CN1608198A - 多普勒型超声流量计 - Google Patents

多普勒型超声流量计 Download PDF

Info

Publication number
CN1608198A
CN1608198A CNA028262913A CN02826291A CN1608198A CN 1608198 A CN1608198 A CN 1608198A CN A028262913 A CNA028262913 A CN A028262913A CN 02826291 A CN02826291 A CN 02826291A CN 1608198 A CN1608198 A CN 1608198A
Authority
CN
China
Prior art keywords
fluid
sonac
ultrasonic
incident angle
measure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028262913A
Other languages
English (en)
Other versions
CN1327198C (zh
Inventor
武田靖
森治嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Publication of CN1608198A publication Critical patent/CN1608198A/zh
Application granted granted Critical
Publication of CN1327198C publication Critical patent/CN1327198C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种多普勒类型的超声流量计,其具有一个超声传输装置,用来由一个超声传感器发射超声脉冲,进入流体管道中,该流量计还有一个流速型面测量装置,用来接收由流体管道中的一个测量区域反射的超声波回声,超声波回声由流体管道中的一个测量区域反射,从而测量要测量的流体的流速型面,该流量计还有一个流体流动速率计算装置,用来在要测量的流体的速度型面的基础上计算出它的流动速率,以及一个频率选择和设定装置,用来自动地选定由超声传感器发出的超声波的基频,使得实现一种共振传输现象。频率选择和设定装置控制超声传输装置的运行,使得由超声传感器发射出所选定的最佳频率的超声波。这种装置使得可以提供一种有高度通用性的多普勒类型的超声流量计,它使得可以在各种流体管道中对要测量的流体的流动速率实现简单、容易、无接触、并且高度精确的测量。

