CN1507413A - 通过改良催化剂组合物的转化 - Google Patents

通过改良催化剂组合物的转化 Download PDF

Info

Publication number
CN1507413A
CN1507413A CNA028095340A CN02809534A CN1507413A CN 1507413 A CN1507413 A CN 1507413A CN A028095340 A CNA028095340 A CN A028095340A CN 02809534 A CN02809534 A CN 02809534A CN 1507413 A CN1507413 A CN 1507413A
Authority
CN
China
Prior art keywords
catalyst
catalyst composition
converter
oxide
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028095340A
Other languages
English (en)
Other versions
CN1305753C (zh
Inventor
R・G・西尔弗
R·G·西尔弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UTC Power Corp
Original Assignee
UTC Fuel Cells LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UTC Fuel Cells LLC filed Critical UTC Fuel Cells LLC
Publication of CN1507413A publication Critical patent/CN1507413A/zh
Application granted granted Critical
Publication of CN1305753C publication Critical patent/CN1305753C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

用于一燃料电池(12)的一燃料处理子***(14,16,18)中的转化器(16)使用一经改良的催化剂组合物(50)以减少用于该燃料电池(12)的过程气体中的一氧化碳量。催化剂组合物(50)是一贵金属催化剂,其具有一混合金属氧化物促进化载体,该混合金属氧化物至少包括二氧化铈和氧化锆两者。铈的含量介于30至50摩尔%之间,且锆的含量介于70至50摩尔%之间。其中亦可含有其他金属氧化物。使用该催化剂组合物(50)可避免预先还原催化剂的需要,且可尽量减少作业及/或停机期间为避免催化剂氧化所需采取的措施。

