CN1503732A - 热解加热器 - Google Patents

热解加热器 Download PDF

Info

Publication number
CN1503732A
CN1503732A CNA028087097A CN02808709A CN1503732A CN 1503732 A CN1503732 A CN 1503732A CN A028087097 A CNA028087097 A CN A028087097A CN 02808709 A CN02808709 A CN 02808709A CN 1503732 A CN1503732 A CN 1503732A
Authority
CN
China
Prior art keywords
burner
burner hearth
heater
hearth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028087097A
Other languages
English (en)
Other versions
CN1243643C (zh
Inventor
E・M・J・普拉特沃特
E·M·J·普拉特沃特
加特塞德
R·J·加特塞德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
ABB Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Lummus Global Inc filed Critical ABB Lummus Global Inc
Publication of CN1503732A publication Critical patent/CN1503732A/zh
Application granted granted Critical
Publication of CN1243643C publication Critical patent/CN1243643C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/405Limiting CO, NOx or SOx emissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种热解加热器,特别是用来在烯烃生产中热解烃的热解加热器,在燃烧室内具有直接加热燃烧室底部炉膛的燃烧器布置,使得底部炉膛成为一个辐射表面。炉底燃烧器和垂直燃烧的炉膛燃烧器一起操作,可选地和在燃烧室上部的炉壁燃烧器一起操作。

Description

热解加热器
技术领域
本发明涉及一种用来热解烃的加热器,特别是涉及一种用来蒸汽裂解烷烃生产烯烃的加热器。
背景技术
用来生产烯烃的蒸汽裂解或者热解烃过程几乎完全在燃烧加热器内安置的盘管中进行。热解过程被认为是烯烃生产工厂的核心并且对整个工厂的经济具有显著影响。
烃进料可以是广泛的典型裂解进料中任何一种类型,例如甲烷,乙烷,丙烷,丁烷,这些气体的混合物,石脑油,粗柴油等。产品蒸汽中包含多种成份,其浓度部分取决于选择的进料。在传统的热解过程中,汽化的进料和稀释蒸汽一起送进到位于燃烧加热器内的管状反应器。需要的稀释蒸汽数量取决于选择的进料;较轻的进料例如乙炔需要较低的蒸汽(0.2磅/每磅进料),而较重的进料例如石脑油和粗柴油需要蒸汽/进料比率为0.5到1.0。稀释蒸汽具有降低烃的局部压力和减少热解盘管的渗碳率双重作用。
在一个典型的热解过程中,蒸汽/进料混合物预先加热到正好低于裂解反应开始的温度,一般为650℃。该预热发生在加热器的对流部分。混合物随后通过热解反应发生的辐射区。一般在热解盘管的滞留时间在0.2到0.4秒的范围内,并且反应的出口温度为700℃到900℃。导致饱和烃转变到烯烃的反应是高度吸热的,因而需要大量的热输入。该热输入必须在提高的反应温度产生。一般在该行业中认为,对于多数进料特别是对较重的进料例如石脑油,由于次级降解反应减少,滞留时间越短导致乙烯和丙烯的选择性越高。并认为,在反应环境中烃的局部压力越低,该选择性越高。
燃烧加热器辐射部分的烟道气温度一般高于1100℃。在传统设计中,进入加热器燃料的大约32%到40%的燃烧热量传给辐射区的盘管。其余在对流区的热量可以通过进料预热或者产生蒸气而回收。由于盘管容量小限制了取得短的滞留时间和高的处理温度,故热量难以传入反应管。使用高的热通量,并且即使对于特种金属,操作的管金属温度接近于机械极限。在多数情况下,作为在盘管出口所需的更高的处理温度和缩减的管长度(从而管表面积减少)组合的结果,管金属温度限制了滞留时间可以缩减的程度,导致较高的热通量和较高的管金属温度。位于裂解加热器辐射部分内的特种金属反应管占该加热器成本的决大部分,因此充分利用它们是很重要的。由于加热器在热通量和金属温度的高水平和均匀性尽可能与加热器设计目标一致的情况下操作,利用率受到限制。这将减少管的数量和长度,以及减少对于给定的热解能力所需的金属总量。
在大多数的裂解炉中,通过炉膛燃烧器供给热量,该炉膛燃烧器安装在燃烧室底板上并且沿着壁垂直向上燃烧。由于这些燃烧器火焰的特定形状,产生了一个不均匀的热通量分布。典型的分布显示热通量的峰值在燃烧室中间高度附近,而燃烧室顶部和底部部分温度相对较低。在选择的加热器中,辐射炉壁燃烧器安装在侧壁上部,用来使顶部的热通量分布均匀。对于炉膛燃烧器、炉膛燃烧器与炉壁燃烧器组合在同一热释放率状况下,典型的表面热通量分布和金属温度分布显示在燃烧室下部热通量和金属温度较低,这意味着这部分的盘管利用不充分。由于还有另外氮氧化物(NOx)的要求以及对燃烧器更高热释放量的需求不断增加,改进炉底燃烧器热通量分布是困难的。使热通量分布图均匀的另一条途径唯有使用炉壁燃烧器,但是由于炉壁燃烧器的最大热释放量大约是炉膛燃烧器的十分之一,燃烧器的数量将会过多。
发明内容
本发明涉及热解加热器,特别是用来裂解烃生产烯烃的热解加热器,在燃烧室内布置燃烧器用来改进热通量和金属温度分布。本发明的目的是提供一种燃烧器布置,其中包括加热燃烧室底板的燃烧器,使得底板作为一个辐射表面从而在燃烧室的下部增加到反应管的热通量,并且在燃烧室高度上形成更均匀的垂直热通量分布。这些底板燃烧器称为炉底燃烧器,并且和垂直燃烧的炉膛燃烧器一起工作,可选地和在燃烧室上部的炉壁燃烧器一起工作。本发明进一步目的是增加传送到辐射裂解盘管的总体热量,而不增加盘管金属温度。
附图说明
图1是一个剖面简图,示出了一个典型的现有技术热解加热器。
图2是一个图表,示出了在现有技术热解加热器整个高度上,典型的表面热通量分布。
图3是一个图表,示出了通过现有技术热解加热器整个高度上,典型的金属温度分布。
图4A和4B是热解加热器的剖面简图,示出了根据本发明燃烧器构造的两个变体。
图5是局部热解加热器下部的透视图,示出了炉底燃烧器和炉膛燃烧器。
图6示出了根据本发明一个实施方式炉底燃烧器的一个实施例。
图7是一个剖面图,示出了包括多孔陶瓷燃烧器的另一炉底燃烧器。
图8A到8D的图表显示了在热解加热器整个高度上,四个通道的表面热通量,比较现有技术类型的加热器和本发明具有炉底燃烧器的加热器。
图9A到9D的图表显示了也是在热解加热器整个高度上的四个通道的平均金属温度,作为沿现有技术盘管长度位置的函数,比较现有技术的加热器和本发明的加热器。
具体实施方式
在讲述本发明优选实施方式的详细内容之前,将参照示出了加热器操作参数的图表讲述典型的现有技术热解加热器。图1示出了现有技术加热器的剖面图。该加热器具有一个辐射加热区14和一个对流加热区16。位于对流加热区16内的是此处图示为用来预热烃进料22的热交换表面18和20。这个区域也可以包含用来产生蒸汽的热交换表面。自对流区经预热的进料在24送进到位于辐射加热区14内大体上由26代表的加热盘管。自加热盘管26的裂解物在30排出。加热盘管可以是任何需要的构造,包括在该行业中常见的垂直和水平盘管。
辐射加热区14包括由34和36代表的炉壁以及底板或底部炉膛42。垂直燃烧的炉膛燃烧器46安装在底板上,它沿着壁朝向上并且供给空气47和燃料49。在壁内通常安装有炉壁燃烧器48,它是放射状燃烧器,设计为产生扁平火焰型态,并且漫布炉壁,避免火焰冲击盘管。
图2显示了如图1所示的现有技术加热器的一个典型的表面热通量分布图,该图中显示了在一场合所用的炉膛燃烧器和炉壁燃烧器开启的情况以及在另一场合开启炉膛燃烧器而关闭炉壁燃烧器的情况。图3显示了在相同条件下的管金属温度。这些图中显示了在燃烧室中下部和燃烧室上部具有低的热通量和低的金属温度,并且显示了在最小和最大温度或者热通量之间的很大差异。它们清楚地显示了炉底较冷并且示出了在炉底附近盘管利用率较低。图3也示出了燃烧分布对于管金属温度的重要性。当关闭炉壁燃烧器时,需要炉膛燃烧器增加燃烧。由于炉底燃烧器热释放分布的形状,管金属温度增加大约20℃。这种增加会由于传统裂解加热器的污垢,对于使用寿命具有直接的负面影响。
图4A和4B显示了热解加热器,它具有根据本发明一个实施方式构造的燃烧器,图4A的辐射加热区14显示了在该辐射加热区上部具有炉壁燃烧器48的第一个变体,图4B的辐射加热区14显示了没有炉壁燃烧器的第二个变体。尽管这些图4A和4B显示了单个单元的加热器,该构思同样也可以用于多单元加热器或者具有更敞开结构的裂解加热器。在图4A和4B以及图5中显示了加热区14的一部分,炉底燃烧器50安置在底板或者炉底42上。这些炉底燃烧器50构造成使燃烧水平地横过炉底以加热炉底本身,因而成为一个辐射面。在优选实施方式中,这些炉底燃烧器50和炉壁燃烧器48相同或者相近,它们以围绕燃烧器成放射状或椭圆状的火焰形式燃烧。图6显示了一个实施例,其中燃料/空气混合物通过管道52进入燃烧器50。燃料/空气混合物流过顶盖56下的缝54并且被点燃。通过横过底板的槽和盖,火焰被导向水平。炉底燃烧器可以按照不同的热释放率操作,从而给盘管较冷的通道提供较多热量,给较热的通道提供较少的热量。朝向盘管的槽也可以堵塞或者省去,从而避免火焰冲击盘管。
本发明的一个替代实施方式中使用多孔耐火或者陶瓷燃烧器块,它也至少形成炉底或炉床的一部分。预先混合的燃料/空气蒸汽送进到燃烧器并且通过多孔媒介。燃烧主要在燃烧器表面发生,使得燃烧器表面以及热解炉底本身成为一个高度辐射表面。图7中显示了一个典型的陶瓷燃烧器,包括壳体58,壳体中容纳了多孔陶瓷块60并且具有燃料/空气混合物的进口62。燃料/空气混合物流过块60并且在表面64燃烧形成火焰66。这些燃烧器也可以包含催化材料。这些多孔陶瓷燃烧器的优点是由于火焰容纳在陶瓷辐射表面内,在底板上没有直接的火焰。进一步的优点是以特别低的氮氧化物水平下施加热量。相对于通常是自然通风或者呼吸式燃烧器的炉壁燃烧器来说,基本上这些燃烧器是强迫通风式燃烧器。这令到陶瓷底板炉底燃烧器具有低氮氧化物容量。需要指出虽然讲述了两个特定燃烧器实施例,但本发明并不局限于这些特定的燃烧器。
已知在亚化学计量条件下(减少氧水平)通过降低火焰温度将减少氮氧化物。亚化学计量条件也创造了一个减少氮氧化物的还原环境。进一步知道将燃料分阶段(以不同水平燃烧燃料)也通过降低火焰温度而减少氮氧化物。在操作该组合***的一种选择中,炉底燃烧器可以被亚化学计量地操作,产生的溢出物中有未燃烧燃料,基本上没有氧并且很少氮氧化物。由于该气体的位置在底板上并且接近炉膛燃烧器,然后该气体将混入炉膛燃烧器的垂直火焰。垂直燃烧的炉膛燃烧器可以故意地用过量空气操作。这本身将降低火焰温度并且减少氮氧化物。由于混在来自炉膛燃烧器的气流中,来自炉底燃烧器的所混入燃料将进行燃烧。操作条件的这种组合可以颠倒过来,炉底燃烧器用过量空气操作而炉膛燃烧器亚化学计量地操作。对于两种选择,将燃烧过程分阶段都减少了氮氧化物的形成。这种组合将明显减少来自裂解加热器的全部氮氧化物,实现均匀的热释放。
现有技术的热解加热器底板没有有效地用作辐射表面。本发明中通过炉底燃烧器加热底板,底板用作一个辐射表面,从而增加在燃烧室下部的热通量并且趋向于使在整个燃烧室高度上的热通量分布均匀。这个可以在图8A到8D中看出。这些图代表了乙烯热解加热器的四个盘管通道中每一个的热通量分布,示出了使用炉壁燃烧器和炉膛燃烧器的所谓常规情况,以及本发明中使用炉底燃烧器,炉壁燃烧器和炉膛燃烧器的这种炉底燃烧器情况。每个炉底燃烧器以燃烧率为1MM BTU/hr作。因此,当炉膛燃烧器以7.6MM BTU/hr操作和炉壁燃烧器以1MM BTU/hr作时,整个燃烧在常规情况基础上名义上增加11%。在这些条件下,到盘管的送进量增加11%,也导致辐射盘管容量净增加11%。管金属表面温度在图9A到9D中示出。对于增加11%容量的情况,任何通道金属温度的最高峰值仅仅增加6℃。在实际中,从这个通道横跨的炉底燃烧器的燃烧率可能会稍微减少,从而来获得均匀的金属温度和整个盘管容量的提高。如果没有炉底燃烧器而获得相等的容量增加,炉膛燃烧器的燃烧率将不得不增加1MM BTU/hr。在这种情况下,管金属温度的峰值将增加20℃,等价于图3所示出的情况,关闭1MM BTU/hr的炉壁燃烧器并且炉膛燃烧器燃烧率增加1MMBTU/hr。如上所述,这对于管性能具有显著的负面影响。

Claims (9)

1.一种用来热解烃的热解加热器,包括:
a.一个具有底部炉膛的辐射加热区,一个邻近所述炉膛并从所述炉膛向上延伸的下部,以及一个从所述下部向上延伸的上部;
b.至少一个用来处理所述烃的管状加热盘管,它位于所述辐射加热区并且延伸进入所述上部和所述下部;
c.多个位于邻近所述炉底的炉膛燃烧器,它朝向上用来垂直向上穿过所述下部并且进入所述上部燃烧;以及
d.多个位于所述底部炉膛的炉底燃烧器,用来和所述底部炉膛相接触燃烧从而产生被加热的辐射炉底表面。
2.一种如权利要求1所述的热解加热器,其特征在于,所述辐射加热区包括炉壁,并且还包括位于所述上部的所述壁上的炉壁燃烧器。
3.一种如权利要求1所述的热解加热器,其特征在于,还包括位于所述辐射加热区上方的对流区。
4.一种如权利要求1所述的热解加热器,其特征在于,所述炉底燃烧器被导向水平地横过并接触所述底部炉膛燃烧。
5.一种如权利要求1所述的热解加热器,其特征在于,所述炉底燃烧器包括多孔陶瓷燃烧器,并且所述多孔陶瓷燃烧器至少是所述底部炉膛的一部分。
6.一种用于在烯烃生产中热解烃的加热器,其中所述加热器包括一个具有底部炉膛的辐射加热区,一个邻近所述底部炉膛并从所述底部炉膛向上延伸的下部,一个从所述下部向上延伸的上部,以及至少一个用来处理所述烃的管状加热盘管,该盘管位于所述辐射加热区并且延伸进入所述上部和所述下部,以及燃烧器组合,用来增加在所述辐射加热区的所述下部和上部内热通量的均匀性并且增加所述加热盘管温度的均匀性,所述燃烧器组合包括:
a.多个位于邻近所述底部炉膛的炉膛燃烧器,它向上用来垂直向上燃烧穿过所述下部并且进入所述上部;以及
b.多个位于所述底部炉膛的炉底燃烧器,用来在所述底部炉膛上直接燃烧从而产生热的辐射底部炉膛表面。
7.一种如权利要求6所述的热解加热器,其特征在于,所述炉底燃烧器水平燃烧横过所述底部炉膛。
8.一种如权利要求6所述的热解加热器,其特征在于,所述炉底燃烧器包括多孔陶瓷燃烧器,并且所述多孔陶瓷燃烧器至少为所述底部炉膛的一部分。
9.一种操作用于在烯烃生产中热解烃的加热器的方法,其中所述加热器包括:
a.一个具有底部炉膛的辐射加热区,一个邻近所述底部炉膛并从所述底部炉膛向上延伸的下部,以及一个从所述下部向上延伸的上部;
b.至少一个用来处理所述烃的管状加热盘管,它位于所述辐射加热区并且延伸进入所述上部和所述下部;
c.多个位于邻近所述底部炉膛的炉膛燃烧器,它向上用来垂直向上燃烧穿过所述下部并且进入所述上部;以及
d.多个位于所述底部炉膛的炉底燃烧器,直接在所述底部炉膛上燃烧从而产生被加热的辐射底部炉膛表面;
所述方法包括燃烧所述多个炉底燃烧器和所述多个炉膛燃烧器的步骤,使得所述多个燃烧器中的一个燃烧器以亚化学计量地燃烧,并且其它所述多个燃烧器用过量空气燃烧,通过所述辐射加热区的所述下部和上部,燃料燃烧是分阶段的,从而减少氮氧化物的形成。
CNB028087097A 2001-04-24 2002-04-24 用来热解烃的热解加热器和其操作方法 Expired - Lifetime CN1243643C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/841,277 US6685893B2 (en) 2001-04-24 2001-04-24 Pyrolysis heater
US09/841,277 2001-04-24

Publications (2)

Publication Number Publication Date
CN1503732A true CN1503732A (zh) 2004-06-09
CN1243643C CN1243643C (zh) 2006-03-01

Family

ID=25284469

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028087097A Expired - Lifetime CN1243643C (zh) 2001-04-24 2002-04-24 用来热解烃的热解加热器和其操作方法

Country Status (10)

Country Link
US (1) US6685893B2 (zh)
EP (1) EP1417098B1 (zh)
JP (1) JP3790899B2 (zh)
KR (1) KR100540004B1 (zh)
CN (1) CN1243643C (zh)
BR (1) BR0209195B1 (zh)
MX (1) MXPA03009691A (zh)
NO (1) NO335828B1 (zh)
PL (1) PL196692B1 (zh)
WO (1) WO2002085623A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073212A (zh) * 2016-03-31 2018-12-21 埃克森美孚化学专利公司 燃烧器、炉,以及使用这种炉的蒸汽裂化工艺
CN111867717A (zh) * 2018-03-07 2020-10-30 沙伯环球技术有限公司 烃气热解转化的方法和反应器
CN112912702A (zh) * 2018-11-02 2021-06-04 东洋工程株式会社 乙烯生成分解炉的辐射部线圈外表面温度的推定方法及推定装置、以及乙烯制造装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195045C (zh) * 2001-09-19 2005-03-30 中国石油化工股份有限公司 一种裂解炉及用其进行热裂解的方法
US7172412B2 (en) * 2003-11-19 2007-02-06 Abb Lummus Global Inc. Pyrolysis heater
US7025590B2 (en) 2004-01-15 2006-04-11 John Zink Company, Llc Remote staged radiant wall furnace burner configurations and methods
US7497682B2 (en) * 2005-01-18 2009-03-03 Praxair Technology, Inc. Method of operating furnace to reduce emissions
US7819656B2 (en) * 2007-05-18 2010-10-26 Lummus Technology Inc. Heater and method of operation
US20090022635A1 (en) * 2007-07-20 2009-01-22 Selas Fluid Processing Corporation High-performance cracker
US8408896B2 (en) * 2007-07-25 2013-04-02 Lummus Technology Inc. Method, system and apparatus for firing control
US8573965B2 (en) * 2007-11-28 2013-11-05 Air Products And Chemicals, Inc. Method of operating a pyrolysis heater for reduced NOx
FR2932173B1 (fr) * 2008-06-05 2010-07-30 Air Liquide Procede de reformage a la vapeur avec ecoulement des fumees ameliore
WO2010024792A1 (en) * 2008-08-18 2010-03-04 Black & Veatch Corporation Reformer for converting biomass into synthesis gas
CN102597685B (zh) * 2010-02-08 2014-10-01 鲁姆斯科技公司 热交换装置及其制造方法
KR101631284B1 (ko) 2014-08-14 2016-06-16 인슐레이션코리아(주) 열분해 히터의 단열 감시창 시공방법
DE102014222333A1 (de) * 2014-10-31 2016-05-04 Thyssenkrupp Ag Reformer mit Poren- bzw. Flächenbrennern
KR101804518B1 (ko) 2015-04-10 2017-12-04 인슐레이션코리아(주) 열기구의 방열용 블랑킷 모듈 고정장치
KR101604679B1 (ko) * 2015-06-16 2016-03-18 장연 산화반응과 환원반응이 분리되어 일어나도록 하는 환원용버너 및 이를 이용한 합성가스 리사이클링 시스템
RU2761844C1 (ru) * 2018-10-23 2021-12-13 Сабик Глобал Текнолоджиз Б.В. Способ и реактор для превращения углеводородов

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274987A (en) * 1965-01-14 1966-09-27 Hasty Bake Mfg Company Inc Hood support for charcoal cooker
US3667429A (en) * 1971-01-25 1972-06-06 Lummus Co Fired heater
US4342624A (en) * 1976-04-05 1982-08-03 Eaton Corporation Vapor compression liquid treating system
US4342642A (en) 1978-05-30 1982-08-03 The Lummus Company Steam pyrolysis of hydrocarbons
EP0305799B1 (en) * 1987-09-01 1991-10-23 Abb Lummus Crest Inc. Pyrolysis heater
EP0519230A1 (en) * 1991-06-17 1992-12-23 Abb Lummus Crest Inc. Pyrolysis heater
US5409375A (en) * 1993-12-10 1995-04-25 Selee Corporation Radiant burner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073212A (zh) * 2016-03-31 2018-12-21 埃克森美孚化学专利公司 燃烧器、炉,以及使用这种炉的蒸汽裂化工艺
CN111867717A (zh) * 2018-03-07 2020-10-30 沙伯环球技术有限公司 烃气热解转化的方法和反应器
US11020719B2 (en) 2018-03-07 2021-06-01 Sabic Global Technologies B.V. Method and reactor for pyrolysis conversion of hydrocarbon gases
CN111867717B (zh) * 2018-03-07 2021-07-06 沙伯环球技术有限公司 烃气热解转化的方法和反应器
US11826749B2 (en) 2018-03-07 2023-11-28 Sabic Global Technologies B.V. Reactor for pyrolysis conversion of hydrocarbon gases
CN112912702A (zh) * 2018-11-02 2021-06-04 东洋工程株式会社 乙烯生成分解炉的辐射部线圈外表面温度的推定方法及推定装置、以及乙烯制造装置

Also Published As

Publication number Publication date
EP1417098A4 (en) 2006-11-29
EP1417098B1 (en) 2011-06-22
KR20040005929A (ko) 2004-01-16
EP1417098A1 (en) 2004-05-12
NO20034728D0 (no) 2003-10-22
KR100540004B1 (ko) 2006-01-11
JP2004526038A (ja) 2004-08-26
NO335828B1 (no) 2015-02-23
US20020155046A1 (en) 2002-10-24
BR0209195A (pt) 2004-06-08
JP3790899B2 (ja) 2006-06-28
US6685893B2 (en) 2004-02-03
PL196692B1 (pl) 2008-01-31
MXPA03009691A (es) 2005-03-07
PL364716A1 (en) 2004-12-13
BR0209195B1 (pt) 2012-07-10
CN1243643C (zh) 2006-03-01
NO20034728L (no) 2003-12-18
WO2002085623A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
CN1243643C (zh) 用来热解烃的热解加热器和其操作方法
JP5103521B2 (ja) ヒータ及び運転方法
US20020015670A1 (en) Flameless combustor process heater
US4494485A (en) Fired heater
US6425757B1 (en) Pyrolysis heater with paired burner zoned firing system
WO2008057303A2 (en) Fired heater
US7288691B2 (en) Process for heat treatment of hydrocarbon feedstocks by furnace that is equipped with radiant burners
US7172412B2 (en) Pyrolysis heater
CN106635125B (zh) 一种蒸汽裂解方法
CA2077675A1 (en) Device for indirectly heating fluids
CN106631659A (zh) 一种蒸汽裂解方法
CN106635126A (zh) 一种蒸汽裂解方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060301

CX01 Expiry of patent term