就能使滤饼溶解。
另外一种方法是向支撑剂添加纤维或其它材料(被称作桥接促进材料),以便有助于桥接,这种方法可以单独使用也可以与上面的对滤饼进行裂解或溶解的基本一种方法结合使用。筛滤从桥接开始,也就是,裂隙中的固体停止移动,而液体则能继续流动;在裂隙中的给定位置处,影响桥接倾向的重要参数是浆液中颗粒大小和形状分布、裂隙宽度和支撑剂的体积浓度。添加桥接促进材料对桥接产生直接影响;在处理期间对滤饼的特意破坏可影响支撑剂浓度。
这些涉及对滤饼进行裂解和溶解以及添加纤维的方法能同时地或连续地被组合使用。这些方法还能被用于特意地形成更宽的裂隙(这些裂隙具有更大的裂隙传导性)。这些方法还能被用作一种改道(diversion)形式,也就是说,操作者能特意地使一条裂隙的增大和充填停止,并且在没有区域隔离(zonalisolation)的情况下引起一条新的裂隙。这些方法可在整个裂隙中或只在裂隙的一部分中破坏所说的流体损失控制添加剂(FLA)。通过加速泄漏,可选择地通过帮助桥接,操作者能决定并控制产生滤筛的时间和地点(从而避免不能产生滤筛的不期望的结果,能避免非常缓慢的和无效率筛滤的结果,也能避免在地层上面的井筒中的产生滤筛的结果)。
这些涉及滤饼降解的方法的重要的和统一构思是包括滤饼的降解,在处理早期放下一滤饼,然后注入支撑剂浆液,然后当支撑剂浆液继续注射时,通过滤饼降解剂来使滤饼发生化学变化,从而使泄漏增大,使裂隙中的支撑剂浓度增大,从而使支撑剂筛滤。根据这些因素,例如在处理条件下(例如温度和载运流体的pH值)所使用的一种或多种滤饼降解剂的反应性,所沉积的滤饼的厚度(例如受载运流体粘度和地层渗透性的影响)、以及其它的工作设计参数例如工作的计划时间、裂隙的尺寸大小、支撑剂的颗粒大小,添加各种化学物质的时间将会发生改变。例如,填料的泵送时间必须足够长和/或含有足够的流体损失控制添加剂,以便确保下放所需的滤饼。滤饼降解必须不能太快也不能太迅速地开始以致于筛滤产生于在其被期望产生之前。相反,滤饼降解必须不能太慢也不能太迟地开始,以致于筛滤产生得太晚或不产生。通常在多个阶段中完成支撑剂的添加。在每个阶段中,注入特定浓度的支撑剂,注入时间持续一特定的时间量。连续的阶段通常具有连续增大的支撑剂浓度。支撑剂浓度还可以被平滑地以斜坡(ramped)方式变化,也就是说,在装填支撑剂阶段期间支撑剂浓度连续增大。为了有助于描述,典型的工作将被分成填料阶段和两组支撑剂浆液阶段。在填料阶段,裂隙被开始形成,滤饼被放下。在第一组阶段中,裂隙被增大。在第二组阶段中,产生滤筛,并且用支撑剂充填裂隙。正如所说的那样,工作的一些其它特征会强烈影响添加化学物质的时间。如果填料必须很小,下放滤饼的工程就可以持续在第一组阶段中的全部或早期阶段中。如果滤饼降解剂缓慢地起作用,甚至可以在填料阶段中开始添加,那么,降解可以在第一组阶段中开始。如果滤饼降解剂非常快速地起作用,那么,可以只在第二组阶段中开始添加。可以使用反应力逐渐增大的滤饼降解剂,或者是,可以同时或连续使用对滤饼的不同成分进行降解的滤饼降解剂。如果滤饼降解剂不具有足够的反应力,那么就可以添加滤饼降解剂辅助剂。可以在添加滤饼降解剂之前或之后来添加所说的滤饼降解剂辅助剂,而且是以这样的方式来添加的,即,使得只在第二组阶段中才共同存在滤饼降解剂和滤饼降解剂辅助剂,或者是,在第二组阶段中一起添加滤饼降解剂和滤饼降解剂辅助剂。在所有的填料和一些阶段中,可以添加一种桥接促进剂。在本发明的范围和构思内,根据诸如化学物质和材料的可获得性、设备的可获得性和添加化学物质和材料的能力、成本等因素,在地层增产领域中的普通技术人员能以许多种不同的方式来设计出这样的处理,即,这种处理能产生具有特定最终参数(例如尺寸大小和传导性)的裂隙。
优选地是,本发明是这样来实施的,首先考虑关于井、地层、可获得的流体、成功的压裂增产的标准方面的信息,然后设计一个优化的设计方案,用于根据这些数据和标准来增大被增产的井的性能。这种设计方案包括注入一定量的经选择的填料流体和一定量的经选择的压裂流体。通常这样来完成,即,利用压裂设计和评估软件来分析,其中,压力梯度与裂隙长度和高度进展的算法,完整的泄漏信息、多次流体注射的效果以及它的温度变化相结合。对于水力压裂或砾石充填或两者的组合而言,利用聚合物(通常是交联有硼、锆或钛化合物)或利用粘弹性表面活性剂(viscoelastic surfactant)结构(“VES结构”)来使用于填料的或用于形成浆液的含水流体被粘性化,其中,利用可形成适当大小和形状的胶团(micelles)的特定的表面活性剂就能形成所说的粘弹性表面活性剂结构。本发明中能采用任何的压裂流体或砾石充填流体,只要它们能与本发明的专用材料(流体损失控制添加剂、纤维、裂解剂、裂解剂辅助剂)能相容,并且能与地层、支撑剂以及期望的处理结果相适合即可。因此,所说的流体可以例如是基于含水流体或基于油的流体、酸性或碱性,这些流体可包含一种或多种聚合物、粘弹性表面活性剂或胶化油。聚合物可以是交联的。本发明的这些方法可以用于原始的工作设计,或者是,所说的工作可以在没有末端滤筛的情况下设计,然后,在工作执行期间可以决定需要末端滤筛,于是,对所说工作进行修改。(注意,在本说明书中,我们常常把任何的末端滤筛称作末端滤筛(TSO),但是,末端滤筛的意思是指在裂隙中产生的滤筛,而并不是必须在距井筒最远的裂隙的端部中产生的滤筛;关键的是在期望的时间和位置来而并不是在井筒中产生所说的滤筛)
我们这里所用的术语“传统压裂”是指这样一种水力压裂,即在这种水力压裂中,不想产生也不希望末端滤筛。我们所用的术语“末端滤筛”的意思是指不是在井筒中而是在裂隙中但并不是必须在远离井筒的裂隙端部中的滤筛。在传统的压裂中,是要避免那些可能导致末端滤筛的操作模式。如果在传统压裂操作中遇到末端滤筛,在整个设计处理被泵送之前,这可从泵送压力的增大来推导出,那么,可以对工作参数例如泵送速率或支撑剂浓度作出改变,以便尽力减小发生末端滤筛的可能性。然而,这种处理常常被停止,并且被认为是一种失败。
本发明的填料包含载运流体和粘性化聚合物或粘弹性表面活性剂。它可另外含有通常用于这些流体中的其它一些添加剂,只要填料的成分不对地层或压裂流体造成损害即可。在本发明中,被用作填料的流体通常可包含诸如抗腐剂、减摩剂(friction reducer)、泥土稳定剂、阻垢剂(scaleinhibitor)、生物杀灭剂等物质。
载运流体提供一种介质,用于把其它成分输送到地层内。优选地是,所说的载运流体是水或盐水。可包括选择的有机盐或无机盐或混合物,只要它们能与填料、压裂流体、地层以及地层流体中的成分相容即可。通常利用约含1%~7%重量的氯化钾(KCl)或氯化铵的溶液作为压裂流体和填料中的基液(base liquid),以便使泥土稳定,并防止泥土膨胀。有时,可以采用其它的盐水或海水。有机阳离子盐例如四甲基氯化铵是一种有效的盐,其重量百分比约为0.2~0.5,但并不局限于此。
通常,如果聚合物被用于使流体变粘,那么,该聚合物是水溶性的。常用的有效的水溶性的聚合物包括:聚乙烯基的聚合物,聚甲基丙烯酰胺、纤维素醚,多糖,磺化油(lignosulfonate),胺,碱金属,及它们的碱土盐。典型的水溶性的聚合物的具体的一些例子是:丙烯酸-丙烯酰胺共聚物,丙烯酸-甲基丙烯酰胺共聚物,聚丙烯酰胺,部分水解的聚丙烯酰胺,部分水解的聚甲基丙烯酰胺,聚乙烯醇,聚醋酸乙烯酯,聚环氧烷(polyalkyleneoxide),羧基纤维素,羧基烷基羟基乙基纤维素,羟乙基纤维素,半乳甘露聚糖(例如瓜尔胶),取代的半乳甘露聚糖(例如,羟丙基瓜尔,羧基甲基羟丙基瓜尔,和羧基甲基瓜尔),由淀粉衍生糖的发酵所获得的杂多糖(例如,黄原胶),以及它们的铵和碱金属盐。优选的水溶性的聚合物包括羟乙基纤维素,淀粉,硬化葡聚糖,半乳甘露聚糖以及取代的半乳甘露聚糖。