Description

多普勒型超声流量计
技术领域
本发明涉及一种多普勒型超声流量计,它通过采用超声波的多普勒偏移用来测量要测量的流体的流动速率(a flow rate),更具体地,本发明涉及一种多普勒型超声流量计,它允许自动地调节和设定超声波的最佳频率和最佳入射角度。
背景技术
用来测量在流体管道中流过的要测量的流体的流速(flowvelocities)和流动速率的流量计按照测量原理大致可以分成两种类型。
第一种类型的流量计通过利用下述事实测量流动速率:流过一根流体管道的流体的数量的变化取决于流动的方向。作为这种类型的流量计有一种小孔流量计。小孔流量计通过利用下述事实测量流动速率:在一个小孔上游那一侧的流体压力与在下游那一侧的流体压力不同。下面将把这种流动速率测量方法称为“平均值近似”。
主要在圆管中使用第二种类型的流量计测量流体的流动速率。
这种类型的流量计适宜于在管道流中的一个点测量流速,例如在管道轴线上的一个预先确定的点测量流速,随后在所得到的测量值的基础上由理论值推测出在管道中流速的型面构形。将流速的型面构形积分确定出流动速率。下面将把这种流动速率测量方法称为“近似积分”。
其间,某些流量计被称为超声流量计,通过将超声波加到要测量的流体上测量流体的流动速率。
这样的超声流量计大致可以分成两种类型:一种类型靠平均值近似方法测量流动速率,一种类型靠近似积分测量流动速率。
采用平均值近似的超声流量计通过确定两个预先确定的点之间的平均速度测量流动速率,其中利用了下述事实:超声脉冲在两个预先确定的点之间行进所需要的时间由于流体的流速而不同,取决于超声脉冲是朝向流体流的上游侧前进还是相反朝向流的下游侧前进。
采用近似积分的超声流量计利用多普勒频移法在管道的中心轴线上的一点确定要测量的流体的速度,从而在所测量的流体速度的基础上测量它的流动速率,方法之一已经在日本专利公开出版物No.HEI 6-294670中公开。以近似积分为基础的超声流量计由理论值或者经验规律确定流速的型面构形,然后进行积分。例如,在管道中层流区域的流速型面由一个抛物面表示,从而可以利用在管道壁上的边界条件采用在它的中心轴线上测量的流速确定流动速率。严格地说,这个理论的解决方案适用于在定常状态的流动,因此,以近似积分为基础的超声流量计仅只可以用于定常状态的流动,而不能用于非定常状态的流动。
一般说来,普遍地知道用Navier-Stokes方程(下面把它称为“NS方程”)表示粘性流体的流动。传统的超声流量计利用关于定常状态的流动分布的知识确定流动速率,而忽略了NS方程中的时间微商项。由于这个原因,如果被测量的对象是这样一个流场(流体的流场):在该流场中由于流动速率与时间相关的变化近似积分不再保持成立,那么,测量的精度可能明显地变坏,或者测量结果的真实性可能受到破坏。
这样的流场包括例如流动速率***的改变时间比确定平均流动速率所需要的时间短的流场,或者流动还没有充分发展的流场。在前一种情况下,NS方程中的时间微商项还没有达到零,而在后一种情况下,NS方程的一维近似不再成立。
传统的流量计用来在定常状态下进行流动速率测量,使得以足够高的精度测量流动速率要求例如非常长的流动通道,为的是在测量位置的上游侧使流动稳定。这要求时间,成本和劳动力以便铺设管线。此外,因为流量计是用来测量定常状态下的流动速率,所以测量非定常状态下的流动速率很困难。
进而,传统的流量计适宜于测量在封闭管道壁如圆管中流过的流体的平均流动速率,这使得不可能测量较大的流动***中的局部的流动速率。例如,没有任何流量计能够测量在巨大的搅拌罐的入口或出口附近随时间改变的特征流动速率。
在三维空间的流场中要测量的流体流动用一个三维向量表示,而传统的流量计测量的流动速率假设在管道中是一维流动。由于这个原因,即使在封闭的管道中,如果流动是三维的,流动速率的测量精度将极大地变坏,或者测量变成不可能。例如,刚刚流过一个弯曲的管道比如肘形管道或者一个U字形的反向流动管道,由于离心作用流体的流动返回到三维的流动。安装在这样位置的传统流量计将不能进行精确的流动测量。本发明人已经在日本专利申请No.HEI10-272359的描述中提出了一种多普勒型超声流量计,它利用超声波的多普勒频移,使得即使要测量的流体处于非定常状态下也可以实现精密的、与时间相关的、无接触的流动速率测量。
多普勒型超声流量计采用一种技术从而由在流体管道中要测量的流体的瞬时的流速型面直接计算出流动速率,并且已经发现它在要测量的流体的流动速率测量中给出高精度和灵敏度。
也要求传统的多普勒型超声流量计使得能够容易地并且有多方面适应性地测量在流体管道中要测量的流体的流动速率。
为了用多普勒型超声流量计顺利地测量在多种类型的流体管道中要测量的流体的流速,必须对于有各种管壁厚度的流体管道确保足够的超声波传输效率,并确保足够的反射波信噪比(S/N ratios)。
在传统的多普勒型超声流量计中,通过改变金属壁的厚度检查流体管道的金属壁的超声波传输特征,从而确定流体管道的最佳厚度。
然而,多普勒型超声流量计对于实际设备的应用使得改变流体管道的厚度变得不可能,必须制备出对于每种类型的流体管道有最佳超声波传输特征的超声流量计,使得通用性很差。
考虑到上面描述的情况,本发明提供了一种高通用性的多普勒型超声流量计,这也是本发明的一个主要目的,它使得可以在各种流体管道中对要测量的流体的流动速率实现简单、容易、无接触、并且精确的测量。
本发明的另一个目的是提供一种多普勒型超声流量计,它可以自动地选择最佳的超声频率或者最佳的超声入射角度,使得关于流体管道的各种壁厚可以发生一种共振的传输现象,从而通过利用超声波的多普勒频移可以对要测量的流体的流动速率实现严格并精确的测量。
本发明的又一个目的是提供一种多普勒型超声流量计,它使得可以甚至对于不透明或者半透明的流体可以实现流体流动速率的精确和严格的测量,而光学的流动速率测量方法对于这些流体不能应用。
本发明的再一个目的是提供一种多普勒型超声流量计,它使得甚至在流体管道中产生了漩流或者与管道不平行的流动的条件下可以对流体管道中要测量的流体实现严格和精确的测量。
发明内容
上面描述的本发明的目的可以通过提供一种多普勒类型的超声流量计实现,它包括:一个超声传输装置,此装置设有一个超声传感器(或变换器),用来发射超声脉冲,且适于使来自超声传感器的超声脉冲进入正在流体管道中流动的要测量的流体中;一个流速型面测量装置,用来接收进入要测量的流体中的超声脉冲的超声波回声,该超声波回声由流体管道中的一个测量区域反射,并且测量在测量区域中要测量的流体的流速型面;一个流体流动速率计算装置,用来在要测量的流体的速度型面的基础上计算要测量的流体的流动速率;以及一个频率选择和设定装置,用来关于流体管道的管壁自动地选定由超声传感器发出的超声波的基频,使得实现一种共振传输现象,其中,该频率选择和设定装置控制超声传输装置的运行,使得由超声传感器发射出所选定的最佳频率的超声波。
为了解决上面描述的问题,在按照本发明的多普勒类型的超声流量计的一个优选实施例中,振荡频率选择和设定装置自动地调整和设定由超声传感器发射的超声脉冲的振荡频率,使得超声波的半波长的整数倍等于流体管道的壁厚。该频率选择和设定装置包括一个振荡放大器,它用来由超声传感器发射出所要求的振荡频率的超声波,一个振荡频率改变装置,它用来可变地调节并设定振荡放大器的振荡频率,一个基频区域(或基频域)设定装置,它用来使振荡频率改变装置在一个事先指定的频率区域中运行,一个超声波接收装置,它用来接收超声传感器发射的超声脉冲的由流体管道中的测量区域反射的超声波回声,以及一个反射波强度得出装置,它用来得出并储存所接收的超声波回声的强度,其中,振荡频率选择和设定装置重复得出并选择振荡频率的操作,自动地选定最佳的超声波频率。
多普勒类型的超声流量计还包括一个入射角度调节和设定装置,用来调节并设定由超声传感器发射进入要测量的流体中的超声脉冲的入射角度,其中,入射角度调节和设定装置具有设置在流体管道上的超声传感器,从而调节并设定成提供给超声脉冲一个入射角度,使得关于流体管道的管壁实现共振传输现象,把频率选择和设定装置与入射角度调节和设定装置结合起来。