Description

通过改良催化剂组合物的转化
技术领域
本发明涉及碳氢化合物燃料处理,且具体而言涉及一经改良的转化器及其中所用的催化剂。更具体而言,本发明涉及用于处理富氢气流(其用于燃料电池)的转化器中及其中所用的经改良的催化剂组合物。
发明背景
利用一燃料电池组由碳氢化合物燃料产生电能的燃料电池发电厂已为我们所熟知。为使碳氢化合物燃料可用于燃料电池组作业中,其必须首先转化为富氢流。燃料电池组所使用的碳氢化合物燃料通过一重整方法以产生一氢含量增加的过程气体,该气体被引入该燃料电池组中。所得过程气体主要包括水、氢气、二氧化碳及一氧化碳。该过程气体自该重整器排出时含有约10%的一氧化碳(CO)。
高含量一氧化碳可引起作为燃料电池组一部分的阳极电极“中毒”。因而,必须在过程气体流至燃料电池组前减少其中之CO量。该目的通常在过程气体流至燃料电池组前使其通过一转化器且可能通过额外反应器(例如一选择性氧化器)来达成。该转化器亦可增加过程气体中氢气的产率。
用于减少过程气体中CO含量的转化器已为我们所熟知,且其通常包含一室,该室具有一用于使过程气体进入该室的入口、一位于该入口下游用于自该室排出排放物的出口及一位于该入口与出口之间的催化反应区。该催化反应区通常含有用于将过程气体中至少部分一氧化碳转化为二氧化碳的催化剂或催化剂组合物。在作业中,转化器发生放热转化反应,其由下式表示:
(1)
CO与水之间的反应(1)可同时使过程气体中的CO含量减少并使CO2和H2含量增加。该反应产生的额外氢气可有利于发电厂,因为燃料电池阳极消耗氢气以产生电能。对于一此类转化器的论述包含于关于“转化器”的PCT申请案第US97/08334号中(其以WO97/44123于1997年12月7日公开)。在该申请案的转化器中,一催化剂床包含由铜及氧化锌或铜、氧化锌及氧化铝构成的催化剂组合物。该催化剂组合物进一步揭示于颁予Kristiansen之美国专利第4,308,176号中,且其已多年用于促进燃料电池发电厂配套转化器中的转化反应。然而,使用该等催化剂组合物之反应器受限于其必须用氢气流吹扫以将其初步还原,且作业后必须采取若干步骤以防止其显著氧化或暴露于氧气。事实上,除非还原该催化剂,否则,所需反应并不进行或发生。该等催化剂组合物暴露于氧气对(或可能对)该催化剂不利。这是因为催化剂在氧气存在时会自加热,且其可易于将自身加热至使催化剂颗粒烧结的温度,并因而损失表面积并降低活性。该提供一还原氛围并在停机期间采用特殊停机吹扫同时保持惰性氛围以使氧气泄漏于该催化剂的可能性降至最低之需要会导致需考虑额外硬件及过程控制等方面的问题,从而会增加燃料电池发电厂***特别是在转化器方面的复杂性及成本。
最近研究表明,铈氧化物或“二氧化铈”(CeO2)可与一贵金属联合用以促进转化反应并消除还原催化剂的需要。铈与铂组合可形成比先前催化剂更耐氧的催化剂。然而,该等二氧化铈促进化铂催化剂尚未在一适当尺寸的反应器的转化反应中表现出足够活性。相反,需要一过大的催化剂床,对于移动式燃料电池发电厂而言尤其如此。此外,通常水-气转化反应中的水含量可促使二氧化铈载体的烧结。
本发明可提供一含有一经改良之催化剂组合物的转化器,以利用水-气转化反应有效地将一氧化碳转化为二氧化碳并产生氢气,且不需特殊的催化剂预处理。本发明可进一步提供并使用一经改良活性增加的催化剂组合物于一转化反应器中,以利用水-气转化反应将一氧化碳转化为二氧化碳并产生氢气,且不需采取措施防止该催化剂暴露于空气。本发明可进一步提供并使用一经改良的催化剂组合物,其相对于水-气转化反应所用的现有贵金属催化剂而言具有经改良之活性及耐久性。
发明概述
一用于减少过程气体中一氧化碳量的转化器(用于燃料电池发电厂)使用一根据本发明之经改良的催化剂组合物。该转化器包括一用于使过程气体进入的入口、一位于该入口下游用于自室中排出排放物的出口及一位于该入口与出口之间的催化反应区。本发明的催化剂组合物位于转化器的催化反应区并可有效将过程气体中至少部分一氧化碳及水转化为二氧化碳及氢气。转化器使用经改良之催化剂组合物之作业可避免先前需预还原催化剂、提供特殊的停机后吹扫并在停机期间保持惰性氛围的要求。
用于转化器中的经改良之催化剂组合物包含一贵金属催化剂,其具有促进化载体,该促进化载体包含至少由铈氧化物(二氧化铈)和锆氧化物(氧化锆)组成的混合金属氧化物。同时含有氧化锆及二氧化铈促进剂可增加氧空穴量,并因而可增加该组合物的活性。此外,氧化锆可增强二氧化铈的抗烧结性,因而可提高该催化剂组合物的耐久性。该混合金属氧化物中除二氧化铈和氧化锆外亦可包括一选自由氧化镨、氧化镧、氧化钕及氧化铪组成之群的第三金属氧化物以形成金属氧化物的三元混合物。此外,可将氧化铝添加至该催化剂组合物(尤其当后者为粉末形式时)中以使其洗涂于一支持基材的适宜性提高。
该促进化载体上的贵金属催化剂可选自周期表中第二及第三过渡系列的VIIb、VIII及Ib族金属,通常以铂、钯、铑及金为佳,且以铂尤佳。
本发明进一步包括通过利用一转化器(其使用经改良之催化剂组合物)自用于燃料电池的方法燃料气体中除去一氧化碳的方法。
借助于对下述本发明例示性实施例(如附图所示)的详细阐释可更加清楚地了解本发明之上述及其他特征及优点。
附图说明
图1为一代表性燃料电池发电厂的简化功能示意图,其描述了一使用根据本发明的经改良之催化剂组合物的转化器。
图2为一描述本发明之经改良催化剂的转化活性与先前所用Cu/ZnO催化剂的转化活性之间的关系的图形。
本发明的优选实施方式
参照图1,其以功能示意图形式描述了一燃料电池发电厂10。该发电厂10包括一具有传统设计及构造的燃料电池组总成12及一燃料处理子***,该子***包括一重整器14、一转化器16及视情况一选择性氧化器18。该燃料处理器将碳氢化合物燃料源转化为富氢燃料流,其作为燃料供给燃料电池组总成12。通常,碳氢化合物燃料源是一液体(例如汽油)或气体(例如甲烷、天然气或其类似物),其被供给重整器14的燃料入口20。空气及/或蒸汽供给重整器14的空气/蒸汽入口22。重整器14以一习知方式使碳氢化合物燃料和蒸汽及/或空气反应以重整该碳氢化合物(和蒸汽)以产生氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)和残余蒸汽/水(H2O)。然而,为进一步减少或最小化一氧化碳(CO)的含量(否则会使燃料电池组总成的阳极“中毒”),并增加用于燃料电池组总成1 2的富氢燃料源中氢气的产率,自重整器14排放的过程气体经导管24引导至转化器16,其在此经处理以将一氧化碳重整为二氧化碳。
转化器16可进行上述发明背景中式(1)所示的放热转化反应。我们期望转化器16中的反应是一氧化碳和水转化为二氧化碳和氢气的反应。根据需要,,亦可视情况提供一选择性氧化器18,其接收通过导管26自转化反应器16排出的过程气体,以通过添加空气(O2)进一步将一氧化碳转化为二氧化碳。所得排放气流含有足够丰富的氢气并耗尽一氧化碳以满足燃料电池组总成12的需要,且其经导管30引至燃料电池组总成12。
转化器16包括一壳体,其具有一催化剂室32,该催化剂室包含一或多个催化剂床或功能等效结构34,以促进所期望的转化反应。来自重整器14的过程气体通过入口36进入转化反应器16,流经并穿过催化剂室32中的催化剂床34,并经出口38排出。每一催化剂床34均包含一经调配特别适用于提高根据本发明的转化器16的性能的催化剂组合物(或简称为催化剂)50。尽管本文将催化剂50描述为催化剂室32内的一床,应了解,其他用于支持催化剂室32内的催化剂50的布置已为我们所熟知且其作为替代涵盖于本发明中。举例而言,一较佳布置可为一陶瓷、氧化铝、堇青石(氧化铝/氧化镁/氧化硅)及其类似物的蜂窝型结构,其安装于催化剂室32中且包含该催化剂作为其上之涂层。
催化剂50是位于混合金属氧化物促进化载体上的贵金属调配物,其中,至少两种金属氧化物为铈氧化物(或二氧化铈)(CeO2)和锆氧化物(或氧化锆)(ZrO2)。文献表明,二氧化铈作为氧空穴源可促进贵金属催化剂用于水-气转化反应。增加氧空穴被认为对应于改良水-气转化反应速度。更重要的是,已发现将一或多种其他金属氧化物(其中较重要的是氧化锆)添加至二氧化铈以产生一用于贵金属的混合金属氧化物促进化载体(即该载体是促进剂)可使所得催化剂组合物50在转化器16的较高作业温度(400-700°F)(204-371℃)下的抗烧结性增强,并进一步增加促进化催化剂的氧空穴量。
该催化剂组合物中二氧化铈和氧化锆的存在量彼此相互介于约50.0至30.0摩尔%(摩尔百分比)锆至50.0至70.0摩尔%(摩尔百分比)铈之间。第三金属氧化物的存在量可介于总氧化物的0.0至10.0摩尔%之间。贵金属可介于0.1至2.0摩尔%之间,一代表性实例中的值为0.3摩尔%。锆的量不应低于30.0%以保证其可使催化剂50具有增强的稳定性,且亦不应大于50.0%以防止***中仅存在氧化锆相及/或二氧化铈相。
下文实例中给出了用于转化器16的催化剂组合物50所用的或其中所含的例示性调配物,其中MEI 01023粒料是二氧化铈和氧化锆的金属氧化物混合物,其作为贵金属催化剂的催化剂载体。该贵金属催化剂是铂。该颗粒中二氧化铈的含量为58摩尔%Ce,且氧化锆的含量为42摩尔%Zr。MEI 01023可自Magnesium Elektron Inc.(Flemington,New Jersey)购得。二氧化铈和氧化锆的促进化载体材料MEI 01023以直径为1/16英寸的小颗粒形式提供,但亦可以粉末或其类似形式提供。下述实例使用微湿法将铂涂敷于载体上。施于贵金属的其他方法亦为我们所熟知。
实例
载体                                 36.600克颗粒(50cc)
孔体积                               0.700克水/克催化剂
溶液量                               25.620克含Pt的溶液(见下
                                     文)填充颗粒的所有孔
Pt量
二氨基二硝酸铂-61%Pt(已标记)0.247   Pt/Pt(NH3)2(NO3)2
的量
Pt溶液
Pt(NH3)2(NO2)2          0.247
去离子水                     15.372
硝酸                         10.248
步骤:
1、称重并在212°F(100℃)下干燥该颗粒载体(MEI 01023)2小时。
2、将Pt(NH3)2(NO2)2溶解于10.248毫升上述浓硝酸中,持续搅拌。
3、一旦Pt溶解,即将Pt酸溶液加至该去离子水中。
4、将所得溶液倾倒于干燥颗粒上,然后用玻璃或Teflon®搅拌器搅拌,直到载体已经涂布均匀为止。
5、在212°F(100℃)下干燥所得混合物1小时,然后在752°(400℃)下煅烧4小时。
6、称重经干燥及煅烧的混合物,以获得/确定总质量差。
该调配物使用二氧化铈和氧化锆颗粒,并用铂涂布。所得经干燥和煅烧的混合物即催化剂组合物50。
或者,可将混合金属氧化物粉末洗涂于氧化铝或堇青石或此类适当载体基材上,然后,铂可以类似于制备该等颗粒的方式涂敷至经洗涂的载体上。此外,人们亦可希望将氧化铝添加至该粉末中以增强其洗涂于一支持基材的适宜性。该氧化铝可促进该洗涂层附着于载体基材。
图2是一阿累尼乌斯曲线图,其展示了根据上述实例制备的催化剂组合物50的转化活性,并以图形方式与先前在该水-气转化反应之转化反应器中用作催化剂的铜/锌氧化物催化剂颗粒之转化活性进行了比较。沿y轴的对数测量参数是水-气转化反应在给定温度下的反应速度常数k。沿x轴的线性测量参数是测量反应性时的温度的倒数,或1000/T。可以看出,当温度自300°F(149℃)增加至约400°F(204℃)时,先前技艺中所用的Cu/ZnO可使反应速度以第一斜率增加,随后,当温度自400°F(204℃)进一步增加至约600°F(316℃)时,反应速度以一更低的第二斜率增加。然而,应注意,当温度自约380°F(193℃)增加至600°F(316℃)时,本发明之CeO2/ZrO2催化剂上的Pt可使其反应速度以一基本恒定的斜率(与上述第一斜率相比)增加。在约580°F(364℃)至600°F(315℃)的交叉区域可观察到,本发明的催化剂组合物所展现的活性与Cu/ZnO的活性相等。因而,对于该等活性度,利用本发明贵金属催化剂50的反应器可具有与使用传统Cu/ZnO催化剂的反应器近似相等的尺寸,且不会使当前与后者配套的还原/吹扫/惰性***的成本、体积及复杂性增加。
尽管氧化锆是含二氧化铈混合物中的第二金属氧化物,但可通过包含第三金属氧化物于该等氧化物的三元混合物中来获得其他优点(例如更低的总成本)。该第三金属氧化物可方便的选自由氧化镨、氧化镧、氧化钕及二氧化铪组成之群。加入一或多种该等金属氧化物可有助于ZrO2的稳定化及二氧化铈的促进化。
包含由至少二氧化铈及氧化锆的混合金属氧化物支持的催化剂的贵金属或该等金属可选自周期表中第二及第三过渡系列的VIIb、VIII及Ib族金属。该族贵金属包括铼、铂、钯、铑、钌、锇、铱、银及金。通常以铂、钯、铑及/或金(单独或组合)较佳,且铂是尤佳之贵金属。铂较佳是因为其可提供所需活性度以在合适尺寸/体积的反应器中获得期望的反应速度。

Claims (12)

1.一种用于减少水气转化反应中所用过程气体(20,24)中一氧化碳量的转化器(16),该转化器(16)具有一催化剂室(32),该催化剂室(32)具有一用于使过程气体进入该室的入口(36)、一位于该入口下游用于自该室排出排放物的出口(38)及一位于该入口(36)与该出口(38)之间用于将该过程气体中至少部分一氧化碳和水转化为二氧化碳和氢气的催化剂组合物(50),催化剂室(32)中的催化剂组合物(50)的改良包括:
一具有促进化载体的贵金属催化剂,该促进化载体包括至少铈氧化物(二氧化铈)和锆氧化物(氧化锆)的混合金属氧化物。
2.如权利要求1所述的转化器(16),其中该混合金属氧化物中的铈含量介于30至50摩尔%之间且锆的存在量介于70至50摩尔%之间。
3.如权利要求1所述的转化器(16),其中该催化剂组合物(50)中的贵金属选自铂、钯、铑和金。
4.如权利要求3所述的转化器(16),其中该催化剂组合物(50)中的贵金属是铂。
5.如权利要求1所述的转化器(16),其中该包括该促进化载体的金属氧化物另外包括至少一第三金属氧化物。
6.如权利要求5所述的转化器(16),其中该第三金属氧化物选自氧化镨、氧化镧、氧化钕和二氧化铪。
7.如权利要求1所述的转化器(16),其中至少该催化剂组合物(50)的促进化载体被洗涂于一载体基材上,且进一步包含与该促进化载体混合的氧化铝以促进该洗涂层附着于该载体基材上。
8.如权利要求1所述的转化器(16),其中该催化剂组合物(50)的使用不受任何预还原、停机清扫或惰性气氛要求的限制。
9.如权利要求1所述的转化器(16),其中该转化器(16)可有效连接于一用于燃料电池(12)的燃料处理子***(14,16,18)。
10.如权利要求8所述的转化器(16),其中该转化器(16)可有效连接于一用于燃料电池(12)的燃料处理子***(14,16,18)且该过程气体包括氢气。
11.减少用于燃料电池(12)的方法燃料气体中一氧化碳量的方法,其包括以下步骤:
a.将具有促进化载体的贵金属催化剂的催化剂组合物(50)置于一转化器(16)中,该促进化载体包括至少二氧化铈和氧化锆的混合金属氧化物;及
b.使该方法燃料气体有效接近该催化剂组合物(50)以通过一水-气转化反应将该方法燃料气体中至少部分一氧化碳转化为二氧化碳并产生氢气。
12.如权利要求11所述的方法,其中该催化剂组合物(50)可避免任何与该转化器(16)的作业有关的预还原、停机清扫或惰性气氛的需要。
CNB028095340A 2001-05-09 2002-04-23 具有改良催化剂组合物的转化器及处理方法 Expired - Fee Related CN1305753C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/852,333 2001-05-09
US09/852,333 US6455182B1 (en) 2001-05-09 2001-05-09 Shift converter having an improved catalyst composition, and method for its use

Publications (2)

Publication Number Publication Date
CN1507413A true CN1507413A (zh) 2004-06-23
CN1305753C CN1305753C (zh) 2007-03-21

Family

ID=25313061

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028095340A Expired - Fee Related CN1305753C (zh) 2001-05-09 2002-04-23 具有改良催化剂组合物的转化器及处理方法

Country Status (7)

Country Link
US (2) US6455182B1 (zh)
EP (1) EP1390290A4 (zh)
JP (1) JP2004530618A (zh)
CN (1) CN1305753C (zh)
BR (1) BR0209346A (zh)
CA (1) CA2446245A1 (zh)
WO (1) WO2002090247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361816A (zh) * 2009-02-25 2012-02-22 K.M.W.E.管理有限公司 从甲醇生产氢的方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1032705T3 (da) * 1997-10-30 2012-03-26 Cold Spring Harbor Lab Probearrays og fremgangsmåder til at benytte probearrays til at skelne mellem DNA
DE19822691A1 (de) * 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
DE10013895A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
US6821494B2 (en) * 2001-07-31 2004-11-23 Utc Fuel Cells, Llc Oxygen-assisted water gas shift reactor having a supported catalyst, and method for its use
US20070249496A1 (en) * 2002-03-28 2007-10-25 Wagner Jon P Catalyst for Production of Hydrogen
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US7871957B2 (en) * 2002-03-28 2011-01-18 Utc Power Corporation Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
US20040147394A1 (en) * 2002-03-28 2004-07-29 Wagner Jon P. Catalyst for production of hydrogen
US20030186804A1 (en) * 2002-03-28 2003-10-02 Sud-Chemie, Inc. Catalyst for production of hydrogen
US6790432B2 (en) * 2002-06-12 2004-09-14 Engelhard Corporation Suppression of methanation activity of platinum group metal water-gas shift catalysts
WO2004040672A2 (en) * 2002-10-25 2004-05-13 Nuvera Fuel Cells Autothermal reforming catalyst
US20040082669A1 (en) * 2002-10-28 2004-04-29 Ruettinger Wolfgang Friedrich Operating conditions for copper-based water-gas shift catalysts
US7459224B1 (en) 2002-11-26 2008-12-02 General Motors Corporation Methods, apparatus, and systems for producing hydrogen from a fuel
US7156887B1 (en) 2002-11-26 2007-01-02 General Motors Corporation Methods, apparatus, and systems for producing hydrogen from a fuel
US7105148B2 (en) * 2002-11-26 2006-09-12 General Motors Corporation Methods for producing hydrogen from a fuel
EP1433745A2 (en) * 2002-12-26 2004-06-30 Matsushita Electric Industrial Co., Ltd. Catalyst for the removal of carbon monoxide, its method of manufacture and its uses
US6932848B2 (en) * 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
US7211344B2 (en) * 2003-05-14 2007-05-01 The Gillette Company Fuel cell systems
US7153334B2 (en) * 2003-05-21 2006-12-26 General Motors Corporation Fuel reforming system and method of operation
US7169376B2 (en) * 2004-06-10 2007-01-30 Chevron U.S.A. Inc. Method for making hydrogen using a gold containing water-gas shift catalyst
US7824455B2 (en) * 2003-07-10 2010-11-02 General Motors Corporation High activity water gas shift catalysts based on platinum group metals and cerium-containing oxides
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US8150495B2 (en) 2003-08-11 2012-04-03 Veran Medical Technologies, Inc. Bodily sealants and methods and apparatus for image-guided delivery of same
US7238333B2 (en) * 2004-03-18 2007-07-03 General Motors Corporation High activity water gas shift catalysts with no methane formation
US20050268553A1 (en) * 2004-06-04 2005-12-08 Ke Liu Hybrid water gas shift system
GB0420794D0 (en) * 2004-09-18 2004-10-20 Johnson Matthey Plc Compound
EP1712278B1 (en) * 2004-12-20 2017-08-16 Tanaka Kikinzoku Kogyo Kabushiki Kaisha Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
US20070066881A1 (en) 2005-09-13 2007-03-22 Edwards Jerome R Apparatus and method for image guided accuracy verification
WO2007033206A2 (en) 2005-09-13 2007-03-22 Veran Medical Technologies, Inc. Apparatus and method for image guided accuracy verification
US7357911B2 (en) * 2005-12-16 2008-04-15 Basf Catalysts Llc Process conditions for Pt-Re bimetallic water gas shift catalysts
WO2008019181A2 (en) * 2006-05-04 2008-02-14 The Regents Of The University Of Michigan Reducible oxide based catalysts
KR20090072534A (ko) * 2007-12-28 2009-07-02 삼성전자주식회사 비자연발화성 수성가스 쉬프트 반응 촉매 및 그 제조 방법
US8119558B2 (en) * 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
US20100292076A1 (en) * 2009-05-18 2010-11-18 Sud-Chemie Inc. Ultra high temperature shift catalyst with low methanation
US8781186B2 (en) 2010-05-04 2014-07-15 Pathfinder Therapeutics, Inc. System and method for abdominal surface matching using pseudo-features
WO2012024686A2 (en) 2010-08-20 2012-02-23 Veran Medical Technologies, Inc. Apparatus and method for four dimensional soft tissue navigation
US9138165B2 (en) 2012-02-22 2015-09-22 Veran Medical Technologies, Inc. Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation
US10774278B2 (en) 2013-02-27 2020-09-15 Mitsubishi Heavy Industries Engineering, Ltd. CO shift catalyst, CO shift reaction apparatus, and method for purifying gasified gas
CN104994944A (zh) * 2013-02-27 2015-10-21 三菱重工业株式会社 Co转化催化剂、co转化反应装置和气化气的精制方法
DE102014004673A1 (de) * 2014-03-31 2015-10-01 Audi Ag Verfahren zum Ablegen einer Sendung in einem Kraftfahrzeug und zugehöriges Kraftfahrzeug
US20150305650A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue
US20150305612A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565830A (en) * 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
US3825501A (en) 1969-11-26 1974-07-23 Texaco Inc Exothermic reaction process
US3870455A (en) * 1973-12-10 1975-03-11 Engelhard Min & Chem Method for catalytically supported thermal combustion
US3982962A (en) * 1975-02-12 1976-09-28 United Technologies Corporation Pressurized fuel cell power plant with steam powered compressor
US4021366A (en) 1975-06-30 1977-05-03 Texaco Inc. Production of hydrogen-rich gas
MX4509E (es) * 1975-08-27 1982-06-02 Engelhard Min & Chem Composicion catalitica mejorada para oxidar en forma simultanea hidrocarburos gascosos y monoxido de carbono y reducir oxidos de nitrogeno
US4171288A (en) * 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
JPH024677B2 (zh) * 1977-11-01 1990-01-30 Atomic Energy Authority Uk
US4170573A (en) 1978-04-07 1979-10-09 W. R. Grace & Co. Rare earth and platinum group metal catalyst compositions
NO146046L (zh) 1980-03-28
US4331565A (en) * 1980-11-28 1982-05-25 General Motors Corporation Method for forming high surface area catalyst carrier and catalyst using same
DE3228481A1 (de) * 1982-07-30 1984-02-02 VEG-Gasinstituut N.V., 7300 Apeldoorn Reaktionsmasse, verfahren zu ihrer herstellung und deren verwendung
US4476246A (en) * 1983-01-26 1984-10-09 W. R. Grace & Co. Doubly promoted platinum group metal catalysts for emission control
JPS60110334A (ja) * 1983-11-21 1985-06-15 Nissan Motor Co Ltd 排ガス浄化用触媒の製造方法
US4585752A (en) * 1984-08-15 1986-04-29 W. R. Grace & Co. Catalyst composition for ultra high temperature operation
FR2575453B1 (fr) * 1984-12-28 1990-03-02 Pro Catalyse Procede de conversion du monoxyde de carbone par la vapeur d'eau a l'aide d'un catalyseur thioresistant
EP0234745B1 (en) * 1986-01-29 1991-06-12 Dyson Refractories Limited Catalysts
US4868148A (en) * 1987-08-24 1989-09-19 Allied-Signal Inc. Layered automotive catalytic composite
DE3803122C1 (zh) 1988-02-03 1989-07-13 Degussa Ag, 6000 Frankfurt, De
US5139992A (en) * 1989-11-08 1992-08-18 Engelhard Corporation Three-way conversion catalyst including a ceria-containing zirconia support
US5232890A (en) * 1990-01-02 1993-08-03 Ganguli Partha S Precious metal catalysts with oxygen-ion conducting support
US5057483A (en) * 1990-02-22 1991-10-15 Engelhard Corporation Catalyst composition containing segregated platinum and rhodium components
US5254519A (en) * 1990-02-22 1993-10-19 Engelhard Corporation Catalyst composition containing platinum and rhodium components
KR100318576B1 (ko) * 1991-11-26 2002-04-22 스티븐 아이. 밀러 산화촉매및그사용방법
JP3145175B2 (ja) * 1992-03-31 2001-03-12 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
GB9226434D0 (en) * 1992-12-18 1993-02-10 Johnson Matthey Plc Catalyst
US5830425A (en) * 1993-02-09 1998-11-03 Sud-Chemie Ag Chromium-free catalyst based on iron oxide for conversion of carbon monoxide
FR2701472B1 (fr) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Procédé de préparation de compositions à base d'oxydes mixtes de zirconium et de cérium.
US5500198A (en) * 1993-10-26 1996-03-19 Massachusetts Institute Of Technology Composite catalyst for carbon monoxide and hydrocarbon oxidation
US5464606A (en) 1994-05-27 1995-11-07 Ballard Power Systems Inc. Two-stage water gas shift conversion method
US5788950A (en) * 1994-08-03 1998-08-04 Showa Denko K.K. Method for the synthesis of mixed metal oxide powders
CN1103631C (zh) * 1994-11-02 2003-03-26 安格罗美国研究实验室(私营)有限公司 催化剂
US5516597A (en) * 1994-11-07 1996-05-14 Westinghouse Electric Corporation Protective interlayer for high temperature solid electrolyte electrochemical cells
US5945369A (en) * 1994-12-09 1999-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gases and process for producing the same
US5990040A (en) * 1995-01-11 1999-11-23 United Catalysts Inc. Promoted and stabilized copper oxide and zinc oxide catalyst and preparation
JP4067120B2 (ja) * 1996-02-21 2008-03-26 エイエスイーシー・マニュファクチュアリング 排気転化触媒のための高度に分散した実質的に均一な混合した金属―酸化物複合担体
US6040265A (en) 1996-02-21 2000-03-21 Asec Manufacturing General Partnership Methods of making highly dispersed substantially uniform cerium and zirconium mixed-metal-oxide composite supports for exhaust conversion catalysts
US6306354B1 (en) 1996-05-17 2001-10-23 International Fuel Cells, Llc Shift converter
JP3870455B2 (ja) * 1996-09-27 2007-01-17 トヨタ自動車株式会社 一酸化炭素濃度低減装置およびその方法並びに燃料電池発電装置
JPH10265202A (ja) 1997-03-25 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd 水素製造装置
US6107240A (en) * 1997-03-26 2000-08-22 Engelhard Corporation Catalyst composition containing an intimately mixed oxide of cerium and praseodymium
US6133194A (en) * 1997-04-21 2000-10-17 Rhodia Rare Earths Inc. Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
US6413489B1 (en) * 1997-04-15 2002-07-02 Massachusetts Institute Of Technology Synthesis of nanometer-sized particles by reverse micelle mediated techniques
US5948683A (en) * 1997-10-18 1999-09-07 Engelhard Corporation Catalyst for selective oxidation of unsaturated hydrocarbons and methods of making and using the same
GB9806199D0 (en) * 1998-03-24 1998-05-20 Johnson Matthey Plc Catalytic generation of hydrogen
JP3473898B2 (ja) * 1999-04-22 2003-12-08 松下電器産業株式会社 水素精製装置
AU4465000A (en) * 1999-04-26 2000-11-10 Ferro Corporation Continuous calcination of mixed metal oxides
US6204219B1 (en) * 1999-07-29 2001-03-20 W. R. Grace & Co.-Conn. Thermally stable support material and method for making the same
EP1314690A4 (en) * 2000-08-18 2005-09-14 Matsushita Electric Ind Co Ltd DEVICE FOR PURIFYING HYDROGEN
EP1328468A2 (en) * 2000-09-05 2003-07-23 Altair Nanomaterials Inc. Method for producing mixed metal oxides and metal oxide compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361816A (zh) * 2009-02-25 2012-02-22 K.M.W.E.管理有限公司 从甲醇生产氢的方法
US8617511B2 (en) 2009-02-25 2013-12-31 K.M.W.E. Management B.V. Process for producing hydrogen from methanol
CN102361816B (zh) * 2009-02-25 2014-08-27 K.M.W.E.管理有限公司 从甲醇生产氢的方法

Also Published As

Publication number Publication date
EP1390290A1 (en) 2004-02-25
EP1390290A4 (en) 2009-03-25
US20030007912A1 (en) 2003-01-09
JP2004530618A (ja) 2004-10-07
CN1305753C (zh) 2007-03-21
BR0209346A (pt) 2004-06-15
WO2002090247A1 (en) 2002-11-14
US6455182B1 (en) 2002-09-24
CA2446245A1 (en) 2002-11-14

Similar Documents

Publication Publication Date Title
CN1507413A (zh) 通过改良催化剂组合物的转化
US5275997A (en) Precious metal catalysts utilizing composites of oxygen-ion conducting and inert support materials
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP3759406B2 (ja) メタノール改質触媒、メタノール改質装置及びメタノール改質方法
CN1646220A (zh) 烃的部分氧化用催化剂及该催化剂的制造方法、以及使用该从催化剂的含氢气体制造方法、及利用该催化剂制造的含氢气体的使用方法
US20100113263A1 (en) Non-pyrophoric shift reaction catalyst and method of preparing the same
EP0665047A1 (en) New three-way catalysts with PT, RH and PD, each supported on a seperate support
CN1524310A (zh) 燃料电池车辆的废气净化方法和燃料电池车辆的废气净化***
EP1571125A2 (en) Catalyst for removal of carbon monoxide from hydrogen gas
KR20020079612A (ko) 개질 가스로부터 일산화탄소를 제거하기 위한 촉매 및 공정
CN1623893A (zh) 部分氧化用重整催化剂和重整方法
US7842634B2 (en) Blended catalyst with improved performance
EP1257502A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
KR20080061308A (ko) 수소 가스 중의 일산화탄소 제거용 촉매
US20050119119A1 (en) Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2003251181A (ja) 水素ガス中の一酸化炭素除去用触媒
CN1309692C (zh) 富氢重组气中的co选择性甲烷化的方法
JP2004244246A (ja) 無機材料およびこれを用いたシフト触媒
JP2001232198A (ja) 触媒および触媒の製造方法
JP2009149762A (ja) 水素製造用燃料油及びそれを用いた水素製造方法
JP2002128507A (ja) 水素精製装置
CN1216793C (zh) 用于水转移反应的催化剂及将一氧化碳和水转化成氢和二氧化碳的方法
JP2002226204A (ja) 水素精製装置
KR100988579B1 (ko) 일산화탄소의 선택적 산화반응을 위한 지르코늄 산화물 및 주석 산화물 첨가 산화구리/알루미나 촉매 및 이의 제조방법
JP2003103171A (ja) オートサーマルリフォーミング用触媒および方法、水素製造装置ならびに燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070321