通过选择期望的泄漏参数,利用具有期望流体的样本和地层样本或类似于地层的岩石样本来测量泄漏,就能确定出最佳的聚合物浓度。泄漏由三个术语来限定:“喷射(spurt)”,它是指在压裂的表面(face)上形成滤饼阻挡之前流体起初的快速泄漏,并且以加仑/100平方英尺来计量,对于随后发生的泄漏甚至是滤饼形成之后发生的泄漏,并且该泄漏可以由粘度和建壁倾向性(wall-building propensity)来控制的参数为:建壁流体损失系数Cw和粘度控制流体损失系数Cv。如果没有建壁材料存在的话,Cw是不适用的。如果具有低的、有限的Cw,那么,Cv是不适用的。Cw和Cv是以英尺/分钟1/2来计量的。“喷射”,Cw和Cv的优选值分别为0至约5,约0.001至约0.05和约0.001至约0.05;更优选的值为0至约2,约0.001至0.008和约0.001至0.008;最优选的值是0至1,约0.001至0.003和约0.001至0.003。这些参数的值(以及它们所表示的实际行为)能显著改变,只要在适当的时间产生适当的滤饼即可。在下面的文章里给出了用于确定这些值的一种实验方法,该文章为:Navarrete,R.C.,Caweizel,K,E.,andConstien,V.G.:“Dynamic Fluid Loss in Hydraulic Fracturing Under RealisticShear Conditions in High Permeability Rocks”,SPE Production andFacilities,pp138-143(August,1996)。
任何基于粘弹性表面活性剂的流体都能被使用,在填料过程中和/或填料之后,所说的填料与地层、地层流体、任何添加剂都能相容。在美国专利US5551516,US5964295;US5979555;US5979557;US6140277;US6258859中描述了一些特别有效的一些流体。裂解剂也可以用于粘弹性表面活性剂。
在本发明中的那些部分地或主要通过对滤饼进行适当定时定位的破坏或弱化的一些方法中,填料和/或支撑剂载运阶段最好还包含一种或多种流体损失控制添加剂,以便形成适当的滤饼。如果它们不包含能形成适当滤饼的聚合材料,例如,如果利用粘弹性表面活性剂来使压裂填料和/或载运流体粘性化,那么,填料和/或支撑剂载运阶段必须包含一种或多种用于形成适当滤饼的流体损失控制添加剂。流体损失添加剂可以是例如,但不限于水溶性的聚合物或交联的水溶性的聚合物。如果用聚合物或交联聚合物来使填料和/或载有支撑剂的流体粘性化,那么,流体损失控制添加剂可以是相同的或不同的聚合物或交联聚合物。对载运流体进行粘性化所需的量可以足够的量,或者可以被更多地添加以便形成适当的滤饼。流体损失控制添加剂也可以是固体,例如石棉、颗粒状淀粉、碳酸钙(方解石)、粒状云母、塑料颗粒、固体蜡或蜡-聚合物颗粒、固体的可油溶解的树脂颗粒、不能溶解的盐、能缓慢溶解的盐(例如,氯化钠,前提是载运流体和地层水具有高的离子强度)以及它们的混合物。流体损失控制添加剂必须包含至少一种这样的成分,即,这种成分能被裂解或降解(例如,聚合物氧化、或交联天然聚合物的酶降解)或被溶解(例如用酸对碳酸钙进行溶解,或用溶剂来对蜡或树脂进行溶解)。
本发明是这样来实施的,即,首先通过实验然后常常用计算机模拟和建模,来确定流体损失控制添加剂和裂解剂或裂解剂(最好带有裂解剂辅助剂)或溶解剂(如酸)的最佳的量以及确定出应当包括这些量的阶段,以便使滤饼在期望的时间和地点发生裂解和溶解。在地下井增产领域中的普通技术人员能利用对化学物质和条件(尤其是所涉及的时间和温度)的了解容易地实现这些。这个过程可以这样来完成,例如,通过调节化学和/或工作泵送设计或两者都做,包括采用迭代方式,通常采用模拟直到预计出期望的结果。我们称这些被用于使滤饼和/或流体损失添加剂裂解或溶解的材料为“滤饼降解剂”。在一些实施例中,可以不添加流体损失控制添加剂,滤饼可以只通过粘化剂来形成。在另外一些实施例中,例如,当利用粘弹性表面活性剂来使流体粘性化时,滤饼可以完全由一种或多种流体损失控制添加剂来形成。在一个优选实施例中,填料和可选择的第一支撑剂装载(proppant-laden)阶段包含第一裂解剂和用于第二裂解剂的裂解剂辅助剂(例如,可以是催化剂)。随后的阶段包含第二裂解剂。这些裂解剂和裂解剂辅助剂可以是固体或液体,并且可以被迟延(例如通过胶囊化)。中间阶段可包含两种裂解剂或两种裂解剂加上用于第二裂解剂的裂解剂辅助剂,或只包含第二裂解剂和它的裂解剂辅助剂。因此,当第二裂解剂接触滤饼时,滤饼已经包含一种用于第二裂解剂的裂解剂辅助剂。于是,工作的各个阶段(填料,早期的支撑剂阶段,后期的支撑剂阶段)能包含流体损失控制添加剂、不同裂解剂、用于不同裂解剂的裂解剂辅助剂的各种组合。裂解剂辅助剂可以在其对之起效的裂解剂被使用之前,之时,或之后被泵送。用于形成滤饼的材料将始终位于填料、或者粘化剂(聚合物或交联聚合物)还是添加的流体损失控制添加剂。裂解剂并不是必须存在于填料中,尤其是在温度足够高以致于至少发生一些自然降解的情况下。类似地,如果已经形成了令人满意的滤饼,那么,流体损失控制添加剂并不是必须存在于所有的含有支撑剂的阶段或一些含有支撑剂的阶段。所有这些方法都与通常的实践是相反的(counter),在这些方法中,期望把流体效率保持得尽可能高,直到完成增产。
如果通过对一成分(例如,该成分为碳酸钙,但并不局限于碳酸钙)的溶解而使滤饼被降解,那么,这就可以通过在适当的一个或多个阶段中,在聚合物、交联聚合物或粘弹性表面活性剂(所有那些在现有技术中是已和的并与酸结合的)中利用酸来完成。适当的酸可以是现有技术中已知的用于对碳酸钙进行溶解的任何酸,例如但不局限于:无机酸,如盐酸、氢氟酸以及这两种酸的混合物。也可以采用有机酸,例如便并不局限于:蚁酸,乙酸,氟硼酸,柠檬酸,这些有机酸可以与无机酸结合使用,也可以单独使用。可以利用添加材料例如螯合剂来提高酸的溶解力。例如但并局限于:氨基聚羧基酸,如乙(撑)二胺四乙酸(ethylenediamine tetraacetic acid),二乙基三胺五乙酸(diethylenetriaminepentaacetic acid)及它们的混合物。
这种在压裂工作期间利用酸来溶解滤饼的做法与传统压裂期间通常采用的做法是相反的,在传统的做法中是不期望在工作期间除去滤饼的。例如,已知有一些用于酸压裂的方法中,填料和酸阶段是交替进行的(alternated)。每个填料阶段都包含一种用于形成滤饼的流体损失控制添加剂或聚合物或乳状液,所形成的滤饼阻断已被酸侵蚀的基质(matrix)区域(或者在这个区域中已形成有孔洞)并且把酸转移到先前未被酸侵蚀的一部分基质。在这种应用中,不希望滤饼被酸除去。
通常理想的是,在进行增产之后使滤饼发生降解,以便减小裂隙表面“表层”的损害,并使得从基质流入裂隙的流体流动量到最大,最终使得流入井筒的流体流量达到最大。这种降解尽管很慢,但通常是自然发生的,是通过热过程,或通过在典型的浆液流体中对滤饼的溶解,或通过物理过程来进行的,这尤其是由于反向流动(the reversal of flow)(在处理期间,流体流出裂隙和流入地层,在开始开采时,所说的流体就流出地层和流入裂隙)的缘故。在先前没有采用滤饼降解剂来导致在水力压裂处理期间非常快速的滤饼降解。因为利用本发明中的方法来特意使滤饼降解,从而能使得降解更快,这样,就大大加快了流体开采的速率。
目前,一种防止末端滤筛的方法是把工作设计得使得对于所用的支撑剂的大小的桥接而言裂隙太宽。相反,一种用于促进末端滤筛的方法是添加一种材料,这种材料有助于或能促进桥接,并能阻止裂隙中的支撑剂的移动。我们已经发现,某些材料当以足够的浓度被添加到支撑剂浆液中时,会促进或帮助支撑剂颗粒的桥接(通过显著地提高和加强颗粒之间的相互作用的程度来实现)并且使裂隙中的支撑剂的移动停止。我们把这些材料称作“桥接-促进材料”或桥接-促进剂。我们已经发现,在一工作期间,无论所说工作是否是为末端滤筛设计的,都可以通过向支撑剂浆液添加适当数量的桥接促进材料来导致末端滤筛。尽管我们将以纤维为例来描述本发明的实施例,但是,其它材料也能用作桥接促进剂,例如,针状物(needles),原纤维,小板,不规则颗粒,薄片,条带,尤其是纵横比大于约3的材料,最优选的是纵横比大于约300的材料,但也并不局限这些材料。任何有机的和无机的,天然的或合成的材料都是适合的,只要它们在脱水(dewater)时可以减小流体/支撑剂浆液的流动性。纵横比约大于3的材料是优选的材料,这是因为这些材料会使支撑剂充填层(proppant pack)具有更大的渗透性。在美国专利US5330005,US5439055,US5501275,US5782300中公开特别适合的材料,在此引用这些专利文献作为参考,但所说的材料也并不局限于这些。在单一处理中,可以同时或连续使用多于一种的桥接促进材料。用于制造桥接促进剂的材料不是关键变量,只要流动性减小剂与使用这种流动性减小剂的流体中的其它成分不发生化学反应,并且这种流动性减小剂在使用它们的环境中是稳定的,并且流动性减小剂和含有流动性减小剂的浆液能被可获得的设备进行处理、混合和泵送即可。下面的描述主要基于利用桥接促进材料的方法来作为促进末端滤筛的方法,但是,应当知道,添加桥接促进材料以及滤饼形成/降解的概念可以被同时或连续组合。
在传统的水力压裂中,利用纤维来防止支撑剂回流,也就是说,把支撑剂保持在裂隙内,从而不会使得这些支撑剂与流体一起被开采出来。这就允许更强烈的(更高速率的)裂隙流体以及被开采的烃类进行回流,而且不会发生支撑剂的回流。覆有树脂的支撑剂被用于相同的目的,但是,纤维通常更好些。在M.Economides and K.Nolte,eds.,ReservoirStimulation,3 rd edition,John Wiley & Sons,Ltd,New York(2000)pp.11-30 and 11-31;美国专利US5330005;US5439055;US5501275;US5782300中描述了以这种方式来使用纤维。
在使用纤维以便在传统水力压裂中控制支撑剂回流中,根据在完成处理之后在裂隙中期望发生的东西来选择那些所选的参数。以最佳的浓度来添加纤维,以便控制支撑剂回流,但又不显著地影响裂隙的传导性。如果采用玻璃纤维,那么,适当的浓度为支撑剂重量的1%。在通常采用的条件下,在泵送期间,这个浓度不足以产生桥接。实际上,在传统的水力压裂中,特意地选择纤维浓度,以便在泵送期间不会增大桥接倾向。在大部分的通常的水力压裂情况中,纤维被添加到处理的最后阶段,从而使得最靠近井筒的支撑剂与纤维相互混合。的确,在防止支撑剂回流的这些处理中,最关键的是,对井筒附近的裂隙区域进行处理。在传统的水力压裂中,有时,所有的支撑剂装载阶段都用纤维来处理;在支撑剂回流是最关键的问题时,或当纤维被用于减小摩擦压力目的时,这可以在井中来完成。然而,在这些处理中,纤维浓度相对于支撑剂浓度呈线性比例变化(也就是说,如果支撑剂的量被加倍的话,那么,纤维浓度就被加倍,等)。在典型的设计方案中,早期的支撑剂阶段,支撑剂和纤维浓度是很低的;并且不期望产生滤筛,如果产生滤筛的话,那也不是由这些纤维造成的。
有时,在传统的水力压裂处理的整个过程中添加纤维,这是由于另一个原因的缘故:有助于支撑剂的输送,例如,当流体粘度非常低时。通过精心地设计预处理工作,尤其是精心地选择泵送时间,从而在这些处理中避免末端滤筛。例如,在这些处理中,相对于通常的工作设计,填料体积被增大,以便确保在支撑剂/纤维浆液进入裂隙之前产生足够的裂隙宽度。此外,在模拟工作设计中,纤维浓度被仔细跟踪,提醒工程师们太早形成滤筛的可能性。最后,由于在这些设计中在所有阶段中纤维的添加对于支撑剂的输送是至关重要的,因此,所有的阶段必须包括纤维。
因此,当不期望形成末端滤筛时,利用纤维来控制支撑剂回流,其特征在于两个主要原理:第一,在传统的裂隙设计中,用于控制回流所需的纤维的量通常足够低,从而使得不会产生末端滤筛。第二,尽管在整个处理过程中有时要添加纤维,但是,对于回流控制而言,通常在处理结束时(或尾部(tailed in))添加纤维,通常是在操作过程的最后10%中来添加所说的纤维。这是因为距井筒最近的支撑剂充填层的物理特性是具有利害关系的,并且必须被控制,以便防止支撑剂回流。在传统压裂中利用纤维来帮助支撑剂输送的特征在于仔细的工作设计和监测,以便防止末端滤筛。在每种情况中,当不期望产生末端滤筛时,可以通过固有的使用纤维的模式,或通过仔细的工作设计来尽可能地防止产生末端滤筛。
从描述中的这点起,除了实施例5之外,当我们提到“百分比纤维”时,意思是指“浆液中液体的重量百分比”。为了简明起见,假设裂隙液体中所用的液体密度约为8.4磅每加仑。常用的支撑剂装载量是含有1加仑液体的浆液中装载8磅支撑剂。这将会被描述为8磅所添加的支撑剂,或8PPA。在这种情况中,如果以等于液体重量的1%的量来添加纤维的话,那么,纤维的量就会为约占全部浆液重量的百分比为0.5。因此,当把纤维的量表示成基于液体的重量百分比时,其与基于浆液重量的百分比不同,这取决于支撑剂的量。
本发明的处理能利用通常的设备、化学物质、人员,与传统处理相同的方式在井田中进行实施,但是,如果所说的设备不具有添加纤维的功能,那么就要对所说的设备进行改进,以便使得设备能添加纤维。在美国专利US5501275和US5782300中,描述了一些用于添加纤维的方法。优选地是,添加纤维的方法是这样来实施的,即,在支撑剂与流体混合之前把纤维添加到支撑剂中,在流体与支撑剂混合之前添加到流体中,或在浆液被泵送到井下之前在某个阶段添加纤维浆液,但本发明也并不局限于此。尽管通常大约在添加支撑剂的同时把纤维添加到流体中,但是,可以在工作之前对这些成分进行预先混合,也可以在井下将它们混合。
在一种优选的方法中,处理被设计成即使在没有纤维的情况下,也可以增大末端滤筛的可能性,并且在“数据压裂”或“微小压裂”之后,对初始的处理设计方案进行一些附加的修改,以便进一步增大末端滤筛的可能性,之后,这种处理设计方案就被修改成在流体在包括高浓度的纤维。当支撑剂浓度从约0至约8PPA时,高浓度的纤维被添加至少到这种处理的早期支撑阶段。特别重要地是,要确保把高浓度的纤维添加到一些阶段中,在这些阶段中,支撑剂浓度为约从0.5至约6PPA。通常在整个工作中都添加纤维。因泄漏而导致的固体浓度的增大通常有助于纤维和支撑剂浓度的增大,当纤维和支撑剂浓度增大超过一临界值时,就会产生滤筛。由于添加高浓度的纤维会减小支撑剂浆液的流动性,甚至使浆液不可流动,在传统的水力压裂中通常是要避免这种情况发生的。在本发明中,则要特意地进行添加。如果不需要沙土控制或支撑剂回流控制,那么,在末端滤筛已经产生之后,就可以不必继续添加纤维。
即使在没有纤维的情况下,所说的处理也无需在起初就被设计成可以增大末端滤筛的可能性。除了添加足够的诸如纤维的桥接促进材料以便产生滤筛以外,所说的处理可以具有传统的设计方案。此外,纤维添加也并不是必须在工作的早期。以纤维量不断增大的方式来添加纤维(逐渐地或逐步地)直到产生滤筛为止,或在工作的后期以足够高的浓度来突然地添加纤维,以便产生滤筛,或以纤维量不断增大的方式来添加纤维,这也在本发明的范围内。增大浆液中的支撑剂的浓度和/或增大注射速率,并且结合以不断增大的纤维量的方式来添加纤维,或在泵送不含纤维的浆液之后开始添加纤维,这种做法也在本发明的范围之内。由于当泄漏很大时,产生滤筛的倾向性更大,因此,本发明的这些方法在泄漏很低时更有利。然而,本发明也可以在完成了压裂包括压裂/砾石充填的任何条件下使用。例如,影响泄漏的因素例如地层渗透性或一种或多种泄漏添加剂的选择(如果用的话)会影响所需纤维的最佳浓度,但是并不于局限于这个所需纤维的最佳浓度(或浓度分布曲线)。
带有特意的末端滤筛的组合的增产/砾石充填可以以各种方式来完成。非限制性的一些例子包括下面所描述的例子。在第一种方法中,首先形成带有末端滤筛的一裂隙,然后,井筒被清理,滤网被放置,然后执行砾石充填处理。在第二种方法中,在处理之前放置滤网和专用工具。末端滤筛裂隙被形成,并且被工具组(tool set)充填,从而注射的填料和浆液进入到裂隙内,但并不进入环形空间;然后调节所说工具,使得浆液进入环形空间。泵送速率通常被降低,以确保环形空间的充填。在第三种方法中,不采用砾石和滤网,而是采用另外的技术来防止支撑剂或沙土被开采出来。所说的技术例如为:在压裂操作刚结束之前向支撑剂中添加纤维,或者使用覆有树脂的支撑剂。纤维和覆有树脂的支撑剂也能与滤网一起使用。
本发明中的这些方法和流体也能用在增产方法中,这些增产方法通常被称作“水-压裂”或“水压裂”或“平滑水压裂”。在水-压裂中,通常为了降低成本,使用尽可能省的粘化剂和支撑剂来产生水力裂隙。这是通过利用很高的泵送速率和很高的浆液总体积来实现的。照常,在传统的水-压裂中,目的通常用于形成尽可能长的裂隙,但是,如果操作员想停止长度的增大,并开始宽度的增大,那么,可以添加纤维片(a slug of fiber)或纤维以及高浓度的支撑剂。
可以加入具有足够高浓度的纤维或其它桥接促进材料来导致末端滤筛。然而,在另外实施例中,当使用桥接促进材料时,可以不是以足够产生本发明中的末端滤筛的方式来添加桥接促进材料。纤维、支撑剂和流体的密度均可以改变,因此,纤维的量将足够高,以致能导致末端滤筛,这可以单独进行,也可以结合滤饼降解剂来进行,这取决于对纤维、支撑剂和流体的具体选择。下面就本发明的含水液体和优选的纤维来进行描述,合成的有机聚合纤维具有相当低的密度,约为1至1.5克/立方厘米。然而,也可以使用更大密度的纤维,例如由诸如玻璃或陶瓷等无机材料制成的;这些纤维所具有密度为合成的有机聚合纤维密度的两倍更大。当与滤饼降解剂一起使用时,产生末端滤筛所需的在液体/纤维/支撑剂浆液中的纤维的量与每体积的纤维/支撑剂混合物的纤维体积最密切相关。因此,下面所描述的纤维的量应针对所涉及的具体的成分的密度而被调节。纤维的密度越大,所需的重量浓度就越高。此外,纵横比、长度、相对于支撑剂直径的纤维直径都会影响在引起末端滤筛所需的液体/纤维/支撑剂浆液中的纤维的量(被表示成浆液中液体的重量百分比)。当纤维直径减小或纤维长度或纵横比增大时,则需要更低的纤维重量百分比(被表示成浆液中液体的重量百分比)。这种调节属于本领域普通技术人员的常规能力。在美国专利US5330005,US5439055;US5501275;US5782300中描述了一些特别适合的纤维和其它材料,但本发明并不局限于这些纤维和材料,在此引用这些专利文献作为参考。
我们所称的“纤维”可以是任何的纤维材料,例如天然有机纤维,粉碎的植物材料,合成有机纤维(非限定性的例子有,聚酯,聚芳香酰胺(polyaramide),聚酰胺,novoloid或novoloid式聚合物),原纤维的合成有机纤维,玻璃纤维,碳素纤维,陶瓷纤维,无机纤维,金属丝及它们的混合物。优选地是,纤维材料的长度为约2至约30毫米,直径为约5至约100微米,最优选地是,长度为约2至约30毫米,直径为约10至约100微米。纤维横断面不必是圆形的,纤维不必是笔直的。如果使用原纤维的纤维,那么,单根纤丝(fibrils)的直径可以比前面所描述的纤维直径要小得多。
已经发现,在液体的重量百分比为约1至约2之间的合成有机聚合纤维的浓度,含有纤维的浆液就象标准的压裂流体一样起作用,并且能利用标准的油田泵送和混合设备来处理。已经利用下井工具进行了测试,它不会阻塞出口(ports)。向早期支撑剂阶段添加纤维将不会显著地使所说处理的执行变得复杂。
然而,随着压裂流体/纤维/支撑剂混合物进入到地层中,支撑剂和纤维将浓缩,这是由于流体泄漏的缘故。在更高的浓度时,纤维大大增大了浆液的桥接的倾向性。当由于泄漏而使纤维浓度被增大到约4至约5重量百分比时,浆液具有湿浆(wet pulp)的外表。在实验室和在工场测试中已表明,液体中的合成有机聚合纤维的百分比约为4至约5时会阻塞6至12毫米宽的槽。因此,当纤维和支撑剂在裂隙中因流体泄漏而浓缩时,由于支持剂/纤维混合物的存在,浆液具有很大的桥接倾向性,并且会形成滤筛。
如果使用纤维来帮助引起末端滤筛,那么,当滤饼降解发展到使流体效率约小于例如20%时,纤维通常至少在第一支撑剂阶段中,并且浓度被选择成这样子的,即,纤维/支撑剂浆液填充结实(pack off)了(不再是可流动的了),从而造成末端滤筛。应当注意,在本发明的一些方法中,造成末端滤筛所需的纤维的量可以小于在压裂过程中通常使用的以便在没有造成末端滤筛的情况下防止支撑剂回流纤维的量,这是因为在本发明的这些方法中,采用了其它的一些步骤来使滤饼降解,并增大了裂隙中的纤维/支撑剂浆液的浓度。换句话说,通过特意地增大泄漏来促进桥接。另一方面,所用的纤维的量也可以大于通常用于防止支撑剂回流的纤维的量。
合成有机聚合纤维的量最好在从约0.5至约2重量百分比的范围上被调节,以便解决流体效率的变化。通常认为0.5重量百分比的合成有机聚合纤维是不高的浓度,它不会形成滤筛。然而,本发明的一个目的是利用能导致滤筛的纤维浓度。在一些情况中,例如,如果流体泄漏系数相当高,流体效率低,那么,初始的纤维浓度可以被减小到大约那个量。于是,这个浓度是属于“正常”的处理中的“正常”范围内,但是对于所说的处理而言,它是高的。另一方面,如果流体效率非常高,那么,初始纤维浓度应当被增大至超过常用的百分之二,以便导致末端滤筛。因此,本发明中的合成有机聚合纤维浓度的范围为约从0.5重量百分比至约3重量百分比,优选地是从约1重量百分比至2重量百分比。在上下文中,我们所称的“高浓度”,其意思是指在特定的液体/纤维/支撑剂组合中这样一个特定的纤维浓度,该浓度足够高,以致于在处理条件下能很显著地增大滤筛的倾向性。
尽管在传统的水力压裂中,所用的纤维的量通常是由所用的支撑剂的量来确定的,从而使得如果在不同的阶段支撑剂的量被变化了,那么纤维的量也被改变,但是,在本发明的流体和方法中,所用纤维的量更通常由所用液体的量来确定,并且更通常利用与液体呈固定不变的重量百分比的纤维量。
随着纤维刚度或硬度的增大,开始桥接和形成滤筛的倾向性也就增大。然而,随着硬度的增大,流体处理将变得更难。在市场上很容易获得各种硬度或刚度的纤维。此外,在泵送过程中,摩擦压力常常因添加纤维而减小。这是一个附加的优点,尤其是与压裂/砾石充填操作相结合,其中,流体常常通过小口或通道(passage)来泵送,并通常小口来通过。本领域普通技术人员通过考虑不同纤维在成本、或获得性、所需浓度、处理的容易性、对摩擦压力的作用以及其它因素的各种优点和缺点,就能容易地作出选择。
尽管我们提到了“末端滤筛”,但是,本发明的范围也包括这样一种情况:利用传统的处理参数来形成具有期望长度的传统的裂隙,然后,通过以高浓度方式开始添加滤饼降解剂和/或滤饼降解剂辅助剂和/或通过不断地增大纤维浓度,从而导致滤筛。也可以把纤维添加到填料中,所添加的量与添加到支撑剂装载阶段中的量相当。尽管在压裂之后进行砾石充填通常是通过放置到位的滤网来执行的,但是,把流体和方法应用到一些未采用滤网进行的处理中,这也是在本发明的范围内。尽管我们就烃类物质的开采来描述了本发明,但是,在注射井,开采井中或存储井中所采用的开采,和对其它流体例如水或盐水进行开采,而利用所说的流体和方法也属于本发明的范围。虽然我们以采用不起泡沫的流体的方式来描述本发明,但是本发明也可采用泡沫流体或赋能流体(例如,利用氮气、二氧化碳或它们的混合物);由于流体特性或支撑剂浓度会发生的一些变化,可以对纤维浓度进行调节。还应当知道,本发明中的流体和方法可以用于在用酸进行处理所形成的多个裂隙、天然裂隙或孔洞(wormholes)等中形成末端滤筛。本发明中的任何方法都能利用卷管来实施。
本发明中的流体和方法的另外一个优点在于:它们给操作者附加的参数来调节,也就是说,它们在设计滤筛处理方面具有灵活性。因此,在操作者不希望减小填料体积、减慢泵送速度、减小支撑剂荷载或不期望进行其它的设计改变的情况中,操作者可以利用本发明中的其中一种方法。因此,在实施本发明的过程中,优选地是把所说处理设计成这样子的,即,即使没有本发明中的方法,也很可能产生滤筛,然后在工作设计中采用本发明中的其中一种方法,以便确保形成滤筛,但是,本发明的范围也包括以下这样的情况:不采用本发明中的其中一种方法来设计就不会产生筛滤的处理,然后在工作设计中增加使用本发明中的其中一种方法。本发明的范围还包括:设计和开始泵送一个处理,所说的处理不被设计成或不被期望在处理期间在任何地点进行筛滤,然后在处理期间决定使所说处理发生滤筛,因此,在对应地点改变工作的设计,以便采用本发明中的其中一种方法。
应当指出的是,尽管不期望在井筒中、在滤网(如果有的话)和井筒表面之间的环形空间中、或在穿孔(perforation)中产生滤筛,但是,却希望在所说工作的最后这些区域被完全地充填。也就是说,理想的结果是在裂隙中滤选掉(滤筛的起源地在裂隙中),然后利用支撑剂/砾石来充填上面所提到的区域。