而且,为了实现上述目的按照本发明提供了一种多普勒类型的超声流量计,它包括:一个超声传输装置,此装置设有一个超声传感器,用来由超声传感器发射出超声脉冲进入正在流体管道中流动的要测量的流体中;一个流速型面测量装置,用来接收进入要测量的流体中的超声脉冲的超声波回声,该超声波回声由流体管道中的测量区域反射,并且测量在测量区域中要测量的流体的流速型面;一个流体流动速率计算装置,用来在要测量的流体的速度型面的基础上计算要测量的流体的流动速率;以及一个入射角度调节和设定装置,用来调节并设定由超声传感器发射进入要测量的流体中的超声脉冲的入射角度,其中,入射角度调节和设定装置具有设置在流体管道上的超声传感器,从而可以调节并设定它,可以提供给超声脉冲一个入射角度,使得关于流体管道的管壁实现共振传输现象。
进而,入射角度调节和设定装置可以装设有由外侧面设置在流体管道上的一个超声传感器,允许调节和设定由超声传感器发射的超声脉冲的入射角度的一个入射角度改变机构,用来在一个事先指定的一个入射角度范围内致动入射角度改变机构的一个入射角度范围设定装置,以及一个得出反射波强度的装置,此装置用来接收超声传感器发射的超声脉冲的由流体管道中的测量区域反射的超声波回声,并且得出并储存超声波回声的强度,其中,入射角度调节和设定装置可以重复地进行得出并选择超声脉冲入射角度的操作,从而自动地选定最佳的超声脉冲入射角度。该超声传感器可以设置在流体管道的外侧面上,使得它的安装角度可以调节,并且由入射角度改变机构选定超声传感器的安装角度,从而调节并设定由超声传感器发射的超声脉冲的入射角度。
进而,为了实现上述目的,按照本发明的多普勒类型的超声流量计包括:设置在流体管道上的第一超声传感器;第二超声传感器,它设置成在流体管道的轴向方向上离开第一超声传感器;一个超声传感器移动机构,用来关于第二超声传感器向前或向后相对移动第一超声传感器,将两个超声传感器设置成使得所发射的超声脉冲在流体管道的测量区域中正交;反射波接收器,用来接收来自流体管道的一个测量区域的超声波回声,这些回声是分别由第一和第二超声传感器发射的超声脉冲的反射波;速度向量计算装置,用来由被反射波接收器接收的超声波回声的强度计算在超声测量线的方向上的速度向量;以及一个流速向量计算装置,用来由速度向量计算装置计算的速度向量的向量和中计算出要测量的流体的流速向量,其中,由在流体管道的测量线的方向上的流速型面计算出要测量的流体的流动速率,由流速向量计算装置计算出该流速型面。
如上所述,按照本发明的多普勒型超声流量计设有用来自动地选择并设定由超声传感器发出的超声脉冲的振荡频率的频率选择和设定装置和用来可以选择地把由超声传感器发出的超声脉冲的入射角度设定到最佳角度的入射角度调节和设定装置。按照这种设置,可以自动地设定超声波的最佳频率或最佳入射角度,这使得关于流体管道的壁厚实现共振传输现象。这样不再需要对于每种类型的流体管道提供最佳适用的超声传感器。因此,多普勒型超声流量计的通用性强,并且可以对正在流体管道中流动的要测量的流体的流动速率实现简单、容易、严格并高度精确和无接触测量。
按照本发明的多普勒型超声流量计通过利用超声波的多普勒频移使得可以实现对要测量的流体的流动速率的严格和高度精确的测量,使得即使对不透明或者半透明的流体,这些流体不能用光学流动速率测量装置测量,或者对在流体管道中有漩涡,涡流或者不平行的流动的流体也可以实现严格和高度精确的测量。
进而,由下面参考着附图给出的对实施例的描述将会清楚地理解本发明的上述和其它结构和特点。
附图说明
图1为一个简图,示出了按照本发明的多普勒型超声流量计的第一实施例;
图2为用来解释用按照本发明的多普勒型超声流量计进行流动速率测量的原理的图;
图3示出了超声波在金属壁表面的传输特征;
图4示出了正在流体管道中流动的要测量的流体的平均流速型面;
图5示出了按照本发明的多普勒型超声流量计的第二实施例;
图6示出了在多普勒频率的基础上计算出的在超声波入射角度方向上的速度分量,此图用来解释按照本发明的多普勒型超声流量计的第三实施例;
图7为一个原理图,说明按照本发明的多普勒型超声流量计的第三实施例;以及
图8为信号处理方框图,示出了按照本发明的多普勒型超声流量计的第三实施例。
具体实施方式
下面将参考着附图解释按照本发明的多普勒型超声流量计的实施例。
图1为一个简图,示出了按照本发明的多普勒型超声流量计的第一实施例。多普勒型超声流量计10测量要测量的流体12比如正在流体管道11中流动的液体或气体的速度型面,从而实现流动速率的与时间相关的瞬时测量。
多普勒型超声流量计10设有一个超声波速度型面测量单元(下面把它称为“UVP单元”)13,用来对于正在流体管道11中流动的流体12实现非接触测量。UVP单元13有一个超声波传输装置15,用来沿着测量线ML向流体12发射预先确定频率(基频为f0)的超声波脉冲,还有一个流速型面测量装置16,用来接收进入流体12的超声脉冲的超声波回声(这些回声是来自测量区域的反射波),测量在测量区域中流体12的流速型面,该单元还有一台计算机17,比如微处理机,一个CPU或者MPU,其功能是作为流体流动速率计算装置,用来在要测量的流体12的速度型面的基础上进行计算处理,在径向方向上进行积分,从而以时间相关的方式确定流体12的流动速率,该单元还有一个显示装置18,使得可以以时间序列的方式显示出计算机17的输出,该单元还有一个频率选择和设定装置19,用来对于正在流体管道11中流动的流体12自动地选择最佳频率的超声波。
超声波传输装置15有用来发射所要求频率的超声脉冲的超声传感器20和用作信号发生器的一个振荡放大器21,用来使超声传感器20振荡。振荡放大器21装设有用来产生预先确定的基频f0的电信号的一个振荡器23和一个发射器24(频率为Frpf),用来在预先确定的时间间隔(1/Frpf)由振荡器23以脉冲的形式输出电信号。由作为信号发生器的振荡放大器21输入所要求基频f0的脉冲电信号,输到超声传感器20。当把脉冲电信号加到超声传感器20上时,沿着测量线ML发射出基频为f0的超声脉冲。超声脉冲例如为一个线性束,它的脉冲宽度大约为5毫米,并且很难扩展开。
超声传感器20也用作一个发射-接收装置,并且超声传感器20用来接收所发射的超声脉冲被流体中的反射体反射的超声波回声。反射体是在要测量的流体12中均匀分布的空气气泡,金属微细粉末或类似物,或者与流体12的声学阻抗不同的外部物体。
一个反射波接收器27接收被超声传感器20接收的超声波回声,并且此反射波接收器27将这些回声转换成回声电信号。一个放大器28将这些回声电信号放大,并且随后通过A/D变换器29对其进行数字化,并将数字化的回声电信号提供给流速型面测量线路30,该线路构成流速型面测量装置。流速型面测量线路30由振荡放大器21接收基频为f0的数字化的电信号,在由两个信号之间的频率差得到的多普勒频移的基础上测量流速的变化,并且计算出在测量区域中沿着测量线ML的流速型面。在测量区域中将流速型面校正一个倾斜角度α使得可以测量出在流体管道11的截面中的流速型面。
其间,频率选择和设定装置19关于流体管道11的壁厚选定一个最佳值作为由超声传感器20发射出的超声波脉冲的基频f0,从而产生一种共振传输现象。已经发现:当流体管道11的壁厚为超声波的基频f0的半整数倍或者整数倍时,超声波的金属壁传输特征极其明显。
在这个发现的基础上,多普勒型超声流量计10包括频率选择和设定装置19,它使得可以自由地并且自动地选择所要求的基频f0,这个基频使得各种类型的流体管道11可以实现共振的传输现象,而不用改变流体管道11的管壁厚度。
频率选择和设定装置19有一个振荡放大器21,它用来使得超声传感器可以发射出所要求的振荡频率(基频为f0)的超声波,一个振荡频率改变装置31,它可变地调节并设定振荡放大器21的振荡频率,一个基频区域设定装置32,它用来使振荡频率改变装置31在对于该频率改变装置31事先指定的范围内例如在200kHz到4MHz的频率区域中运行,作为超声波接收装置的一个反射波接收器27,它用来接收由流体管道11中的一个测量区域反射的超声波回声,一个反射波强度得出装置33,它设有用于区域(the city)的强度的一个记忆体,此区域用一个放大器28放大所接受的超声波回声信号,随后得出超声波回声信号的强度,并且把它们储存在对于装置33设置的一个记忆体中,以及有反射波强度显示功能的一个显示装置18,在此显示装置上显示由反射波强度得出装置33得出并且储存的反射强度(超声波回声强度)。
这样,频率选择和设定装置19通过振荡放大器21使超声传感器20振荡,发射出超声脉冲。在振荡频率改变装置31的输出信号的基础上决定振荡放大器21的振荡频率f0。振荡频率改变装置31在事先由基频区域设定装置32决定的频率区域中可以变化地设定振荡放大器21的振荡频率。
频率选择和设定装置19通过反射波强度得出装置33,振荡频率改变装置31等装置的合作重复地实现超声振荡频率的得出和选定,并且自动地选择和设定关于流体管道11的壁厚的最佳超声频率,此频率可以产生共振传输现象。
当选择和设定最佳超声频率时,在来自振荡频率改变装置31的输出信号的基础上决定振荡放大器21的振荡频率。振荡放大器21使超声传感器20振荡,将所要求基频f0的超声脉冲发射进流体管道11中,该基频是最佳频率。
因为由超声传感器20发射出最佳频率的超声脉冲,所以可以保证适当地反射的波的信噪比,可以获得较大的超声波回声信号,这种回声就是反射波。为了保证有较大的超声波回声信号,重要的是选择超声波的基频f0,使得关于流体管道11的壁厚(在测量线ML方向上的壁厚)发生共振传输现象。
将流体管道11的壁厚设定为超声波波长的一半的整数倍使得在流体管道11的接口的超声波传输能力由于共振效应而明显地提高。超声波传输能力提高的结果会增大超声波回声信号,这种回声信号是来自要测量的流体12中的反射体的反射波。
因此,如果频率选择和设定装置19选定的基频f0对于流体管道11的壁厚是最佳的频率,作为由超声传感器20发射的超声脉冲的振荡频率,那么,在超声路径(即在测量线ML方向的行进路径)的衰减降低,同时在流体管道11的接口的超声传输能力提高,因此可以获得适当的反射波强度。
在图1中附图标记35表示一种接触介质,用来使得由超声传感器20发射出的超声波容易平稳地进入流体管道11中。设置这种接触介质35确保由于降低由超声传感器20发射进入流体管道11中的超声波的声学阻抗带来良好的声学开关性能。
在第一实施例中,反射波接收器27接收超声波回声,这种回声是超声脉冲的反射波。然而,单独地设置反射波接收器27不总是必须的,可以替代地将反射波接收器结合在超声传感器20的接收功能中。
现在参见图2(2A,2B和2C),将解释多普勒型超声流量计10的工作原理。
如在图2A中所示,当由超声传感器20发射出频率为所要求的基频f0的超声脉冲时,同时将超声传感器20安装在要测量的流体流动的方向相对于流体管道11的径向方向的夹角为α,均匀地分布在要测量的流体12中的反射体比如空气气泡或者外部物体在测量线ML上反射超声波脉冲,并且随后以超声波回声a的形式返回到超声传感器20,此回声就是反射波,如在图2B中所示。在图2B中的附图标记b表示在超声脉冲进入的那一侧被管道壁反射的多重反射的回声,而附图标记c表示在相对的那一侧被管道壁反射的多重反射的回声。由超声传感器20发射出的超声脉冲的发射间隔为1/Frpf
由超声传感器20发射的回声信号经过滤波处理,采用多普勒频移法测量出沿着测量线ML的流速型面。在图2C中示出了测量结果。可以由UVP单元13的流速型面测量装置16测量出流速型面。
在多普勒频移法应用的原理中,混合在流体12中或者均匀分布在流体中的反射体反射发射进入在流体管道11中流动的流体12中的超声脉冲,被反射的超声脉冲返回,成为超声波回声,超声波回声的频率移动的数量与流速成正比。
将超声波流速型面测量装置16测量的流体12的流速型面信号送到用作流速型面计算装置的计算机17,在计算机中将流速型面信号在流体管道11的径向方向上积分,从而与时间相关地确定出要测量的流体12的流速。如果用m(t)表示要测量的流体12在时刻t的流速,那么流动速率可以用下面给出的表达式表示:
        m(t)=p∫v(x·t)·dA………(1)其中p为要测量的流动速率,v(x,t)为在时刻t(在x方向)的速度分量。
由表达式(1)可以将在时刻t在流体管道11中的流动速率m(t)重新写成下面给出的表达式:
        m(t)=p∫∫vx(r·θ·t)·r·dr·dθ  ………(2)其中vx(r,θ,t)为在管道轴线的方向上在角度θ并且在管道的截面上离开中心的距离为r的位置在时刻t的速度分量。
多普勒型超声流量计10可以由这个表达式(2)立即以例如大约5毫秒到大约100毫秒的响应速度得到要测量的流体12的流动的空间型面。如果不能保证一个适当的起动区域或者由于阀门的打开/关闭或泵的启动/停止存在随时间的起伏,在流体管道(圆形管道)11中流体12的流动有不稳定状态的三维型面。然而,多普勒型超声流量计10使得可以立即与时间相关地确定在测量区域中的流速型面,从而可以以高精度严格地确定出要测量的流体12的流动速率,与流动是处于稳定状态还是不稳定状态无关。
进而,通过采用按照本发明的多普勒型超声流量计10进行了关于由超声传感器20发射出的超声波的传输特点的证实性试验。
图3示出了试验的结果,示出了超声波的壁表面传输特征。
用于这个试验的多普勒型超声流量计10靠频率选择和设定装置19能够自动地调节和设定由超声传感器20发射出的超声波的基频,例如以5kHz为单位由200kHz到几MHz例如2MHz变化。
为了进行关于超声波的壁表面传输的试验,在直径为250毫米的聚丙烯管道的一部分嵌入不锈钢,并且把超声传感器20装在不锈钢壁的外部上。发射超声波,在不同的基频下检查超声波由聚丙烯管道的对面壁表面的反射强度。示出了当使基频以5kHz为单位改变基频时获得的反射波传输强度曲线h,i和j。对于关于超声波的壁表面传输的试验采用了三种不同的不锈钢壁厚:9.5毫米,11.5毫米和13毫米。图3示出了采用9.5毫米壁厚的不锈钢超声波壁表面传输试验的示例。横坐标轴表示超声波的基频f0,而纵坐标轴表示超声波由相对的壁反射的强度。所采用的三种类型的超声传感器的特征频率为0.25MHz,0.5MHz和1MHz,它们的传输强度曲线由附图标记h,i和j表示。
在图3中箭头l,m和n表示超声波的振荡频率波长与不锈钢壁厚之间的关系,并且表示以最短的超声波波长开始波长为1/2倍,1倍和3/2倍不锈钢壁厚的频率的位置。
在图3的基础上可以理解到:如果例如使用1-MHz的超声传感器,那么当按照不锈钢管道的壁厚将基频设定在大约910kHz进行流动速率测量时可以获得好的超声波传输特征。可以看到:频率传输强度曲线j示出了在箭头n表示的位置反射波的传输强度水平较高。
现在以在图3中示出的超声波传输特征为基础,准备由碳钢(内径为150毫米)制作的一根流体管道,它的壁厚为9.5毫米,采用特征频率为1-MHz的超声传感器20,并且频率选择和设定装置19将由超声传感器20发射的基频f0选择和设定到910kHz,测量要测量的流体的流速型面。
在图4中示出了测量试验得到的要测量的流体的时间平均流速型面的结果。流体的流速型面的测量点的范围由60毫米到150毫米。在由碳钢制作的流体管道的管道中心部分之前的那一侧(范围为0毫米到60毫米),超声波在壁的反射使得很难获得适当的流速型面。然而在越过管道中心部分的那一侧的测量区域中,壁表面不影响测量流体12的流速型面,可以获得相当平滑的平均流速型面曲线“0”。
在平均流速型面曲线“0”的基础上,将流体管道11中的平均流速型面积分,从而可以实现在流体管道11中流动的流体12的流动速率的精确的无接触测量。
图5示出了按照本发明的多普勒型超声流量计的第二实施例。
在这个实施例中示出的多普勒型超声流量计可以用来改变流体管道11的壁厚,实现共振传输现象,作为改进反射波信噪比的一种方法,代替选择进入流体管道11的超声波脉冲的最佳频率。
然而,因为实际上不可能改变流体管道11的壁厚,通过改变超声传感器20的安装角度提供了与改变流体管道11的壁厚等价的一种手段。
在第二实施例中,入射角度调节和设定装置40调节并设定由超声传感器20发射的超声脉冲的入射角度α,从而自动地选择与流体管道11的壁厚相对应的超声波入射角度。把相同的附图标记加到参考着第一实施例描述的多普勒型超声流量计10由相同的附图标记表示的那些件相对应的件上,并且在这里将省略对它们的解释。
在图5中示出的多普勒型超声流量计10A设有入射角度调节和设定装置40,代替频率选择和设定装置19。
入射角度调节和设定装置40装设有一个超声传感器20,将此传感器由外侧面设置在流体管道11上,其方式为它的安装角度可以调节,装置40还有能够调节和设定由超声传感器20发射的超声脉冲的入射角度α的一个入射角度改变机构41,用来在一个事先指定的一个入射角度范围中,例如入射角度可以在由5度到45度的角度宽度范围内改变,致动入射角度改变机构41的一个入射角度范围设定装置43,以及一个得出反射波强度的装置44,此装置接收由流体管道11中一个测量区域反射的超声波回声,并且随后得出并储存超声波回声的强度。随后在由反射波强度显示功能的一个显示装置上显示由得出反射波强度的装置44得出并储存的超声波回声强度。
入射角度调节和设定装置40是一个使得入射角度改变机构41在大约5度到大约45度的范围内改变超声波入射角度α的机构。在由入射角度改变机构41发出的一个输出信号的基础上,自动地将超声传感器20的安装角度调整并设定到一个最佳值。通过致动一个安装角度改变和调节机构比如一台步进马达46或类似装置由入射角度改变机构41发出的输出信号可以变化地调节并设定超声传感器20的安装角度。
由超声传感器20发射的超声波的入射角度α是相对于流体管道11的管道表面的一根垂直线或者一个垂直表面形成的角度。入射角度调节和设定装置40将由超声传感器20发射的超声波的入射角度设定到关于流体管道11的壁厚的最佳角度,从而使得实现一种共振传输现象。
入射角度调节和设定装置40靠由入射角度改变机构41发出的输出信号在由大约5度到大约45度的一个入射角度范围内改变由超声传感器20发射的超声波的入射角度,并且得出反射波强度的装置44得出并储存反射波强度。显示单元18显示得出反射波强度的装置44储存的反射波强度,同时,入射角度调节和设定装置40重复地实现得出并选择超声脉冲的入射角度的操作,自动地选择并采用超声脉冲的最佳入射角度。
入射角度调节和设定装置40将由超声传感器20发射的超声波脉冲的入射角度调节并设定到最佳角度将与流体管道11的壁厚的实体改变等价,并且由超声传感器20发射的超声波脉冲使得可以实现对于流体管道11中要测量的流体12的流速型面和流动速率的严格和精确的测量。
通过改变由超声传感器20发射的超声波的入射角度(进入角度)可以改变在材料中的传播距离,即,超声波在流体管道11中的传播距离。进而,把超声波的传播距离设定到超声波的半波长的整数倍使得关于流体管道11的壁厚实现共振传输现象。这使得可以保证得到一个适当的反射波信噪比,可以保证超声波回声的强度,该回声是一种反射波。因此,可以精确并且无接触地测量出在流体管道11中流动的要测量的流体12的流速型面和流动速率。
在所描述的多普勒型超声流量计的每个实施例中,示出了装设有频率选择和设定装置19的示例,并且已经示出了装设有入射角度调节和设定装置40的示例。然而替代地,可以将频率选择和设定装置19与入射角度调节和设定装置40结合在单一的多普勒型超声流量计中。在装设有两种设定装置19和40的组合的多普勒型超声流量计使得可以容易地自动选择和设定最佳频率和最佳入射角度。
在图1到4中示出的多普勒型超声流量计10和10A适宜于用流速型面的线性测量方法测量要测量的流体的流动速率,这种方法采用超声脉冲和超声波回声的多普勒频移。因此,为了改进测量精度,必须增加测量线ML的数目和所安装的超声传感器20的数目。在实践中,将需要把N个超声传感器20安装在管道11的沿圆周方向预先确定的间隔上,并且将测量线ML设定在相对于管道壁的垂线的一个角度α,使得所有测量线ML穿过管道11的轴线。
因此,如果在管道11中流动的流体12的流正在管道轴线的方向上流动,并且在径向方向上的流速vr和在角度θ的流速v0可以忽略,那么,vx>>vr,vx>>v0。流速测量将变得简单,并且可以由下面给出的表达式表示:
m ( t ) = Σ i N · 2 π N ∫ R K { vx ( r · θi · t ) / sin α } · r · dr - - - ( 3 )
因此显示单元18可以以与时间相关的方式立即显示出所确定的流体12的流动速率。显示单元18也能够显示出在流体管道11中沿着测量线ML的流速型面或者在管道的截面中的流速型面。
图6到图8示出了按照本发明的多普勒型超声流量计的第三实施例。
如在图6中所示,这个实施例的多普勒型超声流量计10B在多普勒频率的基础上计算出正在流体管道11中流动的要测量流体12的在超声波入射角度(进入角度)方向上的速度分量。由所计算的多普勒频率按照现行测量方法确定出沿着测量线ML的流速型面,从而计算出流体12的流动速率。
多普勒型超声流量计10B由多普勒频率计算出在超声波路径(测量线ML)方向上的速度向量V2,并且用速度向量V2除以sinα,从而计算出在流体管道11的轴线方向上的速度向量V1。
如果要测量的流体12的流动与流体管道11不平行并且在流体管道11中存在漩涡流动,或者在流体管道11中存在不平行的流动,多普勒型超声流量计10B将不能计算出正确的流速。例如,如在图7中所示,如果有一个空气气泡,它的速度向量为V3,那么,速度向量V3把在同一方向上的速度向量V2分配作为流体12的速度向量V1,使得流量计错误地把流体12中空气气泡的表观速度计算成在流体管道11的轴向方向上的大速度。
为了解决在表观速度的基础上计算流动速率的问题,多普勒型超声流量计10B设有安装在流体管道11上的两个超声传感器20和20a。把一个超声传感器20安装成与另一个超声传感器20a正交。两个超声传感器20和20a确定它们的速度向量V2和V4,并且计算出速度向量V2与V4的和,从而使得可以适当地确定出要测量的流体12的流速和空气气泡的流速。
在该多普勒型超声流量计10B中,将另一个超声传感器20a的构形做成可以在流体管道11上相对于超声传感器20移动,为的是适当地测量出流体12的流速。
因此,多普勒型超声流量计10B装设有一个超声传感器移动机构46,用来关于一个超声传感器20向前或向后相对移动另一个超声传感器20a,并且将该流量计的构形做成如在图8中示出的信号处理方框图中所表示的那样。
在图8中所示的多普勒型超声流量计10B中,将两个超声传感器20和20a设置成使得由两个超声传感器20和20a发射的超声脉冲的入射方向在流体管道11中相互正交。更具体地说,在多普勒型超声流量计10B中,将两个超声传感器20和20a设置成使得由两个超声传感器20和20a发射的超声脉冲在流体管道11的测量区域中正交。
多普勒型超声流量计10B装设有反射波接收器27和27a,用来接收来自流体管道11的测量区域的超声波回声,这些回声是由两个超声传感器20和20a发射的超声脉冲的反射波,该流量计还装设有速度向量计算装置47和47a,其中它用来由被各自的反射波接收器27和27a接收的超声波回声的强度计算出超声测量线的方向上的速度向量,以及一个流速向量计算装置48,用来由各自的速度向量计算装置47和47a计算出的速度向量的向量和计算出要测量的流体的流速向量,其中由在流体管道11的测量线ML的方向上的流速型面计算出流体12的流动速率,由流速向量计算装置48计算出该流速型面。
反射波接收器27和27a分别接收超声波回声,这些回声是由两个超声传感器20和20a发射的超声脉冲的反射波。速度向量计算装置47和47a将被各自的反射波接收器27和27a接收的超声波回声的强度信号转换成测量线ML的方向(在路径方向)上的速度向量。流速向量计算装置48计算出所得到的速度向量在路径方向上的向量的向量和,从而计算出要测量的流体12的流速的正确的速度向量。
通过采用速度向量计算装置47,47a和流速向量计算装置48构形出流速型面测量线路30可以确定流体12的流动速率,或者通过测量在流体管道11中流动的要测量的流体12沿着路径(测量线)ML方向的流速型面、并且随后实现在超声波的路径方向上对流速型面积分的计算可以确定流体12的流动速率。
在计算出流速型面测量线路30的流速向量计算装置48的位置的流速之后,用超声传感器移动机构46使超声传感器20或20a在流体管道11上运动,在下一个位置收集数据。超声传感器移动机构46使超声传感器20或20a由一个位置运动到另一个位置,在超声脉冲的路径方向上在整个区域内确定要测量的流体12的流速型面。这使得可以通过计算严格地确定出流动速率。
工业应用性
按照本发明的多普勒型超声流量计使得可以关于流体管道的壁厚自动地设定超声波的最佳频率和最佳入射角度,这使得实现一种共振传输现象,不再需要对于每种类型的流体管道提供最佳的超声传感器,通用性强,并且可以对正在流体管道中流动的要测量的流体的流动速率实现简单、容易、严格、精确和无接触测量。
还有,按照本发明的多普勒型超声流量计通过利用超声波的多普勒频移使得可以实现对要测量的流体的流动速率的严格和高度精确的测量,使得即使对不透明或者半透明的流体,这些流体不能用光学流动速率测量装置测量,或者对在流体管道中有漩涡,涡流或者不平行的流动的流体也可以实现严格和高度精确的测量,因此表明有很高的工业上的可应用性。

Claims (8)

1.一种多普勒类型的超声流量计,它包括:
超声传输装置,其设有超声传感器,用来发射超声脉冲,适于使来自超声传感器的超声脉冲进入正在流体管道中流动的要测量的流体中;
流速型面测量装置,用来接收进入要测量的流体中的超声脉冲的超声波回声,所述超声波回声由流体管道中的测量区域反射,并且测量在测量区域中要测量的流体的流速型面;
流体流动速率计算装置,用来在要测量的流体的速度型面的基础上计算出要测量的流体的流动速率;以及
频率选择和设定装置,用来关于流体管道的管壁自动地选定由超声传感器发出的超声波的基频,使得实现共振传输现象,
其中,所述频率选择和设定装置控制超声传输装置的运行,使得由超声传感器发射出所选定的最佳频率的超声波。
2.按照权利要求1所述的多普勒类型的超声流量计,其特征在于,所述振荡频率选择和设定装置自动地调整和设定由超声传感器发射的超声脉冲的振荡频率,使得超声波的半波长的整数倍等于流体管道的壁厚。
3.按照权利要求1所述的多普勒类型的超声流量计,其特征在于,所述振荡频率选择和设定装置包括振荡放大器,它用来由超声传感器发射出所要求的振荡频率的超声波,振荡频率改变装置,它用来可变地调节并设定振荡放大器的振荡频率,基频区域设定装置,它用来使振荡频率改变装置在事先指定的频率区域中运行,超声波接收装置,它用来接收由超声传感器发射的超声脉冲的由流体管道中的测量区域反射的超声波回声,以及反射波强度得出装置,它用来得出并储存所接收的超声波回声的强度,且其中,所述振荡频率选择和设定装置重复得出并选择振荡频率的操作,以自动地选定最佳的超声波频率。
4.按照权利要求1所述的多普勒类型的超声流量计,其特征在于,其还包括入射角度调节和设定装置,用来调节并设定由超声传感器发射进入要测量的流体中的超声脉冲的入射角度,其中,入射角度调节和设定装置具有设置在流体管道上的超声传感器,从而调节并设定提供给超声脉冲入射角度,使得关于流体管道的管壁实现共振传输现象,把所述频率选择和设定装置与所述入射角度调节和设定装置结合起来。
5.一种多普勒类型的超声流量计,它包括:
超声传输装置,其设有超声传感器,用来发射超声脉冲,且适于使来自超声传感器的超声脉冲进入正在流体管道中流动的要测量的流体中;
流速型面测量装置,用来接收进入要测量的流体中的超声脉冲的超声波回声,所述超声波回声由流体管道中的测量区域反射,并且测量在测量区域中要测量的流体的流速型面;
流体流动速率计算装置,用来在要测量的流体的速度型面的基础上计算出要测量的流体的流动速率;以及
入射角度调节和设定装置,用来调节并设定由超声传感器发射进入要测量的流体中的超声脉冲的入射角度,其中,入射角度调节和设定装置具有设置在流体管道上的超声传感器,从而调节并设定提供给超声脉冲入射角度,使得关于流体管道的管壁实现共振传输现象。
6.按照权利要求5所述的多普勒类型的超声流量计,其特征在于,所述入射角度调节和设定装置包括由外侧面设置在流体管道上的超声传感器,允许调节和设定由超声传感器发射的超声脉冲的入射角度的入射角度改变机构,用来在事先指定的入射角度范围内致动入射角度改变机构的入射角度范围设定装置,以及得出反射波强度的装置,此装置用来接收由超声传感器发射的超声脉冲的由流体管道中的测量区域反射的超声波回声,并且随后得出并储存超声波回声的强度,其中,所述入射角度调节和设定装置重复地进行得出并选择超声脉冲入射角度的操作,从而自动地选定最佳的超声脉冲入射角度。
7.按照权利要求5所述的多普勒类型的超声流量计,其特征在于,所述超声传感器设置在流体管道的外侧面上,使得它的安装角度可以调节,并且由入射角度改变机构选定超声传感器的安装角度,从而调节并设定由超声传感器发射的超声脉冲的入射角度。
8.一种多普勒类型的超声流量计,它包括:
设置在流体管道上的第一超声传感器;
第二超声传感器,其设置成在流体管道的轴向方向上离开第一超声传感器;
超声传感器移动机构,用来关于第二超声传感器向前或向后相对移动第一超声传感器,将所述两个超声传感器设置成使得所发射的超声脉冲在流体管道的测量区域中正交;
反射波接收器,用来接收来自流体管道的测量区域的超声波回声,这些回声是分别由第一和第二超声传感器发射的超声脉冲的反射波;
速度向量计算装置,用来由被反射波接收器接收的超声波回声的强度计算出在超声测量线的方向上的速度向量;以及
流速向量计算装置,用来由速度向量计算装置计算出的速度向量的向量和中计算出要测量的流体的流速向量,其中,由在流体管道的测量线的方向上的流速型面计算出要测量的要测量的流体的流动速率,由流速向量计算装置计算出该流速型面。
CNB028262913A 2001-10-26 2002-10-25 多普勒型超声流量计 Expired - Fee Related CN1327198C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP329654/2001 2001-10-26
JP2001329654A JP4169504B2 (ja) 2001-10-26 2001-10-26 ドップラ式超音波流量計

