CN1621163A - Novel broad band super sound piezoelectric compound transducer - Google Patents

Novel broad band super sound piezoelectric compound transducer Download PDF

Info

Publication number
CN1621163A
CN1621163A CN 200410101731 CN200410101731A CN1621163A CN 1621163 A CN1621163 A CN 1621163A CN 200410101731 CN200410101731 CN 200410101731 CN 200410101731 A CN200410101731 A CN 200410101731A CN 1621163 A CN1621163 A CN 1621163A
Authority
CN
China
Prior art keywords
end cap
transducer
thickness
cap electrode
broad band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410101731
Other languages
Chinese (zh)
Other versions
CN1331617C (en
Inventor
李邓化
王丽娜
居伟俊
贾美娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING INFORMATION ENGINEERING COLLEGE
Original Assignee
BEIJING INFORMATION ENGINEERING COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INFORMATION ENGINEERING COLLEGE filed Critical BEIJING INFORMATION ENGINEERING COLLEGE
Priority to CNB2004101017311A priority Critical patent/CN1331617C/en
Publication of CN1621163A publication Critical patent/CN1621163A/en
Application granted granted Critical
Publication of CN1331617C publication Critical patent/CN1331617C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

The present invention belongs to the field of piezoelectricity and sensing technology, and is submerged wideband acoustic receiving and emitting transducer for ship and submarine. The novel composite wideband ultrasonic and piezoelectric transducer includes one piezoelectric ceramic chip and two, one upper and one lower, end cap electrodes on the piezoelectric ceramic chip. The present invention has unchanged basic structure of transducer but different material thickness of the end cap electrodes to result in the composite wideband ultrasonic and piezoelectric transducer. The present invention has the advantages of full utilization of asymmetrical structure effect to realize specific operation bandwidth and simplified design.

