CN1490630A - 用于支持识别技术设备中的故障功能单元的方法 - Google Patents

用于支持识别技术设备中的故障功能单元的方法 Download PDF

Info

Publication number
CN1490630A
CN1490630A CNA031589618A CN03158961A CN1490630A CN 1490630 A CN1490630 A CN 1490630A CN A031589618 A CNA031589618 A CN A031589618A CN 03158961 A CN03158961 A CN 03158961A CN 1490630 A CN1490630 A CN 1490630A
Authority
CN
China
Prior art keywords
test
functional unit
probability
malfunction
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031589618A
Other languages
English (en)
Other versions
CN100554980C (zh
Inventor
�е¡���Լ˹��
托德·比约斯尼
霍尔格·德雷斯尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1490630A publication Critical patent/CN1490630A/zh
Application granted granted Critical
Publication of CN100554980C publication Critical patent/CN100554980C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2837Characterising or performance testing, e.g. of frequency response

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本发明公开了一种用于支持识别一个具有多个功能单元(9)的技术设备(3)中的故障功能单元(17)的方法,其中为了识别故障功能单元,对技术设备(3)进行一次第一次测试,该第一次测试对技术设备(3)进行一次测量并产生一个第一测试结果(5),并借助一个在其中将哪些功能单元(9)已经测试过的信息进行组合的测试模块(63)和借助一个在其中将技术设备(3)具有何种结构的信息进行组合的***模块(31)对第一次测试结果(5)进行自动化处理,其中,对第一次测试结果(5)进行分析以便确定一组可能出故障的功能单元(9),且根据分析为该组的功能单元(9)配置故障概率(15)。

Description

用于支持识别技术设备中的 故障功能单元的方法
技术领域
本发明涉及一种用于支持识别技术设备中的故障功能单元的方法。
背景技术
识别技术设备中的故障功能单元是迅速而成功维修的前提。其中,大部分只是将故障功能单元用一个完好的备用功能单元替换。快速的维修缩短了故障时间,并由此提高了技术设备的利用。
由多个独立的功能单元构成的技术设备的复杂性,使得识别故障功能单元变得困难,并要求多次在技术设备中进行多方面测量的测试。正确测试的选择、测试的组合及其评价由一个技术服务人员负责,为此向该技术服务人员提供支持信息,例如手册、线路图或者关于测试的信息。因为支持信息和测试不断更新,且与技术设备的进一步发展相适应,所以技术服务人员的信息状态很容易落后,使得他只能通过尝试来识别出故障的功能单元。每次非故障功能单元的不必要更换都造成额外的花费。
在德国专利申请公开说明书DE 198 03 032 A1中公开了一种方法,用于对测试特性进行计算机支持的优化和使测试软件最少以及证明待开发的技术设备、装置或***的可测试性。在那里,首先建造并提供一个相应于该技术构思的产品模块,其中描述该模块的组件是功能块或者是最小和最大可替换的单元、以测试路径表示的各功能块之间的连接以及在各功能块之间和之上设定的诊断测试点。在下一个步骤中,根据由前面的模块级别得到的可测试性估计进行对产品模块功能深度作自适应匹配,其中为此借助于一台计算机模拟测试路径并通过测试逻辑对获得的测试报告进行评价。按这种方式得到或在必要时在多个步骤中得到的优化的、完全可测试的产品模块被存储在一个技术数据库,其中通过各自的测试路径名称可以与标准的测试软件建立一种程序上的联系。
德国专利说明书DE 199 17 102 C2公开了一种用于由具有模块构造的电气设备/站组成的电气设备的设计和诊断装置,以借助一个具有与电器设备接口的计算设备来控制和/或监测技术过程,和/或实现工业自动化和/或大楼自动化。
发明内容
本发明要解决的技术问题是提供一种能够更快和更精确地识别一个技术设备中的故障功能单元的方法。
按照本发明,上述技术问题是通过一种用于支持识别一个具有多个功能单元的技术设备中的故障功能单元的方法解决的。在该方法中,为了识别故障功能单元,对技术设备进行一次第一次测试,该第一次测试对技术设备进行测量并产生一个第一测试结果,借助一个将哪些功能单元已经测试过的信息进行组合的测试模块和借助一个将技术设备具有何种结构的信息进行组合的***模块对第一次测试结果进行自动化处理,在此自动化处理中,对第一次测试结果进行分析以便确定一组可能出故障的功能单元,再根据分析为该组的功能单元配置故障概率。
这种方法的优点在于,将***模块中关于技术设备的结构的信息与一个对技术设备进行的第一次测试联系起来。这样使得在本方法中可以参考关于哪些功能单元在第一次测试中已经测试过的信息。这就允许对第一次测试结果进行自动化处理,其中从所有构成技术设备的功能单元中选择出一组功能单元。
该组功能单元的特点是至少其中一个功能单元是有故障的。借助两种极端情况说明依据测试结果配置功能单元。在第一种情况的实例中,即测试指出已测试过的功能单元之一有故障的情况,则该组由这次测试所测试过的功能单元组成。在第二种情况的实例中,即测试指出所测试过的功能单元没有故障,则将测试过的功能单元不配置给该组。
本方法的另一个优点在于,可以参考关于技术设备的信息来为该组的各功能单元配置其参与第一次测试而得到的故障概率。其中还可以在配置时考虑测试模块的附加信息,例如一个功能单元易出故障的可能性。按照这种方式可以配置一个更精确的故障概率。
在本方法的一种改进中,将该组中的功能单元的故障概率与一个有效的极限故障概率进行比较,其中该极限故障概率这样进行定义:凡是故障概率大于极限故障概率的功能单元均被归类为故障。其优点在于可以通过自动分析和设置故障概率来识别有故障的功能单元。
本方法的一种改进涉及这样一种情况,还没有故障概率超过极限故障概率,则根据此故障概率建议至少进行一次第二次测试,以进一步精确该故障概率。这一点可以例如这样实现:仅仅对该功能单元组的一个子集进行测试。这种方法的优点在于,借助于故障概率以及对技术设备构造的了解和对哪些测试涉及哪些功能单元的了解能够对该测试自动进行评价:它们的实施能够将该组的功能单元的故障概率进一步精确到何种程度。
在本方法的一种改进中,将测试建议按照至少一个对测试建议相对于识别故障功能单元的重要性进行评价的标准自动地安排其顺序。优选例如包括了该测试运行所需的时间;或者可以这样进行评价,即所参与测试的功能单元与那些故障概率特别精确对其有利的功能单元吻合到何种程度。
在本方法的一种改进中,自动地进行所建议的测试中最重要的测试。其优点在于可以不受技术服务人员的影响而进行一系列的测试。
在一个特别优选的实施方式中,对该测试建议之一作为第二次测试来进行。然后,在考虑第一次测试结果并参考关于与测试模块相对应的哪些功能单元已经过测试、对应于测试模块该技术设备具有何种结构和至少一次在先测试提供了哪些测试结果的信息,对第二次测试的测试结果进行分析,以便进一步精确说明该组功能单元的故障概率。此外,如果一个功能单元的精确故障概率超出了一个有效的极限故障概率,则将该功能单元识别为有故障,或者如果没有故障概率超出了该有效的极限故障概率,则建议至少另一次测试来精确地说明该组功能单元的故障概率。此外,这种测试建议按照至少一个对该测试建议相对于识别故障功能单元的重要性进行评价的标准自动地安排其顺序。
在本方法的一种改进中,多次进行一次新建议的测试,直到一个功能单元的故障概率超出了该有效的极限故障概率,且将该功能单元识别为故障功能单元。这种改进的优点在于,依据对测试结果重复进行自动化处理就可以对可能出故障的功能单元的组进行限制,其中该限制可以不受技术服务人员的影响来完成,直到识别该故障功能单元。这种方法的错误率可以通过对极限故障概率的选择而降到最低。
在一个特别的实施方式中,一个功能单元的故障概率在完成一次测试之后由在该测试前的故障概率与根据该测试得到的故障概率进行数学组合而产生。其优点在于可以将获得的信息有目的地引入到一个功能单元的故障概率中。
在本方法一个特别优选的实施方式中,构成技术设备的功能单元一部分是可以替换的结构单元,另一部分是其他功能单元之间的可以替换的连接单元。这种连接单元可以在功能单元之间传送信号,例如电信号或光学信号。此外,它可以通过气动的或者液压的途径传送信号,或者它可以用来为一个功能单元供电。以完全可以替换的FRU(现场可替换单元)功能单元构造技术设备的结构具有这样的优点:在识别了故障功能单元之后技术设备的维修可以通过替换功能单元快速地完成。因此,优选功能单元例如与技术设备FRU有关。
在本方法一个优选的实施方式中,一次测试核查单个功能单元的功能。在另一个实施方式中,一次测试核查沿一个测试信号路径的多个功能单元。这种实施方式具有这样的优点:一方面可以核查单个功能单元,而另一方面核查多个功能单元的共同作用。
在一个特别优选的实施方式中,不同的测试可以由一个测试程序借助于参数化产生。其优点在于:一个测试程序可以按一种通用格式设计,然后该程序例如用来核查其构造类似的不同的结构。另一个优点在于:可以编写一种可在一个***族群中的不同技术设备上运行的测试程序,其中将各个技术设备相应的参数传递给该测试程序。
在一个特别优选的实施方式中,具有例如一种共同任务的多次测试构成一个测试块,且为了简化可运行性通过对测试块的一次调用来完成。其优点在于:可以有针对性地调用那些例如用于核查技术设备的一个模块的测试,以便进一步确定该模块的功能单元的故障概率。另一个优点在于技术服务人员不必单个地调用多个不同的测试。
在一个特别优选的实施方式中,在测试模块中将哪些功能由哪个测试或测试块核查的信息进行组合。该测试模块例如通过在技术设备上配置一个测试程序模块来产生。其中,该测试程序模块描述了例如可以在该技术设备上或者在与该技术设备类似的设备上运行的测试或者测试块。对测试或者测试块的描述可以包括其任务、在该技术设备上为一次测试必需进行哪些准备和事后工作,测试是否可以自动进行或者是否需要技术服务人员的协同作用、其他重要的参数、以及一次测试分别涉及的功能单元。一个重要参数例如是测试进行的时间。
这样一种测试程序模块可以由一个超级测试程序模块预先给出,其优点在于:对测试结果的自动化处理可以参数化,它可以应用到技术设备的一个完整的***族群。此外,该测试程序模块可以包含有这些功能单元的功能性与一个测试结果的依从关系,或者包括以一个通用的格式或以一个对一个技术设备专用的格式寻找故障的规则,这些规则从有经验的技术服务人员、***设计者和工程师的知识获得。这种自动化处理使用一种专家***。
实现具有这样一种测试模块的方法的优点在于故障识别过程自动化的可能性。这样的自动化使得可以构造与测试块无关的测试模块,从而该方法可以有针对性地调用使故障概率更精确的测试。由于可以使用测试模块中的重要信息和自动化处理使此成为可能。按照这种方式故障识别大大加快了,因为不必再对一个测试块进行所有测试,而不论其是否有利。
在一个特别优选的实施方式中,***模块以各功能单元为基础。该***模块例如通过在技术设备上配置一个超级***模块而产生。其中,该超级***模块包括所有使用的、例如属于一个***族群的技术设备。这种***模块的优点在于:它允许就技术设备的构成理解一个测试或者测试块,并由此使得可以访问被一个测试或者测试块所涉及的功能单元。例如,***模块知道在该技术设备中存在哪些功能单元(FRU)以及它们如何通过连接单元(电缆)相互连接。此外,***模块可以包括一个有关各功能单元可靠性的统计模块。
按照本发明的方法,对识别一个故障功能单元的自动化支持例如还可这样实现:一方面以***模块形式将技术设备构造成功能单元,而另一方面以测试模块描述测试与该技术设备的交互作用。该测试模块包括例如任务、作用电路、需要的时间和其它与技术设备有关的量。***模块和测试模块的配置可以自动地对应各技术设备来实现,其中,该方法的过程可以独立于该技术设备而编程。
该方法的附加优点在于这样的可能性:可将该方法集成在一个反映一广阔的结构中的***族群和多次测试的测试软件中。该适合本发明的测试软件可以方便地对***中和测试中的变化进行校正。
本发明的其它优选实施方式由从属权利要求的附加特征来表征。
附图说明
下面结合图1至11对本发明的多种实施方式进行说明:
图1为说明用于支持识别一技术设备中故障功能单元的方法的流程图,
图2为用于说明由超级***模块配置***模块的示意图,
图3为超级***模块的一种可以选择的结构,
图4表示一个测试程序和其所属测试之间的关系,
图5表示一个测试块和其所属测试之间的关系,
图6为用于说明由超级测试程序模块配置测试模块的示意图,
图7为用于说明在对测试结果进行自动化处理时信息流的框图,
图8为自动化处理的运行流程图,
图9为图8所示自动化处理中进行的综合分析的流程图,
图10示出第一个用于在磁共振断层造影设备中使用的通信链中识别一个故障单元的过程的实例,
图11示出第二个用于在磁共振断层造影设备的RF***中识别一个故障单元的过程的实例,
图12示出在两次测试的基础上组合故障概率的一个实例。
具体实施方式
图1示出一幅流程图,用于说明支持识别技术设备中的故障功能单元的方法。对技术设备3进行一次测试1,并产生第一次测试结果5。该第一次测试结果5与关于技术设备3中哪些功能单元9进行了测试的信息7及关于技术设备3结构的信息11一起送至处理单元13,以便对测试结果5进行自动化处理。
在处理单元13中对该测试结果进行分析,并参考所送来的信息得知哪一组根据测试1可能是存在故障的功能单元9。如果测试没有指明故障,则按照排除原则,该故障功能单元9的组由未经测试的功能单元9组成。如果测试指明存在一个故障,则该故障功能单元组优先为那些参加测试的功能单元9。
此外,在分析中为该组每个功能单元9设置一个故障概率15。将该功能单元9的故障概率15与一个极限故障概率进行比较,一旦一个功能单元9的故障概率15大于该极限故障概率,则将其所属的功能单元9识别为故障功能单元17。如果没有故障概率15超过极限故障概率,则由处理单元13产生至少一个测试建议19。这里,这样来选择该测试建议19,使得通过该建议的实施能对该组功能单元9作进一步限制或者通过其实施可以使该组功能单元9的故障概率15更精确。相应地,处理单元13需要这样的可能性:暂时存储功能单元9的故障概率15,根据技术设备3的构造将可能测试的结构与该组功能单元9进行比较,以及估计可能的测试对功能单元9的故障概率15的影响。为此,例如可以求助于在一个专家***中积累的信息和规则。
此外,处理单元13具有这样评价(例如同样借助于专家***)各测试建议19的可能性:首先执行有可能快速和有效识别故障功能单元17的测试建议19。对作为技术设备3的第二次测试的优选测试建议19的执行,一方面可以由处理单元13自动引入,或者可以按照技术服务人员的要求进行。
在自动化处理的第二个周期中,处理单元13此时除了第一次测试1分析得出的信息外、还可使用第二次测试结果21以及关于由第二次测试所核查的功能单元的信息。通过执行更多的测试可以一直将自动化处理的周期重复,直到一个故障概率15大于极限故障概率,即直到找到故障功能单元17。
在图2中用一个示意图表示了由配置在技术设备3中的超级***模块33形成***模块31。超级***模块33借助功能单元9描述了一个***族群的结构,即一个由接近的技术设备3的族群的结构。其中,功能单元9是FRU35或者相互连接FRU35的连接单元37。通过配置超级***模块33有可能在***模块31中反映技术设备3的结构。为同样属于该***族群的其它技术设备3进行配置产生相应的***模块。***模块31描述了在技术设备3实现的结构:不同的FRU35以及它们借助连接单元37的连接。技术设备3这样一种表示使得可以将测试(例如测试1和19)与功能单元9(即FRU35和连接单元37)互相处于一种逻辑关联中。
在图3中示出了超级***模块33的一种可以选择的结构。其中,该超级***模块33包括所有属于族群的技术设备3的***模块31。在配置时才从该超级***模块33中选择出相应的***模块31。
在图4示意地示出一个测试程序41和借助于对测试程序41参数化而可能获得的测试43、45、47之间的关系。其中,测试程序41是一个普通有控制的程序(gehalten Programm),它允许通过选择参数对技术设备3进行相似(即例如核查功能单元相似结构)的测量。
图5示意地示出一个测试块51和其所属的测试53、55、57之间的关联。在测试块51中不同测试53、55、57之间的关联使得可以用一个单一的调用来执行一系列测试。这就将对技术设备3进行的许多可能的测试简化成一些测试块51,即一些优选包括具有同样任务的测试或者涉及相同功能单元9的测试的测试组。
图6以一个示意图来说明一个超级测试程序模块61和由其生成的测试模块63。其中,超级测试程序模块61包括不同的涉及不同技术设备3的测试程序模块65。在测试程序模块中描述了如何将对测试处理来说重要的信息配置给各个测试。例如确定:哪些测试程序41配置哪些参数67,以便产生测试43;哪些功能单元9由测试43核查;采用多长的测试43时间长度69及为其配置何种测试块51。在超级测试程序模块61中为所有测试和所有测试程序确定这些信息。
此外,超级测试程序模块61这样构成:关于技术设备3的所有信息组合到一个测试程序模块65中。这样做的优点是,进一步的研究对所有技术设备仅仅需要在超级测试程序61中考虑一次。
对于自动化处理有利的是由超级测试程序61产生测试模块63,其中,测试模块63只包含哪些功能单元9将由测试块51核查这样的关键信息以及建立一个测试建议19顺序所需要的信息。对于执行测试块的情况,这些信息与测试块的联系对自动化处理来说是起决定性作用的。如果也能进行单个测试,则优选该测试模块包括关于该单个测试的关键信息。这在故障识别自动化中可以使方法加快,因为可以有针对性地实施和分析单个测试。
图7示出一个用于说明在对测试结果进行自动化处理时信息流的框图。处理单元13获得关于所关于实施测试1、19的测试结果5、21的信息。此外,处理单元13可以访问测试模块63,其中存在着例如所实施的测试涉及哪些功能单元9的信息。为了分析和为了作其他测试的建议,处理单元13也可以访问***模块31,该模块包含有以功能单元9的结构表示的关于技术设备3构成的信息。
然后,处理单元13提供关于可能出故障的功能单元9的信息,以及其故障概率15。此外,处理单元13提供一个测试建议19的清单,这些建议按照其对于在技术设备3中识别故障的重要性排列。在有效地精确说明故障概率15后,处理单元13可以提供哪些功能单元9是故障功能单元17的信息。
此外,在框图中说明了测试模块63、测试程序模块65和超级测试程序61的关联,以及***模块31和超级***模块33的关联。
图8以流程图的方式表示自动化处理的过程。在处理开始71之后,首先进行一个信息过滤73。其中,如果存在的话,将所存储的以前测试的结果过滤而成为有用信息,并转变成当前的测试结果。
在第二个步骤(综合分析75)中,借助于来自***模块31和测试模块63的信息对测试结果进行分析。例如核查:哪些连接单元(例如电缆)或者哪些可以替换的功能单元(例如FRU)参与了测试。然后,用一个数学模型将从当前测试中产生的故障概率与根据先前测试确定的故障概率进行组合。
在第三个步骤(诊断77)中,对数学模型的结果进行分析,其中例如将故障概率与极限故障概率进行比较。为此,可以对故障概率进行一个粗略的分类。
如果一个故障概率超出了极限故障概率,则通过该测试成功地识别了该故障功能单元。
如果没有明显的结果出现,则在第四个步骤(其它测试的建议79)中,从测试模块63中找出用于使故障概率更精确的测试。为此,从***模块31提取信息。新测试的确定可以借助于排除原则进行,即尝试使可能有故障的功能单元的组变小。作为一种选择,存在这样的可能性:通过对选择的功能单元的测试使故障概率有针对性地向一个较明显的推断方向变化。为此,将各建议例如按照其复杂性或者按照其花费的时间有顺序地提出。于是,到达自动化处理的结束81。如果测试的执行借助于测试块进行,则该自动化处理涉及这些测试块。
图9进一步说明了在图8所示自动化处理过程中所进行的综合分析75过程。综合分析开始83后首先在第一步骤中进行一次哪个测试已经进行的核查85。其中,该测试可以在一个测试块中进行。然后在一个自己的周期中对测试的功能单元进行分析。
为此,在第二个步骤87中选择该测试的第一功能单元。在第三个步骤89中将数学模型扩展到包括该功能单元,其中,在第四个步骤91中还可以向该数学模型传送该功能单元的条件概率,例如一个特别易出故障的功能单元的故障概率。在第五个步骤93中核查是否还有其它功能单元参与了测试,而如果是,则一直重复步骤87至93,直到考虑了所有功能单元。
在第六个步骤95中,核查例如在一个测试块进行了哪些其它测试。同样对于它们所属的功能单元完成步骤85至95。
最后在第七个也是最重要的步骤97中,按照数学模型计算所涉及的功能单元的故障概率。由此到达该综合分析的流程图的结束101。
本发明还可以进行全自动化识别故障。例如一个如磁共振断层造影设备那样的技术设备的技术服务人员或者操作人员,由于缺少结果或者错误的功能,发现一个设备的故障,则他可以借助于一个测试软件引入例如下列故障识别的过程。
测试软件执行一次第一次测试,该测试例如未指出故障功能单元。对该所属的第一次测试结果自动进行分析,且将所有未经第一次测试核查的功能单元归类为有潜在故障,成为另一个待测试的功能单元组。
然后,测试软件进行一次第二次测试,该测试例如又没有指出故障功能单元。一个新的自动化处理再次限制该组,并建议作第三次测试。在这第三次测试才明确,该第三次测试所核查的功能单元之一是有故障的。对第三个测试结果的自动化处理明显地局限在该组。一直进行其它使所配置的故障概率更明确的测试,直到明显地识别出一个故障功能单元。其中,按照本发明完成该自动化处理的循环,例如包括对测试结果的分析、配置故障概率、建议和完成其它测试。
自动化故障识别的一个优点在于:由于自动地进行多个只需要花费很少时间与技术服务人员进行交互作用的测试,因而缩短了识别出故障的时间。
在该测试软件的一个较少自动化的版本中,例如由技术服务人员自己决定在开始限制故障功能单元时执行哪个测试或者测试块。在按照本发明对测试结果的处理之后,他自己在所建议的测试中选择下一个测试,并可以由此将其本人的经验引入到故障识别中来。
图10示出第一个用于在磁共振断层造影设备中使用的通信链中识别一个故障单元的过程的实例。该图示出了一个CAN(Control Area Network,控制区域网)总线110,该总线从一个处理器出发具有不同的、通过电缆相互连接的FRU。在实例中,一个从处理器的CAN总线输出111开始的链由下列FRU构成:一个IOP(Input/Output and Power-Board,输入/输出和电源板)单元113、一个RF控制单元115、一个RF放大单元117、一个PTAB(patienttable,患者台)单元119、一个LCCS(Local Coil Channel Selector,本地线圈通道选择器)单元121和一个BTB(Body Tune Box,身体调整箱)单元123。
这些PRU通过从一个单元的输出至下一个单元的输入的电缆连接。如果电缆有故障,则不可能与后续的FRU通信。另一方面可能的是:不能与一个特殊的FRU通信,例如不能与LCCS单元121通信;但是可以与后续的单元通信,在这种情况下可以与BTB单元123通信。由此可以得出结论,CAN总线的电缆完好无损,而只是LCCS单元121有故障并应该更换。
在***模块中对CAN总线作了描述:这些FRU按何种顺序相互连接。分别核查与一个FRU通信的各测试组成一个测试块。在测试模块中确定,哪些电缆和FRU在哪个测试中进行,以便能够与一个特殊的FRU通信。借助于测试模块和***模块则可以自动化地识别故障。
例如,与LCCS单元121的通信测试不能成功地进行。但还没有进行与BTB单元123的通信测试。在本方法中建议进行该测试,以便区分出是PTAB单元119和LCCS单元121之间的电缆故障还是LCCS单元121的故障。
图11示出第二个用于在磁共振断层造影设备的一个RF***130中识别一个故障单元的过程的实例。该RF***130由多个通过电缆相互连网的PRU组成。该RF***130例如由一个经一连接电缆(Schlaufenkable)135与一接收器133连接的发射器131构成。接收器133和发射器131通过时间基准电缆136与一个用作同步的时间基准137连接。此外,发射器131通过一个TTX(Tuned Transmitter Output,调整发射器输出)电缆141与一个LCCS单元139连接。该LCCS单元139又与接收器133连接。发射器131还与一个RF放大单元143连接。其它磁共振断层造影设备的***单元145同样可以与RF放大单元143和LCCS单元139连接。
在这种复杂的***中通常不可能用一个单一的测试发现故障。在该***中一次非常方便的核查多个FRU和电缆的环行测试(Schlaufentest)完成从发射器131经连接电缆135到接收器133的测量。该环行测试还需要时间基准137和时间基准电缆136。如果该测试信号指示存在一个故障,则可能是发射器131、连接电缆135、接收器133、时间基准137和时间基准电缆136有故障。
为了减少参与的FRU的数量,可以进行一个第二次环行测试,该测试从发射器131经TTX电缆141到LCCS单元139又回到接收器133进行。在这种情况下绕开了连接电缆135,从而如果在该测试中未出现错误,则推定连接电缆135有故障。如果第二次测试也有故障,则可能是发射器131、接收器133、时间基准137和时间基准电缆136有故障,而且必须进行其它测试。为了排除TTX电缆141和连接电缆135的双重故障,同样需要作其它测试。
图12示出在两次测试的基础上组合故障概率的一个实例。第一次测试151指出核查的部件(发射器131、TTX电缆141、LCCS单元139和接收器133)之一出现了故障。相应地每个部件的故障概率各为百分之25。如果补充的第二次测试153没有故障而成功地进行,则所核查的部件(发射器131、TTX电缆141、LCCS单元139和***单元145)中没有故障,从而在测试151和153结果的组合处理中将接收器133识别为故障功能单元。
在依据多次测试配属故障概率时,必要时优选根据测试或者还根据所测试过的功能单元为故障概率设置一种权重,其中,例如特别容易出故障的功能单元得到更高的故障概率。此外,如果必须对故障概率进行预测,则优选将故障概率相互标准化,并在数学模型中用标准化的故障概率进行计算,以及为了形成结论将故障概率进行粗略分类。一个可以用于计算故障概率的数学模型的例子是贝叶斯网络模型。

Claims (22)

1.一种用于支持识别一个具有多个功能单元(9)的技术设备(3)中的故障功能单元(17)的方法,
其中,为了识别故障功能单元,对技术设备(3)进行一次第一次测试,
其中,该第一次测试对技术设备(3)进行测量并产生一个第一测试结果(5),
其中,借助一个将哪些功能单元(9)已经测试过的信息进行组合的测试模块(63)和借助一个将技术设备(3)具有何种结构的信息进行组合的***模块(31)按下列方法步骤对第一次测试结果(5)进行自动化处理:
-对第一次测试结果(5)进行分析,以便确定一组可能出故障的功能单元(9),
-根据该分析为该组的功能单元(9)配置故障概率(15)。
2.根据权利要求1所述的方法,其特征在于:如果一个功能单元(9)的故障概率(15)超出了一个有效的极限故障概率,则将该功能单元(9)识别为有故障。
3.根据权利要求1所述的方法,其特征在于:如果所有故障概率(15)还未超出该有效的极限故障概率,则根据该故障概率(15)建议至少另一个第二次测试来更精确地说明该组功能单元(9)的故障概率(15)。
4.根据权利要求3所述的方法,其特征在于:所述测试建议(19)按照至少一个对该测试建议(19)相对于识别故障功能单元(17)的重要性进行评价的标准自动地安排其顺序。
5.根据权利要求4所述的方法,其特征在于:自动地进行所建议的测试中最重要的测试。
6.根据权利要求3至5中任一项所述的方法,其特征在于:
进行一次第二次测试,
在考虑第一次测试结果(5)并参考下列有关信息,即与该测试模块相对应的哪些功能单元(9)已经过测试、对应于该***模块该技术设备(3)具有何种结构和至少一次在先测试提供了哪些测试结果的信息对第二次测试的测试结果(21)进行分析,以便精确地说明该组功能单元(9)的故障概率(15),
如果一个功能单元(9)的精确的故障概率(15)超出了一个有效的极限故障概率,则将该功能单元(9)识别为有故障,
如果所有故障概率(15)未超出该有效的极限故障概率,则根据该故障概率(15)建议至少另一次测试来精确地说明该组功能单元(9)的故障概率(15),而这种测试建议(19)按照至少一个对该测试建议(19)相对于识别故障功能单元(17)的重要性进行评价的标准自动地安排其顺序。
7.根据权利要求5或6所述的方法,其特征在于:这样每次进行一次新建议的测试,直到一个功能单元(9)的故障概率(15)超出了所述有效的极限故障概率,并将该功能单元(9)识别为有故障。
8.根据权利要求1至7中任一项所述的方法,其特征在于:所述一个功能单元(9)的故障概率(15)在完成一次测试之后由在该测试前的故障概率(15)与根据该测试得到的故障概率(15)进行数学组合而产生。
9.根据权利要求8所述的方法,其特征在于:所述故障概率(15)的组合借助于贝叶斯网络模型来进行。
10.根据权利要求1至9中任一项所述的方法,其特征在于:一种功能单元(9)是可以替换的结构单元。
11.根据权利要求1至10中任一项所述的方法,其特征在于:一种功能单元(9)是其它功能单元(9)之间的连接单元。
12.根据权利要求1至11中任一项所述的方法,其特征在于:连接单元在其它功能单元(9)之间传送电信号或光学信号。
13.根据权利要求1至12中任一项所述的方法,其特征在于:连接单元用来为其它功能单元(9)供电。
14.根据权利要求1至13中任一项所述的方法,其特征在于:一次测试对单个功能单元(9)的功能进行核查。
15.根据权利要求1至14中任一项所述的方法,其特征在于:一次测试对沿一测试信号路径的多个功能单元(9)进行核查。
16.根据权利要求1至15中任一项所述的方法,其特征在于:不同的测试由一个测试程序(41)借助参数化而产生。
17.根据权利要求1至16中任一项所述的方法,其特征在于:具有一个共同任务的多次测试构成一个测试块(51),且为了简化可运行性通过对该测试块(51)的一次调用来完成。
18.根据权利要求1至17中任一项所述的方法,其特征在于:所述关于由一次测试或测试块(51)核查哪些功能单元(9)的信息在所述测试模块(63)中进行组合。
19.根据权利要求18所述的方法,其特征在于:所述测试模块(63)通过在技术设备(3)上配置一个测试程序模块(65)而产生,其中,该测试程序模块(65)包括一个对那些可以在该技术设备(3)上或者在与该技术设备类似的设备上进行的测试或者测试块(51)的说明。
20.根据权利要求19所述的方法,其特征在于:对所述测试或者测试块(51)的说明描述了任务、重要的参数以及分别涉及的功能单元(9)。
21.根据权利要求1至20中任一项所述的方法,其特征在于:所述***模块(31)以所述各功能单元(9)为基础。
22.根据权利要求21所述的方法,其特征在于,所述***模块(31)通过在所述技术设备(3)上配置一个超级***模块(33)而产生,其中该超级***模块(33)概括地表示了所使用的技术设备(3)。
CNB031589618A 2002-09-23 2003-09-17 用于支持识别技术设备中的故障功能单元的方法 Expired - Fee Related CN100554980C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10244131.6 2002-09-23
DE10244131A DE10244131B4 (de) 2002-09-23 2002-09-23 Verfahren zur Unterstützung einer Identifizierung einer defekten Funktionseinheit in einer technischen Anlage

Publications (2)

Publication Number Publication Date
CN1490630A true CN1490630A (zh) 2004-04-21
CN100554980C CN100554980C (zh) 2009-10-28

Family

ID=31983988

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031589618A Expired - Fee Related CN100554980C (zh) 2002-09-23 2003-09-17 用于支持识别技术设备中的故障功能单元的方法

Country Status (4)

Country Link
US (1) US7181648B2 (zh)
JP (1) JP2004118839A (zh)
CN (1) CN100554980C (zh)
DE (1) DE10244131B4 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392414C (zh) * 2005-04-15 2008-06-04 中兴通讯股份有限公司 一种电子设备内电磁辐射源的测量方法和装置
CN102222526A (zh) * 2010-04-14 2011-10-19 苹果公司 用于对电子装置的处理过程进行控制的方法和装置
CN105874345A (zh) * 2014-01-03 2016-08-17 皇家飞利浦有限公司 使用环境数据的梯度线圈放大器故障的概率的计算
CN106660545A (zh) * 2015-02-27 2017-05-10 中欧车辆技术公司 用于检测车辆控制***中的故障的方法和***
CN107291063A (zh) * 2016-04-12 2017-10-24 西门子公司 用于监控技术设施的运行的诊断装置和诊断方法
CN111780953A (zh) * 2020-06-29 2020-10-16 重庆盛泰光电有限公司 一种手机摄像头模组检测及装配方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467018B1 (en) 2002-11-18 2008-12-16 Rockwell Automation Technologies, Inc. Embedded database systems and methods in an industrial controller environment
US7266729B2 (en) * 2002-12-27 2007-09-04 Intel Corporation Managing a wireless platform
US7360120B2 (en) * 2003-11-26 2008-04-15 International Business Machines Corporation Methods for adaptive problem determination in distributed service-based applications
US7373552B2 (en) 2004-09-30 2008-05-13 Siemens Aktiengesellschaft Model based diagnosis and repair for event logs
US7706895B2 (en) 2005-02-25 2010-04-27 Rockwell Automation Technologies, Inc. Reliable messaging instruction
US7565351B1 (en) * 2005-03-14 2009-07-21 Rockwell Automation Technologies, Inc. Automation device data interface
US7233830B1 (en) * 2005-05-31 2007-06-19 Rockwell Automation Technologies, Inc. Application and service management for industrial control devices
DE102006036832A1 (de) * 2006-08-07 2008-02-21 Siemens Ag Ferndiagnosesystem für modulartig aufgebaute medizinische Geräte
DE102006047262A1 (de) 2006-10-04 2008-04-10 Endress + Hauser Gmbh + Co. Kg Verfahren zum Testen einer Elektronikeinheit
DE102007015140A1 (de) * 2007-03-29 2008-10-02 Volkswagen Ag Diagnosevorrichtung und Diagnoseverfahren zum Ausführen einer Diagnose eines mechatronischen Systems
US9753455B2 (en) * 2009-06-22 2017-09-05 Johnson Controls Technology Company Building management system with fault analysis
US11269303B2 (en) 2009-06-22 2022-03-08 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8788097B2 (en) 2009-06-22 2014-07-22 Johnson Controls Technology Company Systems and methods for using rule-based fault detection in a building management system
US9286582B2 (en) 2009-06-22 2016-03-15 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8532839B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for statistical control and fault detection in a building management system
US9606520B2 (en) 2009-06-22 2017-03-28 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US10739741B2 (en) 2009-06-22 2020-08-11 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8532808B2 (en) 2009-06-22 2013-09-10 Johnson Controls Technology Company Systems and methods for measuring and verifying energy savings in buildings
US8731724B2 (en) 2009-06-22 2014-05-20 Johnson Controls Technology Company Automated fault detection and diagnostics in a building management system
US8600556B2 (en) 2009-06-22 2013-12-03 Johnson Controls Technology Company Smart building manager
US9196009B2 (en) 2009-06-22 2015-11-24 Johnson Controls Technology Company Systems and methods for detecting changes in energy usage in a building
US8230261B2 (en) * 2009-12-17 2012-07-24 Hewlett-Packard Development Company, L.P. Field replaceable unit acquittal policy
US9390388B2 (en) 2012-05-31 2016-07-12 Johnson Controls Technology Company Systems and methods for measuring and verifying energy usage in a building
US8949669B1 (en) * 2012-09-14 2015-02-03 Emc Corporation Error detection, correction and triage of a storage array errors
US9778639B2 (en) 2014-12-22 2017-10-03 Johnson Controls Technology Company Systems and methods for adaptively updating equipment models
US10552729B2 (en) * 2017-03-20 2020-02-04 Hewlett Packard Enterprise Development Lp Baseboard management controller to deconfigure field replaceable units according to deep learning model
US10073763B1 (en) * 2017-12-27 2018-09-11 Accenture Global Solutions Limited Touchless testing platform
EP3980961A1 (en) 2019-06-10 2022-04-13 Koninklijke Philips N.V. System and method to predict parts dependencies for replacement based on the heterogenous subsystem analysis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928830A (en) * 1974-09-19 1975-12-23 Ibm Diagnostic system for field replaceable units
US6029258A (en) * 1997-10-09 2000-02-22 Microsoft Corporation Method and system for trouble shooting and correcting computer software problems
US6175934B1 (en) * 1997-12-15 2001-01-16 General Electric Company Method and apparatus for enhanced service quality through remote diagnostics
DE19803032A1 (de) * 1998-01-27 1999-07-29 Daimler Chrysler Ag Verfahren zur computergestützten Optimierung von Prüfspezifikationen und Minimierung von Prüfsoftware
US6304982B1 (en) * 1998-07-14 2001-10-16 Autodesk, Inc. Network distributed automated testing system
DE19917102C2 (de) * 1999-04-15 2002-07-18 Moeller Gmbh Projektierungs- und Diagnoseeinrichtung für eine elektrische Anlage
US6691249B1 (en) * 2000-03-22 2004-02-10 Agilent Technologies, Inc. Probabilistic diagnosis, in particular for embedded and remote applications
GB2373607B (en) * 2001-03-23 2003-02-12 Sun Microsystems Inc A computer system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392414C (zh) * 2005-04-15 2008-06-04 中兴通讯股份有限公司 一种电子设备内电磁辐射源的测量方法和装置
CN102222526A (zh) * 2010-04-14 2011-10-19 苹果公司 用于对电子装置的处理过程进行控制的方法和装置
CN102222526B (zh) * 2010-04-14 2015-04-01 苹果公司 用于对电子装置的处理过程进行控制的方法和装置
CN105874345A (zh) * 2014-01-03 2016-08-17 皇家飞利浦有限公司 使用环境数据的梯度线圈放大器故障的概率的计算
CN106660545A (zh) * 2015-02-27 2017-05-10 中欧车辆技术公司 用于检测车辆控制***中的故障的方法和***
CN106660545B (zh) * 2015-02-27 2019-12-20 宁波吉利汽车研究开发有限公司 用于检测车辆控制***中的故障的方法和***
CN107291063A (zh) * 2016-04-12 2017-10-24 西门子公司 用于监控技术设施的运行的诊断装置和诊断方法
CN107291063B (zh) * 2016-04-12 2019-09-13 西门子公司 用于监控技术设施的运行的诊断装置和诊断方法
US10481581B2 (en) 2016-04-12 2019-11-19 Siemens Aktiengesellschaft Diagnosis facility and diagnostic method for monitoring performance of a technical plant
CN111780953A (zh) * 2020-06-29 2020-10-16 重庆盛泰光电有限公司 一种手机摄像头模组检测及装配方法
CN111780953B (zh) * 2020-06-29 2022-03-22 盛泰光电科技股份有限公司 一种手机摄像头模组检测及装配方法

Also Published As

Publication number Publication date
US7181648B2 (en) 2007-02-20
DE10244131A1 (de) 2004-04-08
DE10244131B4 (de) 2006-11-30
CN100554980C (zh) 2009-10-28
JP2004118839A (ja) 2004-04-15
US20040153819A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN1490630A (zh) 用于支持识别技术设备中的故障功能单元的方法
US5544308A (en) Method for automating the development and execution of diagnostic reasoning software in products and processes
CN103139011B (zh) 用于车内通信的综合故障诊断和预测方法
US20070226540A1 (en) Knowledge-Based Diagnostic System for a Complex Technical System, Comprising Two Separate Knowledge Bases for Processing Technical System Data and Customer Complaints
CN1016102B (zh) 电路板测试中的计算机辅助故障隔离
CN112416643A (zh) 无监督异常检测方法与装置
EP1870847A3 (en) Automated repair analysis using a bundled rule-based system
CN1763720A (zh) 基于诊断和修复事件日志的模型
CN107045584B (zh) 一种适用于水泵转子***的工频振动异常故障诊断方法
CN110515781B (zh) 一种复杂***状态监测及故障诊断方法
Ye et al. Adaptive board-level functional fault diagnosis using decision trees
RU2755354C1 (ru) Диагностическая система и способ обработки данных транспортного средства
CN109964182A (zh) 用于车辆分析的方法和***
KR102265298B1 (ko) 머신러닝에 의해 생성된 가상 데이터를 이용한 고장 진단 방법 및 장치
CN113886951A (zh) 一种飞行器健康管理***及方法
CN107291475A (zh) 通用型phm应用配置方法和装置
CN113626267A (zh) 复杂电子***不确定性故障诊断效能评估方法
CN115185252A (zh) 基于汽车故障灯的远程诊断方法及装置
CN110795073A (zh) 一种计算机软件开发方法
CN106569944A (zh) 基于约束树的星载软件测试数据分析方法
KR102024829B1 (ko) Cart 기반의 입력변수 랭킹을 이용한 산업공정의 고장변수 식별을 위한 장치 및 방법
CN116859838B (zh) 一种设备运行情况监测的预警***
CN105308523A (zh) 车间诊断***
CN112327804A (zh) 牵引控制单元的故障诊断方法、装置、***和列车
EP2652716B1 (de) Verfahren zur automatischen überwachung zumindest einer komponente eines physikalischen systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091028

Termination date: 20150917

EXPY Termination of patent right or utility model