任何的支撑剂(砾石)都能被使用,只要这种支撑剂(砾石)适合纤维、地层、流体以及处理所期望的结果即可。这些支撑剂(砾石)可以是天然的或合成的、被覆盖的(例如被树脂覆盖的),或者是含有化学物质。可以连续地使用多于一种的支撑剂,或使用具有不同大小和不同材料的支撑剂。支撑剂是指为具体目的所选用的任何颗粒状材料,所说的具体目的可以是例如支撑着裂隙使裂隙保持张开,或者是砾石充填一完井,以便防止或减小地层微隙的产生。在相同的井或不同的井或处理中所用的支撑剂和砾石可以是相同的材料和/或具有相同大小。当这些材料被放置到裂隙中时,这些材料通常被称作支撑剂,而当这些材料被放置在穿孔或井筒内时,这些材料通常被称作砾石,但是在本文中,术语“支撑剂”包括砾石。通常,所用的支撑剂的平均颗粒大小为约10至约100U.S.筛目,更具体地是颗粒大小为40/60,20/40,16/20,12/20和8/20的材料,但并不局限于这些。通常,浆液中所存在的支撑剂的浓度为约1PPA到约25PPA,优选地是为约1PPA至约16PPA。
可以包括通常用于填料中以及用于这种处理的支撑剂装载阶段中的一些添加剂,只要这些添加剂适合于其它的成分和处理的期望结果即可。这些添加剂可包括:抗氧化剂、交联剂、抗腐剂、迟延剂、生物杀灭剂和缓冲剂。被处理的井筒可以是竖直的、倾斜的或水平的。可以在有滤网或没有滤网的情况下,通过加套管(casing)、穿孔或开孔来对这些井筒进行完井。
适合用于本发明中方法中的裂解剂包括,但不限于酶,例如半乳甘露聚糖酶(用于根据半乳甘露聚糖来裂解多糖)、诸如用于裂解定粉的α-淀粉酶、用于裂解纤维素的纤维素酶和半纤维素酶、氧化剂,例如过硫酸盐、溴酸盐、碘酸盐、高锰酸盐、过碳酸盐、高氯酸盐、过硼酸盐、次氯酸盐、二氧化氯、氯酸盐(用于通过氧化来使聚合物裂解),但也并不局限于这些。此外,这些裂解剂也可以被胶囊包裹起来,以便延迟它们的释放,这在本领域中是已知的技术。利用胶囊包裹是很有利的,这是因为大部分或所有被裂解的聚合物都位于滤饼中,并且被胶囊包裹,也就是说,裂解剂在所说工作中的后期起作用。如果裂解剂不被胶囊包裹起来,那么,尽管当裂隙压力被释放时有些裂解剂可以回流并与聚合物接触,但是,至少有一些裂解剂会泄漏掉并且不与滤饼中的聚合物接触。胶囊包裹存在优点的另一个原因是,可以对裂解剂进行选择,以使所选的裂解剂既能使所说聚合物裂解,而且在使用了粘弹性表面活性剂的情况下能使胶团裂解。胶囊包裹的有利之处还在于其使反应延迟。在本领域中都知道,在不同条件下(尤其指温度)采用不同的裂解剂会更有效。
裂解剂辅助剂(或裂解剂活化剂)用作催化剂,以便增强裂解过程及其性能,尤其是在较低的底孔温度时。在美国专利US4560486中描述了这些裂解剂辅助剂的一些例子如叔胺、或含有叔胺的混合物,它们有助于氧化裂解剂。
应当知道,为了对载运流体中的粘化剂进行降解,在工作设计中也可包括这些裂解剂和裂解剂辅助剂。这些裂解剂和裂解剂辅助剂可以与那些用于使滤饼降解目的的裂解剂和裂解剂辅助剂相同或不同,对粘化剂的降解必须在对滤饼降解之后进行,也就是说,载运流体必须能够输送支撑剂,直到所说的处理被完成为止。并且必须相应地选择裂解剂、裂解剂辅助剂、并且选择加入这些裂解剂和裂解剂辅助剂以及酸或溶剂的时间和浓度。例如,在工作期间,可以在任何时间点缓慢加入起作用的裂解剂,这些缓慢起作用的裂解剂的活性不足以在工作期间使滤饼降解,但是在泵送停止后却足以使粘化剂在可接触的时间内发生降解,而且与滤饼降解剂或辅助剂的添加无关。另一个例子是,在滤饼被放下期间,在注射流体中可包含有裂解剂辅助剂,从而使得裂解剂辅助剂进入到滤饼中;在所说处理的后期添加用于粘化剂和滤饼的裂解剂,而且因为滤饼中存在裂解剂辅助剂,从而使滤饼比粘化剂降解得更快速。
本发明可以在任何地层温度的情况下实施,并考虑所可能发生的任何冷却(cool-down),在这种情况下,填料和裂隙流体以及它们的成分,尤其是填料和粘弹性表面活性剂以及裂隙流体中的胶团具有所需的特性,尤其是稳定性。
实施例1:
设计一末端滤筛水力压裂工作,利用计算机并通过注册商标为FracCADE软件(Schlumberger专有的裂隙设计、预测和处理监测软件)模拟来预测将会获得的结果。所说的工作是针对200mD渗透性的沙岩层,14英尺厚,深度为13715英尺,底孔静压为9500psi,温度为118摄氏度。所用的支撑剂是20/40筛目的陶瓷。在2%的KCl中,利用每千加仑KCl浓度为2%的溶液中加入30磅硼交联瓜尔来对压裂流体进行粘性化。表1中表示出了这种工作设计方案。泵送速度是以桶/分钟来计量,液体体积以加仑计,支撑剂浓度是以每加仑液体含有的支撑剂磅数来计量的,注射时间是以分钟来计量的。
 阶段号  泵送速率  液体体积  支撑剂浓度  注射时间
 1(填料)  15  3500  0  5.5
 2  15  1143  0.5  1.9
 3  15  107  0.5  0.2
 4  15  1201  1.5  2
 5  15  1148  2.5  2
 6  15  1102  3.5  2
 7  15  1102  4.5  2.1
 8  15  1002  5.5  2
 9  15  1003  7.0  2.1
 10  15  950  8.5  2.1
 11  15  900  10  2.1
 12(流溢(flush))  15  4669  0  7.4
                          表1
注册商标为FracCADE的软件利用预定标准来确定何时将会产生滤筛。对于这个水力压裂工作进行过两次模拟。第一次模拟是未添加纤维的传统的水力压裂末端滤筛形成的模拟。针对这个工作,FracCADE软件预测出当支撑剂试图进入到尺寸小于支撑剂直径的2.5倍的一裂隙时,或在支撑剂浓度为22PPA时,取它们先发生的一种情况,在这个时候会发生滤筛。在第二次模拟中,把合成的有机聚合纤维被添加到每个支撑剂阶段,并且浓度为浆液中液体的0.6体积%。在利用这种纤维的情况下,FracCADE软件预测出当支撑剂试图进入其尺寸小于支撑剂直径的3.5倍的裂隙时或在支撑剂浓度为18PPA时,取先发生的一个,在这个时候会产生滤筛。这是个相对低的纤维浓度,因此,这是一个特别严格的实验。实验的结果如表2所示。
工作参数 没有纤维  有纤维
被支撑的裂隙的半长度(英尺) 101.1  77.1
在井筒被支撑的宽度(英寸) 0.348  0.497
平均的被支撑的宽度 0.235  0.375
工作结束时的净压力 649  1033
效率 0.509  0.533
有效传导性(mD-英尺) 1256  1947
                     表2
可以看出,通过添加纤维,使得裂隙越短越宽并且具有更大的传导性。通过采用纤维,增大了流体效率,而流体效率反映利用给定量的载运流体所放置的支撑剂的量。如果没有纤维,那么在已经泵送阶段6的15桶之后,在99英尺支撑剂被充填结实。如果有纤维,在已经泵送阶段4的22桶后,在76英尺支撑剂被充填结实。
实施例2:
在动态流体损失测试之前,在实验盐水中使1.5英寸直径的芯渗透饱和(2加仑每千加仑50%的四甲基氯化铵溶液)。动态流体损失装置由一芯固定器组成,该芯固定器被设计成能使流体穿过芯的一个端面(前端),并以这样一种方式流动,即这种方式使得一些流体会泄漏到芯内,流体能被注射到芯的另一端内(后端),从而来测量该芯的渗透性;该***由自动软件来控制。盐水被注射到芯的后端内,以便测量出初始渗透性。通过使硼酸盐交联瓜尔流体(以20磅瓜尔/1000加仑压裂流体的浓度)流经芯的所说表面,并且以不同的约500psi的压力,持续时间达30分钟。(这就导致一些流体流入到芯内,如果在流体中具有滤饼形成材料的话,那么,在芯表面上就会形成滤饼。)利用一自动的裂隙模拟器来控制在实际处理期间的剪切速率。在表3中列出了动态流体损失实验需要模拟的这些裂隙处理参数。在动态泄漏之后,通过向芯的后端再次注射相同的盐水的方式来测量恢复的(regained)渗透性。
参数 处理值
注射速率 15磅/分钟 (bpm)
注射时间 30分钟
功率指数(n’) 0.7
裂隙高度 65英尺
裂隙长度 75英尺
裂隙宽度(在井筒处) 0.75英寸
距井筒的距离 1英尺
                   表3
这些实验是在52℃情况下做的。表4表示出了模拟具有或没有流体损失控制添加剂(所说的流体损失控制添加剂的浓度为30磅流体损失添加剂每1000加仑压裂流体)的裂隙的动态泄漏测试的实验室结果的比较。这种流体损失控制添加剂是淀粉和颗粒片的混合物。数据表明流体损失控制添加剂对渗透性、泄漏以及泄漏流体渗透到岩层中的深度的影响。这些数据表明对于在喷射(在滤饼形成之前的泄漏量)和在滤饼形成之后的泄漏而言,当使用了流体损失控制添加剂时,流体损失是较小的,最终的渗透性较大,流体对基质的渗透深度较小。这些结果表明良好的流体损失控制添加剂是怎样防止或延迟滤筛的。在图1中以曲线图形式表示出了测试2和4的测试结果。这些数据将被用于本发明的方法的设计中。图2(未按比例)示意性地表示出了存在滤饼或没有滤饼时是怎样对流体从裂隙泄漏到岩层内的范围产生影响的。在图2中,在上方的图中,而不是在下方的图中,由流体损失控制添加剂形成滤饼[1],下方的图表示未使用流体损失控制添加剂或流体损失控制添加剂被除去了的情况。因此,如果没有滤饼,那么,就会从被支撑的裂隙[3]中泄漏出更多的流体[2]。
运行 初始渗透性(mD) 最终渗透性(mD) 喷射(gal/100平方英尺) 喷射后的泄漏(gal/100平方英尺) 渗透深度(英寸)
  (没有流体损失控制添加剂)
  1   98   38   146   72   25
  2   80   10   123   58   21
  (具有流体损失控制添加剂)
  3   80   47   46   19   8
  4   75   35   60   17   10
                             表4
实施例3:
图3表示出了一些实验室的实验,这些实验用于说明利用两个流体损失控制添加剂裂解剂(滤饼降解剂)阶段的本发明中的方法。这些是在52℃利用与例1中相同的方法的流体损失实验。可以看出,在实验1中,当第一半包含流体损失控制添加剂、第一裂解剂以及用于在第二半中存在的第二裂解剂的裂解剂辅助剂(滤饼降解剂辅助剂)时,在第二半中仍然具有流体损失控制添加剂,在第二半中流体损失没有增大。在实验2中,当第一半与实验1中的第一半相同,但第二半不包含流体损失控制添加剂时,在第二半中流体损失的量显著增大,这表明滤饼已经被严重破坏。在压裂中,这就解释为桥接和/或流体效率减小以及末端滤筛。为了确保这种结果并不是仅仅由于流体损失控制添加剂从实验2的第二半中排除所导致,还进行了另一个实验室实验(参见图4),在这个实验中,在任一阶段中都没有裂解剂或裂解剂辅助剂,但是,第一阶段包括流体损失控制添加剂,而第二阶段并不包括流体损失控制添加剂。图4表明,在这种情况中,在第二阶段中流体稍微增加,但是与图3中所示的结果相比这种增加非常小。这就很清楚地表明,主要因素是裂解剂,尤其表明在第一阶段中包括的裂解剂辅助剂,这些裂解剂辅助剂用于第二阶段中的裂解剂的裂解剂辅助剂,并且使得流体损失控制添加剂保留到第二阶段是不重要的。这些实验的第一阶段代表商业模拟处理的每个填料或填料加上早期支撑剂阶段;这些实验的第二阶段代表商业模拟处理的后期支撑剂阶段。
实施例4:
图5用于说明除了添加流体损失控制添加剂以外通过添加纤维来促进桥接的效果。图中表示出了一个特定的实施方式,在这个实施方式中,在填料形成内部含有裂解剂的滤饼,然后,向支撑剂阶段添加一些纤维,以便促进桥接,然后向后面的支撑剂阶段添加另外的裂解剂。(图中表示出了随着模拟的进展,示意图A到示意图E从顶部到底部显示了裂隙的内容物(content)的变化;这些示意图可以是顶视图或侧视图,并且并不是按比例的,在这些连续的示意图中裂隙并不一定具有相同的尺寸。)这个次序阻止了裂隙的增大,然后就把滤饼除去,这最终使得要被开采的流体流入裂隙的流速增大。填料中的粘化剂、第一滤饼降解剂、用于第二滤饼降解剂的滤饼降解剂辅助剂、以及流体损失控制添加剂都与图2中实验2中第一半中的相同;载运流体中的粘化剂与填料中的粘化剂相同,第二滤饼降解剂与图2中的实验2中的第二半中的相同。在图5中,“2-4PPA”是指每磅流体中含有2至4磅支撑剂(“添加支撑剂的磅数”或PPA的阶段),“4PPA以及以上”是指从4PPA到最后含有支撑剂的阶段加上溢流阶段。
粘化的填料包含第一滤饼降解剂、用于第二滤饼降解剂的滤饼降解剂辅助剂以及流体损失控制添加剂。当填料被泵送时(示意图A)并且位于增大裂隙[4]的前边缘(1eading edge)时,就会形成滤饼[5],以便控制流体损失,一些流体[6]泄漏到岩层内。为了形成滤饼,就必须泵送足够的填料。在2-4PPA阶段中(示意图B),载运流体包含一种被添加到每个支撑剂[8]阶段的合成的有机聚合纤维[7],其浓度约为浆液中的流体的约0.6体积%,这些合成的有机聚合纤维抑制裂隙长度的增长。在后面的阶段中(示意图C),第二滤饼降解剂被引入,并且在用于第二滤饼降解剂的(已经存在的)滤饼降解剂辅助剂的帮助下,开始降解所说的滤饼。在后期支撑剂装载阶段的泵送期间(示意图D),第二滤饼降解剂对滤饼进行降解,使得泄漏逐渐增大。最终的结果(示意图E)是:在需要的时间和地点已滤网掉的相当短和宽的裂隙上没有或很少有滤饼,并且被支撑剂良好地充填起来。对这些示意图所示情况可以做出许多种变型,本发明的范围还包括,但并不局限于,添加流体损失控制添加剂添加第一滤饼降解剂、用于第二滤饼降解剂的滤饼降解剂辅助剂、第二滤饼降解剂、纤维的精确时间和量。其它的一些变型可包括按不同的次序或不同的组合来添加上述材料。
实施例5:利用注册商标为FracCADE软件(Schlumberger专有的裂隙设计、预测和处理监测软件)来模拟三种压裂方案。在这些方案中,采用与实施例3相同的流体损失控制添加剂、当存在相同的第一滤饼降解剂时、用于第二滤饼降解剂的滤饼降解剂辅助剂、第二滤饼降解剂、以及纤维。在三个方案中都添加液体损失控制添加剂,并且添加的速率被设计成能形成每一百平方英尺裂隙表面具有2磅的流体损失控制添加剂的滤饼。表5中表示出了这种工作设计。泵送速率都为每分钟1 5桶;利用在每一千加仑海水中含有20磅的硼交联的瓜尔对填料和支撑剂装载阶段进行粘化;溢流阶段包含相同的瓜尔,在海水中具有相同的浓度,但不被交联。
 阶段  流体加仑数  支撑剂磅数  浆液桶数  泵送分钟数
 填料  5500  0  131  8.7
 0.5PPA  1000  500  24.3  1.6
 1.0PPA  1000  1000  24.9  1.7
 2.0PPA  1000  2000  26.0  1.7
 4.0PPA  1000  4000  28.1  1.9
 6.0PPA  1000  6000  30.3  2.0
 8.0PPA  1000  8000  32.4  2.2
 10.0PPA  1500  15000  51.9  3.5
 12.0PPA  3000  36000  110.2  7.3
 溢流  3286  0  78.2  5.2
                                表5
在方案1和2中,没有使用滤饼降解剂,也没有使用滤饼降解剂辅助剂。在方案2中,纤维被添加到2-4PPA阶段,并且以支撑剂的0.8重量%的速率添加。在方案3中,填料包括第一滤饼降解剂和用于第二滤饼降解剂的滤饼降解剂辅助剂,并且从2PPA开始的支撑剂装载阶段包含第二滤饼降解剂。表6中表示出了这三个方案的结果。
方案: 1 2  3
填料中有无流体损失控制添加剂?  有
是否使用了滤饼降解剂和及辅助剂  是
填料喷射(gal/平方英尺) 0 0  46
2-4PPA阶段是否添加了纤维?  否
支撑剂阶段喷射(gal/平方英尺) 0 0  99
最终被支撑的裂隙的半长度 55.3 45.4  36.9
在井筒最终被支撑的裂隙宽度 1.298 1.729  3.052
                           表6
应当注意,方案包括足够的泵送时间,以确保滤饼的形成。采用了通常商业处理量的填料、裂隙流体、裂隙流体粘化剂、裂解剂(滤饼降解剂)、裂解剂辅助剂(滤饼降解剂辅助剂)、流体损失控制添加剂、支撑剂。从方案1中可以看出,当使用流体损失控制添加剂(FLA)但未采用破坏滤饼用的措施时,就会形成长而窄的裂隙。当在方案2中通过添加纤维来末端滤筛时,就形成较短、较宽的裂隙。当利用滤饼降解来促进末端滤筛时,就形成最短、最宽的裂隙。良好的工作设计方案应是方案2和方案3的结合。
前面所描述的本发明的一些具体的实施例并不是旨在穷举本发明的每一种可能的实施例。本领域普通技术人员都会知道,对在这里所描述的具体实施例可以作出各种变型,这些变型均属于本发明的范围。

Claims (12)

1.一种在地下地层增产处理过程中形成滤筛的方法,该方法包括:以高于压裂压力的压力在载运流体中注入支撑剂浆液,还包括向所说浆液中添加桥接促进材料。
2.一种在地下地层增产处理过程中形成滤筛的方法,该方法包括:以高于压裂压力的压力在载运流体中注入支撑剂浆液,以便形成一个或多个裂隙,该方法包括以下步骤:
a)注入填料流体,该填料流体用于形成滤饼;
b)注入一个或多个第一浆液阶段,该第一浆液阶段包括载运流体中的支撑剂;
c)在注入一个或多个第二浆液阶段的同时,利用滤饼降解剂使滤饼降解,其中的第二浆液阶段包括载运流体中的支撑剂。
3.根据权利要求2的方法,其中,滤饼是由下列物质中一种或一种以上所形成的,这些物质为:水溶性聚合物、交联的水溶性聚合物、流体损失添加剂以及它们的混合物。
4.根据权利要求2或3的方法,其中,滤饼降解剂选自下面所列出的这组物质:氧化剂、酶、酸以及它们的混合物。
5.根据权利要求2至4之任一项的方法,其中,填料流体包含下面列出的这组物质中的一种,这组物质为:流体损失添加剂、滤饼降解剂、滤饼降解剂辅助剂以及它们的混合物,只要对于所包括的滤饼降解剂而言,未包括针对其的滤饼降解剂辅助剂即可;一个或多个第一浆液阶段包含下面列出的这组物质中一种,这组物质为:流体损失添加剂、滤饼降解剂、滤饼降解剂辅助剂以及它们的混合物,只要对于所包括的或填料中具有的滤饼降解剂而言,未包括针对其的滤饼降解剂辅助剂即可;一个或多个第二浆液阶段包含下面列出的这组物质中的一种,这组物质为:滤饼降解剂、滤饼降解剂辅助剂以及它们的混合物。
6.根据权利要求2至5之任一项的方法,其中,填料流体和一个或多个第一浆液阶段均包含:流体损失添加剂、第一滤饼降解剂、用于第二滤饼降解剂的滤饼降解剂辅助剂,其中的第二滤饼降解剂在处理条件下比第一滤饼降解剂更具有活性;以及一个或多个第二浆液阶段,该第二浆液阶段包含第二滤饼降解剂。
7.根据权利要求2至6之任一项的方法,其中,滤饼包含聚合物,该聚合物在处理条件下受到酶促的和氧化的降解;第一滤饼降解剂存在于填料中,并且包含用于使所说聚合物降解的酶;第二滤饼降解剂存在于一个或多个第二浆液阶段中,并包括用于使所说聚合物降解的氧化化合物;用于第二滤饼降解剂的第二滤饼降解剂辅助剂存在于填料流体、一个或多个第一浆液阶段、以及一个或多个第二浆液阶段中,并且包含叔铵。
8.根据权利要求2至7之任一项的方法,其中,滤饼包括可酸溶解的固体颗粒化合物,第二滤饼降解剂存在于一个或多个第二浆液阶段中并包含一种酸,这种酸在处理条件下能够溶解至少一部分可酸溶解的固体颗粒化合物。
9.根据权利要求2至8之任一项的方法,其中,一个或多个填料流体、一个或多个第一浆液阶段、一个或多个第二浆液阶段包含一种桥接促进材料。
10.根据前述权利要求之任一项的方法,其中,井筒处理选自:水力压裂,水力压裂之后接着进行砾石充填,以及联合进行的水力压裂和砾石充填。
11.根据前述权利要求之任一项的方法,其中,在井筒处理之前把沙土控制滤网放置入位。
12.根据前述权利要求之任一项的方法,其中,所说浆液的流体成分选自下面列出的这组物质,这组物质为:乳状液、泡沫、赋能流体。
CNB02821417XA 2001-09-11 2002-09-10 用于控制脱砂的方法 Expired - Fee Related CN100540844C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US31876401P 2001-09-11 2001-09-11
US60/318,764 2001-09-11
US33470301P 2001-10-31 2001-10-31
US60/334,703 2001-10-31
US10/214,817 2002-08-08
US10/214,817 US6837309B2 (en) 2001-09-11 2002-08-08 Methods and fluid compositions designed to cause tip screenouts
US10/227,690 2002-08-26
US10/227,690 US6938693B2 (en) 2001-10-31 2002-08-26 Methods for controlling screenouts

Publications (2)

Publication Number Publication Date
CN1639445A true CN1639445A (zh) 2005-07-13
CN100540844C CN100540844C (zh) 2009-09-16

Family

ID=27498981

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02821417XA Expired - Fee Related CN100540844C (zh) 2001-09-11 2002-09-10 用于控制脱砂的方法

Country Status (4)

Country Link
CN (1) CN100540844C (zh)
AU (1) AU2002333819A1 (zh)
EA (1) EA005718B1 (zh)
WO (1) WO2003023177A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868513A (zh) * 2007-09-25 2010-10-20 哈利伯顿能源服务公司 涉及将长层段上的微粒迁移最小化的方法和组合物
CN102733789A (zh) * 2012-07-06 2012-10-17 崔彦立 深层稠油油藏厚砂岩储层层内水力分段压裂施工增产方法
CN102869747A (zh) * 2009-12-30 2013-01-09 普拉德研究及开发股份有限公司 在井下应用中的流体***内流体段塞固结的方法
CN103249909A (zh) * 2010-11-12 2013-08-14 普拉德研究及开发股份有限公司 增强纤维衔接的方法
CN103328766A (zh) * 2010-11-08 2013-09-25 普拉德研究及开发股份有限公司 提高井产率的方法
CN103339345A (zh) * 2010-12-13 2013-10-02 哈里伯顿能源服务公司 具有增强的井处理能力的井管滤网
CN104428388A (zh) * 2012-08-22 2015-03-18 哈里伯顿能源服务公司 用于提高弱胶结或无胶结地层中油井产率的方法和组合物
CN105683330A (zh) * 2013-09-11 2016-06-15 沙特***石油公司 用于非常规储层的使用固体酸的碳酸盐基浆料压裂
CN107524432A (zh) * 2016-06-21 2017-12-29 中国石油化工股份有限公司 一种压裂施工中的实时调参方法
CN110219629A (zh) * 2010-06-23 2019-09-10 伊科普罗有限责任公司 水力压裂
CN112048295A (zh) * 2020-09-03 2020-12-08 中国石油大学(北京) 一种复合压裂前置液及其在致密储层水力压裂中的应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066260B2 (en) * 2002-08-26 2006-06-27 Schlumberger Technology Corporation Dissolving filter cake
US7219731B2 (en) 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
US7935662B2 (en) 2006-12-12 2011-05-03 Schlumberger Technology Corporation System, method, and apparatus for injection well clean-up operations
US8695708B2 (en) 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US8058213B2 (en) 2007-05-11 2011-11-15 Georgia-Pacific Chemicals Llc Increasing buoyancy of well treating materials
US7931084B2 (en) * 2008-10-14 2011-04-26 Halliburton Energy Services, Inc. Methods for treating a subterranean formation by introducing a treatment fluid containing a proppant and a swellable particulate and subsequently degrading the swellable particulate
US8016040B2 (en) 2008-11-26 2011-09-13 Schlumberger Technology Corporation Fluid loss control
US8424784B1 (en) 2012-07-27 2013-04-23 MBJ Water Partners Fracture water treatment method and system
US9896918B2 (en) 2012-07-27 2018-02-20 Mbl Water Partners, Llc Use of ionized water in hydraulic fracturing
US9410394B2 (en) * 2013-12-11 2016-08-09 Schlumberger Technology Corporation Methods for minimizing overdisplacement of proppant in fracture treatments
WO2016053497A1 (en) * 2014-10-03 2016-04-07 Exxonmobil Upstream Research Company Method for remediating a screen-out during well completion
US11339321B2 (en) * 2019-12-31 2022-05-24 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247995A (en) * 1992-02-26 1993-09-28 Bj Services Company Method of dissolving organic filter cake obtained from polysaccharide based fluids used in production operations and completions of oil and gas wells
US5325921A (en) * 1992-10-21 1994-07-05 Baker Hughes Incorporated Method of propagating a hydraulic fracture using fluid loss control particulates
CA2119316C (en) * 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5607905A (en) * 1994-03-15 1997-03-04 Texas United Chemical Company, Llc. Well drilling and servicing fluids which deposit an easily removable filter cake
US5722490A (en) * 1995-12-20 1998-03-03 Ely And Associates, Inc. Method of completing and hydraulic fracturing of a well
US5908073A (en) * 1997-06-26 1999-06-01 Halliburton Energy Services, Inc. Preventing well fracture proppant flow-back
US6076046A (en) * 1998-07-24 2000-06-13 Schlumberger Technology Corporation Post-closure analysis in hydraulic fracturing
US6192985B1 (en) * 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
US6494263B2 (en) * 2000-08-01 2002-12-17 Halliburton Energy Services, Inc. Well drilling and servicing fluids and methods of removing filter cake deposited thereby

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868513B (zh) * 2007-09-25 2015-05-06 哈利伯顿能源服务公司 涉及将长层段上的微粒迁移最小化的方法和组合物
CN103277066A (zh) * 2007-09-25 2013-09-04 哈利伯顿能源服务公司 涉及将长层段上的微粒迁移最小化的方法和组合物
CN101868513A (zh) * 2007-09-25 2010-10-20 哈利伯顿能源服务公司 涉及将长层段上的微粒迁移最小化的方法和组合物
CN103277066B (zh) * 2007-09-25 2016-05-04 哈利伯顿能源服务公司 涉及将长层段上的微粒迁移最小化的方法和组合物
CN102869747A (zh) * 2009-12-30 2013-01-09 普拉德研究及开发股份有限公司 在井下应用中的流体***内流体段塞固结的方法
US9879174B2 (en) 2009-12-30 2018-01-30 Schlumberger Technology Corporation Method of fluid slug consolidation within a fluid system in downhole applications
CN102869747B (zh) * 2009-12-30 2017-06-30 普拉德研究及开发股份有限公司 在井下应用中的流体***内流体段塞固结的方法
CN110219629B (zh) * 2010-06-23 2021-12-03 伊科普罗有限责任公司 水力压裂
CN110219629A (zh) * 2010-06-23 2019-09-10 伊科普罗有限责任公司 水力压裂
CN103328766A (zh) * 2010-11-08 2013-09-25 普拉德研究及开发股份有限公司 提高井产率的方法
CN103328766B (zh) * 2010-11-08 2016-04-06 普拉德研究及开发股份有限公司 提高井产率的方法
CN103249909A (zh) * 2010-11-12 2013-08-14 普拉德研究及开发股份有限公司 增强纤维衔接的方法
CN103339345A (zh) * 2010-12-13 2013-10-02 哈里伯顿能源服务公司 具有增强的井处理能力的井管滤网
CN102733789B (zh) * 2012-07-06 2014-06-25 崔彦立 深层稠油油藏厚砂岩储层层内水力分段压裂施工增产方法
CN102733789A (zh) * 2012-07-06 2012-10-17 崔彦立 深层稠油油藏厚砂岩储层层内水力分段压裂施工增产方法
CN104428388A (zh) * 2012-08-22 2015-03-18 哈里伯顿能源服务公司 用于提高弱胶结或无胶结地层中油井产率的方法和组合物
CN105683330A (zh) * 2013-09-11 2016-06-15 沙特***石油公司 用于非常规储层的使用固体酸的碳酸盐基浆料压裂
CN107524432A (zh) * 2016-06-21 2017-12-29 中国石油化工股份有限公司 一种压裂施工中的实时调参方法
CN107524432B (zh) * 2016-06-21 2019-07-02 中国石油化工股份有限公司 一种压裂施工中的实时调参方法
CN112048295A (zh) * 2020-09-03 2020-12-08 中国石油大学(北京) 一种复合压裂前置液及其在致密储层水力压裂中的应用

Also Published As

Publication number Publication date
EA005718B1 (ru) 2005-04-28
WO2003023177A3 (en) 2003-09-04
EA200400421A1 (ru) 2004-08-26
WO2003023177A2 (en) 2003-03-20
AU2002333819A1 (en) 2003-03-24
CN100540844C (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
CN100540844C (zh) 用于控制脱砂的方法
US8507413B2 (en) Methods using well drilling fluids having clay control properties
US7712535B2 (en) Oxidative systems for breaking polymer viscosified fluids
US9080440B2 (en) Proppant pillar placement in a fracture with high solid content fluid
US6938693B2 (en) Methods for controlling screenouts
CN100396880C (zh) 对地下储层进行胶结或对砾石充填进行修补的方法
US8636065B2 (en) Heterogeneous proppant placement in a fracture with removable channelant fill
CA2656205C (en) Rheology controlled heterogeneous particle placement in hydraulic fracturing
US20130161003A1 (en) Proppant placement
CN104712303B (zh) 最小化压裂处理中支撑剂的过度驱替的方法
US20140290943A1 (en) Stabilized Fluids In Well Treatment
US20140014338A1 (en) Method of Increasing the Permeability of a Subterranean Formation by Creating a Multiple Fracture Network
US20080135242A1 (en) Heterogeneous Proppant Placement in a Fracture with Removable Channelant Fill
AU2014327012A1 (en) Method of optimizing conductivity in a hydraulic fracturing operation
MXPA05000443A (es) Metodo de fracturacion hidraulica de formacion subterranea.
RU2513568C2 (ru) Способ консолидации жидкостных стадий в жидкостной системе для закачивания в скважину
US20110224109A1 (en) Reversible Peptide Surfactants For Oilfield Applications
AU2014364184A1 (en) System and method of treating a subterranean formation with a diverting composition
US10989035B2 (en) Proppant ramp-up for cluster efficiency

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: PETROLEUM RES AND DEV N. V.

Free format text: FORMER OWNER: SOFITECH N.V.

Effective date: 20081031

Owner name: PRADER RESEARCH AND DEVELOPMENT CORPORATION.

Free format text: FORMER OWNER: PETROLEUM RES AND DEV N. V.

Effective date: 20081031

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20081031

Address after: The Netherlands Antilles

Applicant after: SERVICES PETROLIERS SCHLUMBERGER

Address before: Brussels

Applicant before: SCHLUMBERGER CANADA LTD.

Effective date of registration: 20081031

Address after: Virgin Islands (British)

Applicant after: PRAD RESEARCH AND DEVELOPMENT Ltd.

Address before: The Netherlands Antilles

Applicant before: SERVICES PETROLIERS SCHLUMBERGER

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090916

Termination date: 20180910

CF01 Termination of patent right due to non-payment of annual fee