Description

Novel broad band super sound piezoelectric compound transducer
Affiliated technical field
The invention belongs to piezoelectricity and sensitive technology field.Utilize piezoelectric device to carry out the field of mechanical quantity, acoustic signal measurement, it is mainly used in the underwater sound broadband reception or the transmitting transducer of naval vessel, submarine.
Background technology
The excess sound pressure of prior art is replied by cable and closed transducer is the arch circle cap electrode that each bonding a slice thickness is identical in the piezoelectric ceramic piece both sides, constitutes metal---piezoelectric ceramics composite transducer.It is this special shape that utilizes metal end caps, with the conversion of the piezo-electric traverse effect of piezoelectric ceramic piece and zoom into longitudinal piezoelectric effect, makes the equivalent piezoelectric constant of transducer increase.This device document record is a lot, for example European patent EP-238187 " cymbals formula contact microphone ", German patent DE 3508719 " cymbals formula sound pick-up ", world patent WO200119136 " electroacoustic transducer ", they have all related to the piezoelectricity composite transducer of this kind form.Because upper and lower two electrodes are bonding and the asymmetry of the physical dimension of element, can cause that transducer produces multi resonant and shakes, what this person of being to use did not expect.
Summary of the invention
Purpose of the present invention is utilized metal---the asymmetrical characteristic of upper and lower two electrode structures of piezoelectric ceramics composite transducer, design a kind of higher piezoelectricity that can keep this kind structure transducer, can produce practicality, the simple broad band super sound piezoelectric compound transducer of technology again, be used for wideband-short pulse and receive or transmitting transducer.
For achieving the above object, broad band super sound piezoelectric compound transducer of the present invention comprises piezoelectric ceramic piece (1) and is bonded in upper end cap electrode (2), lower end cap electrode (3) on the piezoelectric ceramic piece (1), it is characterized in that: upper end cap electrode (2) thickness t B1With lower end cap electrode (3) thickness t B2Inequality, t wherein B1And t B2Span be respectively 0.15mm~0.59mm.
Technical scheme of the present invention further comprises upper end cap electrode (2) thickness t B1Less than lower end cap electrode (3) thickness t B2, or upper end cap electrode (2) thickness t B1Greater than lower end cap electrode (3) thickness t B2Situation.
The advantage of novel broad band super sound piezoelectric compound transducer of the present invention is:
1) made full use of the structure asymmetry, realized the requirement of particular job bandwidth, under the prerequisite that does not change this transducer basic structure, only change the material thickness of upper and lower end cap electrode, make the upper and lower end cap electrode when work, produce two different resonant frequencies.
2) this programme makes the simplicity of designization of novel broad band super sound piezoelectric compound transducer, when actual design, as long as measure the resonant frequency of the transducer of two different end cap electrode material thickness, just can determine the coefficient B in the correlation formula, thereby design needed wide-band transducer.
3) because this programme does not change the basic structure of transducer, therefore, the piezoelectric modulus of transducer itself does not change, and preparation method does not change, and manufacture craft still keeps original method, and is simple.
Description of drawings
Fig. 1 becomes end cap thickness of electrode structural section figure for novel broad band super sound piezoelectric compound transducer.
Specific embodiments
Below in conjunction with drawings and Examples novel broad band super sound piezoelectric compound transducer of the present invention is done and to be described in further detail.
First embodiment of novel broad band super sound piezoelectric compound transducer of the present invention is the different materials thickness that adopts the two ends cap electrode, and the upper and lower end cap inner chamber degree of depth is identical, it is characterized in that: upper end cap electrode 2 thickness t B1Less than lower end cap electrode 3 thickness t B2, t wherein B1And t B2Difference range be respectively 0.15mm~0.59mm.
The first resonant frequency of operation f when novel broad band super sound piezoelectric compound transducer of the present invention B1And bandwidth of operation (is f B2-f B1) determine after, end cap electrode material thickness difference Δ t bCan be according to following formula
f B2=B·Δt b+f B1 (1)
Calculate Δ t bThereby, can obtain another one end cap thickness of electrode according to a known end cap thickness of electrode.
B is an experimental constant in the formula, it obtains like this: when upper/lower electrode thickness is a1, record a resonant frequency f1, when upper/lower electrode thickness is a2, record a resonant frequency f2, then B is | f1-f2| and | the ratio between the a1-a2|, this is because the material thickness of the size of resonant frequency and upper and lower end cap electrode is linear, so this ratio is a constant, f B1Be upper end cap electrode 2, first resonant frequency of operation when lower end cap electrode 3 material thicknesses are identical.
Given following parameter:
The thickness t of piezoelectric ceramic piece 1 pThe diameter d of=1mm, piezoelectric ceramic piece 1 p=12mm, end cap electrode 2 and 3 intracavity diameter d E2=9mm, end cap electrode 2 and 3 top end diameter d E1=3mm, end cap electrode 2 and 3 inner chamber degree of depth t E1=t E2During=0.5mm, f B1(upper and lower end cap electrode material thickness all is t to=33KHz B1=0.15mm), during B=52KHz/mm, if design bandwidth Δ f B=7KHz, i.e. f B2=40KHz can obtain Δ t according to formula (1) b=0.1mm, i.e. t B2=t B1+ Δ t b=0.25mm can obtain the thickness t of lower end cap electrode 3 like this B2
Second embodiment of novel broad band super sound piezoelectric compound transducer of the present invention is when other condition is identical with first embodiment, if design bandwidth Δ f B=13KHz, i.e. f B2=46KHz can obtain Δ t according to formula (1) b=0.25mm, i.e. t B2=t B1+ Δ t b=0.4mm can obtain the thickness t of lower end cap electrode 3 like this B2
The 3rd embodiment of novel broad band super sound piezoelectric compound transducer of the present invention is when other condition is identical with first embodiment, if design bandwidth Δ f B=23KHz, i.e. f B2=56KHz can obtain Δ t according to formula (1) b=0.44mm, i.e. t B2=t B1+ Δ t b=0.59mm can obtain the thickness t of lower end cap electrode 3 like this B2
The 4th enforcement of novel broad band super sound piezoelectric compound transducer of the present invention also is to adopt the different scheme of two ends cap electrode material thickness, be upper end cap electrode 2 material thicknesses greater than lower end cap electrode 3 material thicknesses with above three embodiment differences, other is identical with first embodiment.Therefore, repeat no more.
Above-mentioned four kinds of embodiment are at given bandwidth deltaf f BThereby, calculate another end cap electrode t B2Thickness.Also can set end cap electrode t earlier B2Thickness, thereby calculate corresponding bandwidth Δ f B
Above-mentioned several embodiment obtains under the top end diameter situation of the intracavity diameter of the diameter of the thickness of given specific piezoelectric ceramic piece, piezoelectric ceramic piece, end cap electrode, end cap electrode.Above-mentioned parameter also can change in actual applications, as parameter change the time, its computational methods also are application of formula (1), just the coefficient B difference.

Claims (3)

1, a kind of broad band super sound piezoelectric compound transducer comprises piezoelectric ceramic piece (1) and is bonded in upper end cap electrode (2), lower end cap electrode (3) on the piezoelectric ceramic piece (1), it is characterized in that: upper end cap electrode (2) thickness t B1With lower end cap electrode (3) thickness t B2Inequality, t wherein B1And t B2Span be respectively 0.15mm~0.59mm.
2, broad band super sound piezoelectric compound transducer as claimed in claim 1, wherein upper end cap electrode (2) thickness t B1Less than lower end cap electrode (3) thickness t B2
3, broad band super sound piezoelectric compound transducer as claimed in claim 1, wherein upper end cap electrode (2) thickness t B1Greater than lower end cap electrode (3) thickness t B2
CNB2004101017311A 2004-12-24 2004-12-24 Novel broad band super sound piezoelectric compound transducer Expired - Fee Related CN1331617C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004101017311A CN1331617C (en) 2004-12-24 2004-12-24 Novel broad band super sound piezoelectric compound transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101017311A CN1331617C (en) 2004-12-24 2004-12-24 Novel broad band super sound piezoelectric compound transducer

Publications (2)

Publication Number Publication Date
CN1621163A true CN1621163A (en) 2005-06-01
CN1331617C CN1331617C (en) 2007-08-15