Publications (2)

Publication Number Publication Date
CN1608198A true CN1608198A (zh) 2005-04-20
CN1327198C CN1327198C (zh) 2007-07-18

Family

ID=19145519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028262913A Expired - Fee Related CN1327198C (zh) 2001-10-26 2002-10-25 多普勒型超声流量计

Country Status (9)

Country Link
US (1) US6931945B2 (zh)
EP (1) EP1439376A4 (zh)
JP (1) JP4169504B2 (zh)
KR (1) KR100550737B1 (zh)
CN (1) CN1327198C (zh)
AU (1) AU2002344016B9 (zh)
CA (1) CA2465256C (zh)
TW (1) TW577978B (zh)
WO (1) WO2003036241A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936756A (zh) * 2010-08-31 2011-01-05 华南理工大学 一种多频相控阵超声多普勒流量检测***及方法
CN102803908A (zh) * 2009-06-16 2012-11-28 丹尼尔测量和控制公司 不停止流体流过测量仪器的换能器频率调节
CN103226910A (zh) * 2013-04-01 2013-07-31 河海大学 一种自动施放声学多普勒流速仪加噪剂的装置及使用方法
CN107064552A (zh) * 2017-04-10 2017-08-18 中国科学院合肥物质科学研究院 一种超声多普勒测速装置
CN108802423A (zh) * 2018-06-13 2018-11-13 北京航空航天大学 一种通过非外伸式微缩声探测器进行流动测量的方法
CN109856620A (zh) * 2017-11-30 2019-06-07 浙江大学自贡创新中心 一种新型多管多流速测量***及测量方法
CN110972494A (zh) * 2018-08-01 2020-04-07 首尔大学校产学协力团 用于通过meta平板测量流速的超声换能器
CN113474646A (zh) * 2019-02-26 2021-10-01 国立大学法人丰桥技术科学大学 超声波检查装置及超声波检查方法
CN113597536A (zh) * 2019-03-29 2021-11-02 京瓷株式会社 测定装置、测定***、测定方法以及程序
CN117664255A (zh) * 2024-02-01 2024-03-08 锐特科技(天津)有限公司 超声波流量计的数据多级输出方法及***

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669580B2 (ja) * 2002-05-24 2005-07-06 学校法人慶應義塾 超音波流速分布及び流量計
JP4183560B2 (ja) 2003-05-28 2008-11-19 東京電力株式会社 気泡発生装置およびドップラ式超音波流量計
WO2005064288A1 (ja) * 2003-12-26 2005-07-14 The Tokyo Electric Power Company, Incorporated 超音波流量計、超音波流量計用くさび、超音波送受信ユニットのセッティング方法および超音波送受信ユニット
US20070151362A1 (en) * 2003-12-26 2007-07-05 Michitsugu Mori Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit
JPWO2005064286A1 (ja) * 2003-12-26 2007-07-19 東京電力株式会社 超音波流量計
US20070107535A1 (en) * 2003-12-26 2007-05-17 The Tokyo Electric Power Company Incorported Ultrasonic flow meter, flow measurement method, and computer program
WO2005064289A1 (ja) * 2003-12-26 2005-07-14 The Tokyo Electric Power Company, Incorporated 超音波流量計、超音波トランスジューサ、超音波送受信ユニットおよび超音波流量計を用いた流量測定方法
CA2557099A1 (en) * 2004-02-27 2005-09-09 Fuji Electric Systems Co., Ltd. Doppler type ultrasonic flow meter
JP2005241546A (ja) 2004-02-27 2005-09-08 Fuji Electric Systems Co Ltd ドップラー式超音波流量計、その演算処理装置、プログラム
GB0407982D0 (en) * 2004-04-08 2004-05-12 Wood Group Logging Services In "Methods of monitoring downhole conditions"
US20060243280A1 (en) * 2005-04-27 2006-11-02 Caro Richard G Method of determining lung condition indicators
WO2006117780A2 (en) * 2005-04-29 2006-11-09 Oren Gavriely Cough detector
US20100218618A1 (en) * 2006-01-20 2010-09-02 The Tokyo Electric Power Co., Inc. Doppler type ultrasonic flow meter, flow metering method, and computer program
KR100753166B1 (ko) * 2006-07-21 2007-08-30 강원대학교산학협력단 유속측정 장치 및 방법
US7752918B2 (en) * 2006-11-09 2010-07-13 Expro Meters, Inc. Apparatus and method for measuring a fluid flow parameter within an internal passage of an elongated body
US7523676B2 (en) * 2006-12-07 2009-04-28 General Electric Company Ultrasonic flow rate measurement method and system
US8588742B2 (en) * 2007-03-16 2013-11-19 Ericsson Ab Method and apparatus for providing wireless services to mobile subscribers using existing broadband infrastructure
US7911880B2 (en) 2007-05-22 2011-03-22 Nortek As Acoustic doppler dual current profiler system and method
JP4983787B2 (ja) * 2008-12-24 2012-07-25 横河電機株式会社 超音波計測器
JP2011122831A (ja) * 2009-12-08 2011-06-23 Tokyo Electric Power Co Inc:The 超音波式流量計測方法および超音波式流量計測装置
KR100961639B1 (ko) 2010-02-09 2010-06-09 자인테크놀로지(주) 외벽 부착식 초음파 유량계를 위한 최적 주파수 자동 설정 방법
AU2011295676B2 (en) * 2010-09-03 2015-10-15 Los Alamos National Security, Llc Method for noninvasive determination of acoustic properties of fluids inside pipes
AU2011295662B2 (en) * 2010-09-03 2015-10-15 Los Alamos National Security, Llc Apparatus and method for noninvasive particle detection using Doppler spectroscopy
WO2013170144A1 (en) * 2012-05-11 2013-11-14 Volcano Corporation Device, system, and method for flow imaging in the body using a swept transducer
CN103470201B (zh) 2012-06-07 2017-05-10 通用电气公司 流体控制***
AU2012397797A1 (en) * 2012-12-28 2015-05-07 Halliburton Energy Services, Inc. Method and apparatus for the downhole in-situ determination of the speed of sound in a formation fluid
US10352908B2 (en) * 2012-12-28 2019-07-16 Halliburton Energy Services, Inc. Method and apparatus for the downhole in-situ determination of the speed of sound in a formation fluid
CA2917398C (en) 2013-08-22 2018-07-31 Halliburton Energy Services, Inc. Drilling fluid flow measurement in an open channel fluid conduit
GB201402884D0 (en) * 2014-02-18 2014-04-02 Pcme Ltd Ultrasonic flow probe and method of monitoring fluid flow in a conduit
WO2017053978A1 (en) 2015-09-25 2017-03-30 Kovscek Mark Fluid monitoring system
USD851524S1 (en) 2018-01-18 2019-06-18 Norgas Metering Technologies, Inc. Ultrasonic flow meter
CN108445255A (zh) * 2018-03-20 2018-08-24 南京优触电子科技有限公司 一种基于超声波的气体流速测量方法及装置
CN109341794A (zh) * 2018-12-24 2019-02-15 南京光声超构材料研究院有限公司 超声流量计及调节换能器的方法
JP7281178B2 (ja) * 2019-05-24 2023-05-25 国立大学法人東京工業大学 超音波式探傷装置及び超音波式探傷プログラム
FR3109631B1 (fr) * 2020-04-22 2022-04-15 Sagemcom Energy & Telecom Sas Procédé de mesure ultrasonique avec prise en compte de la quantité de bulles gazeuses
TWI782450B (zh) * 2021-03-19 2022-11-01 和旺昌噴霧股份有限公司 管路液體之監測裝置
CN113092815B (zh) * 2021-04-06 2024-02-23 武汉上善绎科技有限公司 一种实时测量水流三维速度的超声方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI67627C (fi) * 1981-10-19 1985-04-10 Eino Haerkoenen Foerfarande och anordning foer maetning av stroemningshastigheten i stroemmen av uppslamningar genom utnyttjandet av ultraljud
DE3333409A1 (de) * 1983-09-15 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Verfahren zur ultraschall-durchflussmessung nach dem dopplerprinzip mit verbesserter ortsaufloesung
CN2096046U (zh) * 1990-11-28 1992-02-12 北京电力科学研究所 超声多普勒流量计用高温超声换能器
US5540230A (en) * 1994-04-15 1996-07-30 Echocath, Inc. Diffracting doppler-transducer
JP3235637B2 (ja) * 1995-02-27 2001-12-04 横河電機株式会社 超音波式流体振動流量計
DE19633558C2 (de) * 1996-08-21 1998-07-02 Krohne Messtechnik Kg Ultraschall-Durchflußmeßverfahren
US6067861A (en) * 1998-06-18 2000-05-30 Battelle Memorial Institute Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler
JP2000097742A (ja) * 1998-09-25 2000-04-07 Tokyo Electric Power Co Inc:The ドップラ式超音波流量計

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803908A (zh) * 2009-06-16 2012-11-28 丹尼尔测量和控制公司 不停止流体流过测量仪器的换能器频率调节
CN102803908B (zh) * 2009-06-16 2016-06-29 丹尼尔测量和控制公司 不停止流体流过测量仪器的换能器频率调节
CN101936756A (zh) * 2010-08-31 2011-01-05 华南理工大学 一种多频相控阵超声多普勒流量检测***及方法
CN103226910A (zh) * 2013-04-01 2013-07-31 河海大学 一种自动施放声学多普勒流速仪加噪剂的装置及使用方法
CN107064552A (zh) * 2017-04-10 2017-08-18 中国科学院合肥物质科学研究院 一种超声多普勒测速装置
CN109856620A (zh) * 2017-11-30 2019-06-07 浙江大学自贡创新中心 一种新型多管多流速测量***及测量方法
CN109856620B (zh) * 2017-11-30 2023-10-27 浙江大学自贡创新中心 一种新型多管多流速测量***及测量方法
CN108802423A (zh) * 2018-06-13 2018-11-13 北京航空航天大学 一种通过非外伸式微缩声探测器进行流动测量的方法
CN108802423B (zh) * 2018-06-13 2020-01-03 北京航空航天大学 一种通过非外伸式微缩声探测器进行流动测量的方法
CN110972494A (zh) * 2018-08-01 2020-04-07 首尔大学校产学协力团 用于通过meta平板测量流速的超声换能器
CN110972494B (zh) * 2018-08-01 2021-06-04 首尔大学校产学协力团 用于通过meta平板测量流速的超声换能器
CN113474646A (zh) * 2019-02-26 2021-10-01 国立大学法人丰桥技术科学大学 超声波检查装置及超声波检查方法
CN113597536A (zh) * 2019-03-29 2021-11-02 京瓷株式会社 测定装置、测定***、测定方法以及程序
CN117664255A (zh) * 2024-02-01 2024-03-08 锐特科技(天津)有限公司 超声波流量计的数据多级输出方法及***
CN117664255B (zh) * 2024-02-01 2024-04-26 锐特科技(天津)有限公司 超声波流量计的数据多级输出方法及***

Also Published As

Publication number Publication date
KR100550737B1 (ko) 2006-02-08
AU2002344016B9 (en) 2006-07-20
CA2465256C (en) 2010-09-21
EP1439376A1 (en) 2004-07-21
AU2002344016B2 (en) 2006-03-23
WO2003036241A1 (fr) 2003-05-01
US20050011279A1 (en) 2005-01-20
CN1327198C (zh) 2007-07-18
US6931945B2 (en) 2005-08-23
TW577978B (en) 2004-03-01
KR20040054741A (ko) 2004-06-25
JP2003130699A (ja) 2003-05-08
EP1439376A4 (en) 2007-04-11
CA2465256A1 (en) 2003-05-01
JP4169504B2 (ja) 2008-10-22

Similar Documents

Publication Publication Date Title
CN1608198A (zh) 多普勒型超声流量计
CN107923880A (zh) 基于超声测量的浊度传感器
US20100299088A1 (en) Ultrasonic clamp-on multiphase flowmeter
JP2003526101A (ja) 多相液体/気体混合物の流量及び濃度を同時に測定する方法及び装置
JP2007529725A (ja) 変換器アレイおよび反射面を伴う超音波流速流量センサ
CN1116877A (zh) 流体流量计
EP3593093A1 (en) Apparatus and method for measuring the flow velocity of a fluid in a pipe
CN108303570A (zh) 一种多普勒海流计声波散射区域的标定装置及方法
CN1726382A (zh) 用于在容器上定位夹合式流量计的设备
CN1768249A (zh) 用于确定和/或监控介质的体积流量和/或质量流量的设备
CN1774617A (zh) 使用超声波传感器阵列确定管道内的流体速度的设备和方法
CN109813381A (zh) 用于确定测量体积中的压力的测量装置
GB2238615A (en) Swirl flowmeter for multiphase fluid streams
US7415893B2 (en) Bubble generator for use in doppler ultrasonic flowmeter and doppler ultrasonic flowmeter
Nguyen et al. Ultrasonic Doppler velocity profile measurement of single-and two-phase flows using spike excitation
US11221244B2 (en) Clamp-on circumferential resonance ultrasonic flowmeter for collectively exciting and receiving circumferential modes of a pipe
EP2074388A2 (en) Flow sensor based on a piezoelectric polymer flow tube
RU127329U1 (ru) Устройство для измерения скорости нефте-водо-газового потока
Fukumoto et al. A study of phased array ultrasonic velocity profile monitor for flow rate measurement
JP3602113B2 (ja) ドップラ式超音波流量計、ドップラ式超音波流量計を用いた流量計測方法および流量計測用プログラム
RU2689250C1 (ru) Ультразвуковой доплеровский расходомер многокомпонентной жидкости
RU2245522C1 (ru) Ультразвуковой способ измерения уровня сред в резервуаре с плоскими параллельными стенками
RU127454U1 (ru) Устройство для измерения газосодержания нефте-водо-газового потока
RU127455U1 (ru) Устройство для измерения обводненности нефте-водо-газового потока
JP2004012205A (ja) ドップラ式超音波流量計、ドップラ式超音波流量計を用いた流量計測方法および流量計測用プログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070718

Termination date: 20121025