Family

ID=34766792

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101017311A Expired - Fee Related CN1331617C (en) 2004-12-24 2004-12-24 Novel broad band super sound piezoelectric compound transducer

Country Status (1)

Country Link
CN (1) CN1331617C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411215C (en) * 2005-09-23 2008-08-13 中国人民解放军国防科学技术大学 Combined type ultrasonic transducer
CN100561575C (en) * 2006-06-23 2009-11-18 北京大学 Dish type transmitting transducer
CN108296154A (en) * 2017-08-07 2018-07-20 雷索智能科技(苏州) 有限公司 Ultrasonic vibration mechanism and ultrasonic vibration apparatus
CN108602093A (en) * 2016-01-29 2018-09-28 韦伯超声波股份公司 Method for encouraging PZT (piezoelectric transducer) and sonic source device
CN110809213A (en) * 2018-08-06 2020-02-18 中国科学院声学研究所 Combined type broadband transducer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508719A1 (en) * 1985-03-12 1986-09-18 Peter 4182 Uedem Küppers Sound pick-up for a cymbal
CN2082849U (en) * 1990-09-25 1991-08-14 东北内蒙古煤炭工业联合公司沈阳煤矿设计院 Piezoelectric ceramic ultrasonic transducer
DE19527018C1 (en) * 1995-07-24 1997-02-20 Siemens Ag Ultrasonic transducer
US6798122B1 (en) * 2002-11-05 2004-09-28 The United States Of America As Represented By The Secretary Of The Navy Lightweight underwater acoustic projector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411215C (en) * 2005-09-23 2008-08-13 中国人民解放军国防科学技术大学 Combined type ultrasonic transducer
CN100561575C (en) * 2006-06-23 2009-11-18 北京大学 Dish type transmitting transducer
CN108602093A (en) * 2016-01-29 2018-09-28 韦伯超声波股份公司 Method for encouraging PZT (piezoelectric transducer) and sonic source device
CN108602093B (en) * 2016-01-29 2021-05-04 韦伯超声波股份公司 Method for driving a piezoelectric transducer and sound source device
US11065644B2 (en) 2016-01-29 2021-07-20 Weber Ultrasonics Gmbh Method for exciting piezoelectric transducers and sound-producing arrangement
CN108296154A (en) * 2017-08-07 2018-07-20 雷索智能科技(苏州) 有限公司 Ultrasonic vibration mechanism and ultrasonic vibration apparatus
CN108296154B (en) * 2017-08-07 2023-12-05 雷索智能科技(苏州)有限公司 Ultrasonic vibration mechanism and ultrasonic vibration device
CN110809213A (en) * 2018-08-06 2020-02-18 中国科学院声学研究所 Combined type broadband transducer
CN110809213B (en) * 2018-08-06 2023-07-18 中国科学院声学研究所 Composite broadband transducer

Also Published As

Publication number Publication date
CN1331617C (en) 2007-08-15

Similar Documents

Publication Publication Date Title
CA1151285A (en) Acoustic transducer with a quarter wavelength adaptation layer as a receiver
Manthey et al. Ultrasonic transducers and transducer arrays for applications in air
CN106198724B (en) A kind of multistable ultrasound detection sensor
EP0193048B1 (en) Ultrasonic transducer
CN101909230A (en) Broadband underwater acoustic transducer using composite material of metal, piezoelectric ceramics and polymer
KR102472295B1 (en) ultrasonic transducer
CN1621163A (en) Novel broad band super sound piezoelectric compound transducer
US7288878B1 (en) Piezoelectric transducer assembly
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
CN112378510A (en) High-sensitivity flextensional hydrophone and manufacturing method thereof
KR101116165B1 (en) Ultrasonic Transducer using Planar Parallel Langevin Mounting Piezoelectric Element, Method for Manufacturing the Ultrasonic Transducer
US20100283355A1 (en) Method for changing ultrasound wave frequency by using the acoustic matching layer
KR100671419B1 (en) Acoustic Impedance Matching Layer for High Frequency Ultrasonic Transducer and Method for Fabricating Ultrasonic Transducer by using it
CN208970560U (en) A kind of piezo-electric ceramic composite material structure applied to energy transducer
US20070230275A1 (en) Method for manufacturing an ultrasound test head with an ultrasonic transducer configuration with a curved send and receive surface
Savoia et al. Performance analysis of wideband PMUTs: A comparative study between sol-gel PZT, PVD PZT, and 15% ScAlN-based arrays through experimental evaluation
JP3006861U (en) Ultrasonic probe
CN214096345U (en) High-sensitivity bending hydrophone
CN215932137U (en) Ultrasonic sensor
CN109596183B (en) Flow transducer
WO2023095450A1 (en) Ultrasonic transducer and method for manufacturing same
CN101590468A (en) Miniature broadband orthotropic acoustic emission sensor
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same
KR101451152B1 (en) Piezoelectric ceramic composition for sensor
CN118303039A (en) Ultrasonic transducer and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee