CN1462344A - 对永磁支承的旋转件进行位置控制的方法 - Google Patents

对永磁支承的旋转件进行位置控制的方法 Download PDF

Info

Publication number
CN1462344A
CN1462344A CN02801468A CN02801468A CN1462344A CN 1462344 A CN1462344 A CN 1462344A CN 02801468 A CN02801468 A CN 02801468A CN 02801468 A CN02801468 A CN 02801468A CN 1462344 A CN1462344 A CN 1462344A
Authority
CN
China
Prior art keywords
control
value
rotor
regulator
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02801468A
Other languages
English (en)
Other versions
CN1178006C (zh
Inventor
杨·霍夫曼
安德烈亚斯·阿恩特
托比亚斯·默克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berlin Heart GmbH
Original Assignee
BERLIN KARDIOTECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERLIN KARDIOTECHNIK GmbH filed Critical BERLIN KARDIOTECHNIK GmbH
Publication of CN1462344A publication Critical patent/CN1462344A/zh
Application granted granted Critical
Publication of CN1178006C publication Critical patent/CN1178006C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • F16C32/0478Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings with permanent magnets to support radial load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
    • F16C2316/18Pumps for pumping blood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Vascular Medicine (AREA)
  • External Artificial Organs (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Brushless Motors (AREA)

Abstract

由于特别是流过具有磁支承的转子(永磁铁和附加的控制电流线圈)的泵的脉动流情况下干扰力持续地作用于转子,所以位置调整装置必须能够迅速地对变化的转子的轴向位置进行调整。另一方面电流产生的损耗功率应控制在特别小的程度。根据本方法,对流过控制电流线圈的电流由后置于位置传感器的调节器预给定的额定值进行脉宽调制调整,在额定值较高时转换到较高的电压级并且对传感器分别在最迟开始于控制电流的控制前沿的一定时间内测出的实际值进行储存并将位置传感器在该时段内置于不工作状态。

Description

对永磁支承的旋转件进行位置控制的方法
本发明涉及一种用于对永磁支承的旋转件进行位置控制的方法,例如所述旋转件是无刷同步电机的转子,利用位置传感器对旋转件进行的位置测定和利用附加的影响永磁支承磁场的控制电流线圈对永磁支承的旋转件进行位置调整,其中旋转件的位置决定所述控制电流线圈的电流强度。同步电机例如可以作为轴流液体输送泵的驱动装置。
多相液体,例如稳定性很差的乳状液和分散液,当在相应的液体***中被输送时很容易进入不稳定范围。
血液是一种特别敏感的液体。血液在自然的循环***中与外部环境隔绝密封,从而不会受到外部的影响。然而当必须由一人工血液泵替代心脏或采用一附加的血液泵对循环进行辅助时,则将出现技术***对血液的交替作用。这时血液很容易受到溶血或形成血栓的影响,并伴随有对患者的不利作用。所以最近加大力度努力实现对液体输送泵的设计,以便使对血液或对其它敏感的液体的机械影响尽可能降低到最小程度。对此的一种方案是对泵驱动装置的旋转件的磁支承。磁支承的优点不仅在于不再有相互机械摩擦的部件,而且还提高了可以实现的旋转件的旋转加速度并且改善了转速的可调整性和随之的容积流的可调整性。
这样一种液体泵通常可以安装在一无刷的同步电机内。所述液体泵根据WO 00/640 30的披露,主要由一圆柱形的管件构成,所述管件的两端与液体***连接。管件被一定子环围,所述定子由叠片组、绕组和铁轭罩构成。转子包含永磁励磁器并在其外壳具有液体的输送装置,从而使液体在管件与转子之间的环形空间内被轴向输送。
转子被磁支承。为此转子在其两端面固定设置有圆柱状或环状的在轴向上被磁化的永磁铁。与转子的永磁铁相对反向磁化的永磁铁例如设置在导向装置的端侧,所述导向装置固定在圆柱形管件上。
当两个磁铁对相互吸引定向时,它们在径向上起着稳定作用,即径向支承是被动稳定的。但在轴向上转子是不稳定的。
在没有附加的稳定的情况下,转子将被两个永磁铁对中的一个所吸引。所以控制线圈设置在定子侧,使一个流过串联的控制线圈的电流对一个永磁铁对的磁场进行衰减并对另一个永磁铁对的磁场进行增强。必须根据实时的转子的轴向位置对控制电流进行调整。为此必须利用位置传感器检测出转子位置。
位置传感器例如由两个传感器线圈构成,所述传感器线圈设置在导向装置的端侧。铝***于导向装置对面的转子的端侧,当对传感器线圈用交流电流加载时,在所述端侧将形成涡流。在转子轴向移动时传感器线圈的电感将会出现变化,由所述电感的变化在电桥电路内得出转子位置的测量信号。
由于特别是流过泵的脉动流情况下干扰力持续地作用于转子,所以位置调整装置必须能够迅速地对变化的转子的轴向位置进行调整。另外由于所产生的热能应保持在尽可能小的程度,所以电流产生的损耗功率应控制在特别小的程度,此点对血液泵是特别重要的。另外由于必须从植入的电池获得驱动能,所以电池的工作寿命应尽可能长。
本发明的目的在于提出一种用于对磁支承的构件进行位置调整的方法,利用此方法应将位置调整的损耗功率保持在最小的程度。
本发明的目的通过权利要求1的特征得以实现。从属权利要求中给出本发明的有益的设计。
根据本发明流过控制电流线圈的电流被由后置于位置传感器的调节器预给定的额定值进行脉宽调制调整,其中在额定值较高时将转换到较高的电压级。其优点是,可以将调整时间保持在最短并且将所需的功率保持在特别小的程度。
对传感器分别在最迟开始于控制电流的控制前沿的一定时间内测出的实际值进行储存并将传感器在该时段置于不工作状态。
在一无刷同步电机中应用时最好就电机线圈的控制脉冲在最迟开始于控制脉冲的控制前沿的一定时间内对传感器测出的实际值进行中间暂存并使位置传感器在该时段内停止工作。
对由于位置测定时的节拍脉冲而产生的干扰可以采用对测量时间的选择和对测量值的存储加以控制。
在特定的应用时最好由后置于位置传感器的调节器的额定值求出平方值并且在平均时间超过该值时将位置调整装置在下一个低于阈值前置于不工作状态。以此方式对控制线圈的加热进行模拟并避免过热。
最好后置于传感器的调节器是一个具有I2-分量的比例积分微分调节器。
下面将对照实施例对本发明做进一步说明。图中示出:
图1为液体输送泵的剖面图,所述输送泵适用于实施本发明的方法;
图2为采用本发明附加的电流调整对位置进行调整的原理图和
图3为位置调节器的框图。
图1示出适用于实施本发明方法的轴流泵。血液泵的驱动装置按照电子换向同步电机的原理工作。电机具有一个定子,所述定子由叠片组31、绕组33和铁轭罩2、2a构成;具有一个转子5,所述转子具有永磁磁芯32。所述定子包括一个管状的中空体1,在中空体内轴向上输送液体,在本例中输送的是血液。转子5被无接触地磁支承。
磁轴承由在转子端侧的永磁铁42、42a和在导向装置6和7端侧的永磁铁41、41a构成。导向装置6、7固定在管状的中空体1的内壁上。
另外控制线圈12、12a也属于磁轴承的一部分。导向装置6、7内的传感线圈43、43a和与前者相对的短路环80、80a用于对转子的实时位置进行测量。
永磁铁对41、42、41a、42a的极性分别相互吸引。永磁铁对磁性串接。
在没有附加稳定的情况下,转子将被吸引到一侧,在轴向上存在一不稳定的平衡。在径向上两个磁铁对同心起作用,因此径向位置是被动稳定的。
控制线圈12、12a电气串联并且其磁性设置应使一个电流起着减弱其中的一个磁铁对的磁场并增强另一个磁铁对的磁场的作用。通过铁轭罩2、2a和定子的叠片组31磁性接地。
利用传感器线圈43、43a检测出转子5的轴向位置。利用一较高频率的电压对传感器线圈43、43a加载。在转子5轴向移动时将导致传感器线圈43、43a电感的变化。通过将传感器线圈43、43a设置在一电桥电路内将获得转子5的轴向位置的测量信号。
如图2所示一个对流过控制线圈12、12a的控制电流的控制值加在后置于传感器的调节器的输出端。控制电流通过一电流调节器被馈送给控制线圈12、12a。电流调节器作为闭合的调节回路工作,其中调节器对流过控制线圈12、12a的电流进行测量并与位置调节器的预给定(额定电流)进行比较。通过一个脉冲控制的功率级的脉宽调制将实际电流调整到额定电流上。该过程需要一特定的时间,所述时间取决于额定电流与实际电流的差。功率级工作的电压越高,则电流调节器的调整时间越短。另一方面随着电压的升高,功率级的损耗功率也随之增大。为了实现电流调节器的快速反应和较少的损耗功率,只有在额定值与测量值之间的差很大时,才接入较高的电压,否则将用低电压工作。
由于脉冲控制的功率级对控制线圈12、12a的控制在传感器线圈43、43a内将产生干扰,所述干扰将导致转子5位置测定出现差错。所述干扰在控制线圈12、12a上的每个脉冲前沿耦合到传感器线圈43、43a上并在一定的时间后消隐。所以在该干扰的预期的时间内将直接在事先获得的位置信号进行中间暂存并中断位置的测定。在该时间位置调节器用中间存储的值工作。一旦干扰消隐,则重新用传感器线圈43、43a对位置进行测定。而且由于对电机线圈33的控制也会产生类似的干扰。为此也可以采用中间暂存的方法。用于抑制干扰的电子装置由电流调节器和电机的控制电子装置精确地获得可能出现干扰的时间点,以便其可以对位置信号进行存储。
图3示出磁轴承的位置调整电路。根据在电路21上测出的转子位置求出将导致转子5在所有工作状态的可靠的悬浮的控制线圈12、12a的控制电流并加在位置调节器的输出端22上。位置调节器由一个比例积分微分调节器构成,所述调节器的特征由积分器Ti和微分器Td的时间常数以及调节放大器的增益系数kr决定。为了避免控制线圈12、12a受到热过载还可以由电流的平方值求出预期的损耗功率。当在低通滤波器上平均时间上超过阈值时将断开位置调节,直至重新低于阈值。位置调节器作为附加的预定将流过控制线圈12、12a的电流保持在尽可能小的程度。控制电流通过积分器(I2-电路)被反馈到调节器的输入端。作为结果转子5总是位于泵的轴向位置,在该位置仅有一个很小的电流流过控制线圈12、12a。
        附图标记对照表2                               铁轭罩2a                              铁轭罩5                               转子6                               导向装置7                               导向装置12                              控制线圈12a                             控制线圈31                              叠片组33                              绕组41                              永磁铁41a                             永磁铁42                              永磁铁42a                             永磁铁43                              传感器线圈43a                             传感器线圈21                              电路22                              输出端80                              短路环80°                                                          短路环Ti                              积分器Td                              微分器Kr                              放大因数

Claims (4)

1.一种方法,用于利用位置传感器对旋转件的位置测定和利用附加影响永磁支承的磁场的控制电流线圈对永磁支承的旋转件进行位置调整,控制电流线圈的电流强度是由旋转件的位置决定的,其特征在于,流过控制电流线圈的电流被由后置于位置传感器的调节器预给定的额定值进行脉宽调制调整,在额定值较高时转换到较高的电压级,对传感器分别在最迟开始于控制电流的控制前沿的一定时间内测出的实际值进行储存并将位置传感器在该时段内置于不工作状态。
2.按照权利要求1所述的方法,其特征在于,在一无刷同步电机中应用时就电机线圈的控制脉冲在最迟开始于控制脉冲的控制前沿的一定时间内对传感器测出的实际值进行中间暂存并将位置传感器在该时段内置于不工作状态。
3.按照权利要求1或2的方法,其特征在于,由后置于传感器的调节器的额定值求出平方值并且在平均时间超过该值时在下一个个低于阈值前将位置调整置于不工作状态。
4.按照上述权利要求中任一项所述的方法,其特征在于,对后置于传感器的调节器采用一个具有I2-分量的比例积分微分调节器。
CNB028014685A 2001-04-30 2002-04-29 对永磁支承的旋转件进行位置控制的方法 Expired - Fee Related CN1178006C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10123138A DE10123138B4 (de) 2001-04-30 2001-04-30 Verfahren zur Lageregelung eines permanentmagnetisch gelagerten rotierenden Bauteils
DE10123138.5 2001-04-30

Publications (2)

Publication Number Publication Date
CN1462344A true CN1462344A (zh) 2003-12-17
CN1178006C CN1178006C (zh) 2004-12-01

Family

ID=7684548

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028014685A Expired - Fee Related CN1178006C (zh) 2001-04-30 2002-04-29 对永磁支承的旋转件进行位置控制的方法

Country Status (10)

Country Link
US (1) US7229474B2 (zh)
EP (1) EP1386081B1 (zh)
JP (2) JP3994343B2 (zh)
CN (1) CN1178006C (zh)
AT (1) ATE337491T1 (zh)
AU (1) AU2002254996B2 (zh)
CA (1) CA2411245C (zh)
DE (1) DE10123138B4 (zh)
RU (1) RU2277936C2 (zh)
WO (1) WO2002088548A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076733B (zh) * 2004-06-30 2010-11-10 法雷奥电机设备公司 带有确定转子角位置的装置的旋转电机
CN102239334A (zh) * 2008-12-08 2011-11-09 Ntn株式会社 离心式泵装置
CN102435220A (zh) * 2010-09-28 2012-05-02 福特环球技术公司 确定磁传感器波形图质量的方法及***
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0410168D0 (en) * 2004-05-06 2004-06-09 Rolls Royce Plc A magnetic bearing
US20060275155A1 (en) * 2005-01-28 2006-12-07 Robert Thibodeau Rotational apparatus
DE102006003013B4 (de) * 2005-06-17 2011-03-03 Koenig & Bauer Aktiengesellschaft Flexodruckmaschine
DE102006003005B3 (de) * 2005-06-17 2006-11-23 Koenig & Bauer Ag Flexodruckmaschine
US7638915B2 (en) * 2006-08-31 2009-12-29 Smartin Technologies Llc Modular magneto-mechanical device
DE102007014224A1 (de) * 2007-03-24 2008-09-25 Abiomed Europe Gmbh Blutpumpe mit Mikromotor
JP5101309B2 (ja) * 2008-01-15 2012-12-19 三菱重工業株式会社 モータの位置検出方法およびモータの駆動装置並びにポンプ
DE102008060569A1 (de) 2008-12-04 2010-06-10 Schaeffler Kg Lageranordnung mit Magnetlagerabschnitt sowie Verfahren zur Regelung einer oder der Lageranordnung
GB2469128A (en) * 2009-04-04 2010-10-06 Dyson Technology Ltd Generating control signals for an electric machine from a position sensor
GB2469129B (en) 2009-04-04 2013-12-11 Dyson Technology Ltd Current controller for an electric machine
GB2469140B (en) 2009-04-04 2013-12-11 Dyson Technology Ltd Control of an electric machine
GB2469133B (en) * 2009-04-04 2014-04-23 Dyson Technology Ltd Control system for an electric machine
GB2469130B (en) * 2009-04-04 2014-01-29 Dyson Technology Ltd Control system for an electric machine
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
EP2330405A1 (de) 2009-11-30 2011-06-08 Berlin Heart GmbH Verfahren und Einrichtung zur Messung von Strömungswiderstandsparametern
US8562508B2 (en) 2009-12-30 2013-10-22 Thoratec Corporation Mobility-enhancing blood pump system
US9662431B2 (en) 2010-02-17 2017-05-30 Flow Forward Medical, Inc. Blood pump systems and methods
KR101963799B1 (ko) 2010-02-17 2019-03-29 플로우 포워드 메디컬, 인크. 정맥의 전체 직경을 증가시키는 방법 및 시스템
US9555174B2 (en) 2010-02-17 2017-01-31 Flow Forward Medical, Inc. Blood pump systems and methods
TW201217010A (en) 2010-06-22 2012-05-01 Thoratec Corp Apparatus and method for modifying pressure-flow characteristics of a pump
WO2012012552A1 (en) 2010-07-22 2012-01-26 Thoratec Corporation Controlling implanted blood pumps
WO2012024493A1 (en) 2010-08-20 2012-02-23 Thoratec Corporation Implantable blood pump
WO2012040551A1 (en) 2010-09-24 2012-03-29 Thoratec Corporation Generating artificial pulse
US8610323B2 (en) 2011-02-04 2013-12-17 Hamilton Sundstrand Corporation Bearingless machine
JP6106673B2 (ja) 2011-08-17 2017-04-05 フロー フォワード メディカル,インク. 静脈と動脈の全体直径を増大させるシステムと方法
KR102062132B1 (ko) 2011-08-17 2020-01-03 플로우 포워드 메디컬, 인크. 혈액 펌프 시스템 및 방법
CN102619772B (zh) * 2012-03-29 2014-04-30 北京中科科仪股份有限公司 磁悬浮分子泵转子起浮位置选择方法及转子起浮控制方法
CN102606505B (zh) * 2012-03-29 2014-07-02 北京中科科仪股份有限公司 磁悬浮分子泵转子起浮位置选择方法及转子起浮控制方法
US10258730B2 (en) 2012-08-17 2019-04-16 Flow Forward Medical, Inc. Blood pump systems and methods
US9492599B2 (en) 2012-08-31 2016-11-15 Thoratec Corporation Hall sensor mounting in an implantable blood pump
WO2014036410A1 (en) 2012-08-31 2014-03-06 Thoratec Corporation Start-up algorithm for an implantable blood pump
US9634977B2 (en) 2012-10-01 2017-04-25 Salesforce.Com, Inc. Systems and methods of redactive messaging
RU2563884C2 (ru) * 2013-12-17 2015-09-27 Вячеслав Евгеньевич Вавилов Управляемый магнитный подшипник на постоянных магнитах и способ управления им
US9744280B2 (en) 2014-04-15 2017-08-29 Tc1 Llc Methods for LVAD operation during communication losses
WO2015160993A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for providing battery feedback to patient
EP3131596B1 (en) 2014-04-15 2020-07-22 Tc1 Llc Methods and systems for controlling a blood pump
CN106794292B (zh) 2014-04-15 2018-09-04 Tc1有限责任公司 用于升级心室辅助装置的方法和***
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
EP3313471A4 (en) 2015-06-29 2019-02-20 Tc1 Llc HEART CHAMBER ASSISTANCE DEVICES WITH A HOLLOWED ROTOR AND METHOD OF USE
EP3115069A1 (de) * 2015-07-07 2017-01-11 Berlin Heart GmbH Vorrichtung zur positionsbestimmung eines beweglichen bauteils
EP3325035B1 (en) 2015-07-20 2020-12-16 Tc1 Llc Flow estimation using hall-effect sensors
WO2017015210A1 (en) 2015-07-20 2017-01-26 Thoratec Corporation Strain gauge for flow estimation
EP3400035B1 (en) 2016-01-06 2024-05-22 Bivacor Inc. Heart pump with impeller rotational speed control
EP3448487A4 (en) 2016-04-29 2020-04-29 Flow Forward Medical, Inc. PIPING TIPS AND SYSTEMS AND METHODS FOR USE
CN110709114B (zh) 2017-04-05 2023-10-31 毕瓦克公司 心脏泵驱动器和轴承
EP3737435B1 (en) 2018-01-10 2023-10-18 Tc1 Llc Bearingless implantable blood pump

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1270152B (de) * 1964-09-11 1968-06-12 Siemens Ag Einrichtung zum Verkuerzen der Einschaltzeit eines induktiven Verbrauchers
DE3202866A1 (de) * 1982-01-29 1983-08-11 Teldix Gmbh, 6900 Heidelberg Regelkreis
US5078741A (en) * 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4944748A (en) * 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
DE3343186A1 (de) * 1983-11-29 1985-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Magnetische rotorlagerung
US4779614A (en) * 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
DE3808331A1 (de) * 1988-03-12 1989-09-28 Kernforschungsanlage Juelich Magnetische lagerung mit permanentmagneten zur aufnahme der radialen lagerkraefte
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5112200A (en) * 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5676651A (en) * 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5399074A (en) * 1992-09-04 1995-03-21 Kyocera Corporation Motor driven sealless blood pump
US5405251A (en) * 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
JPH06147808A (ja) 1992-11-12 1994-05-27 Ebara Corp 電磁誘導型センサのセンサ回路
DE4301076A1 (de) * 1993-01-16 1994-07-21 Forschungszentrum Juelich Gmbh Magnetlagerzelle mit Rotor und Stator
JP3085835B2 (ja) * 1993-04-28 2000-09-11 京セラ株式会社 血液ポンプ
DE4321260C1 (de) * 1993-06-25 1995-03-09 Westphal Dieter Dipl Ing Dipl Blutpumpe als Zentrifugalpumpe
FR2715201B1 (fr) * 1994-01-19 1996-02-09 Inst Nat Polytech Grenoble Palier magnétique et ensemble comportant une partie statorique et une partie rotorique suspendue par un tel palier.
US5507629A (en) * 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
JPH0828563A (ja) 1994-07-12 1996-02-02 Daikin Ind Ltd 磁気軸受装置
US5725357A (en) * 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
US6100618A (en) * 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US5588812A (en) * 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5575630A (en) * 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US5947703A (en) * 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US5840070A (en) * 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US6074180A (en) * 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
JP3776162B2 (ja) * 1996-05-10 2006-05-17 Ntn株式会社 磁気浮上型血液ポンプ
US6015272A (en) * 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
US6071093A (en) * 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
JP3663794B2 (ja) 1997-01-10 2005-06-22 株式会社デンソー Pid制御回路の定常偏差測定方法及び装置
US5705218A (en) * 1997-01-10 1998-01-06 Fmc Corporation Extended agitation rotary sterilizer
JP3701115B2 (ja) * 1998-02-12 2005-09-28 株式会社荏原製作所 磁気軸受制御装置
US6742999B1 (en) * 1999-04-20 2004-06-01 Berlin Heart Ag Device for delivering single-phase or multiphase fluids without altering the properties thereof
MXPA01012499A (es) 1999-06-03 2003-10-14 Michael P Goldowsky Bomba de suspension magnetica para sangre.
DE10003531A1 (de) * 1999-12-16 2001-07-05 Siemens Ag Verfahren zum Schalten einer induktiven Last
US6589030B2 (en) * 2000-06-20 2003-07-08 Ntn Corporation Magnetically levitated pump apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076733B (zh) * 2004-06-30 2010-11-10 法雷奥电机设备公司 带有确定转子角位置的装置的旋转电机
CN102239334A (zh) * 2008-12-08 2011-11-09 Ntn株式会社 离心式泵装置
CN102239334B (zh) * 2008-12-08 2015-03-04 胸腔科技有限公司 离心式泵装置
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
CN102435220A (zh) * 2010-09-28 2012-05-02 福特环球技术公司 确定磁传感器波形图质量的方法及***
CN102435220B (zh) * 2010-09-28 2017-03-01 福特环球技术公司 确定磁传感器波形图质量的方法及***
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US11712167B2 (en) 2015-02-11 2023-08-01 Tc1 Llc Heart beat identification and pump speed synchronization
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US10856748B2 (en) 2015-02-11 2020-12-08 Tc1 Llc Heart beat identification and pump speed synchronization
US11781551B2 (en) 2015-02-12 2023-10-10 Tc1 Llc Alternating pump gaps
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10874782B2 (en) 2015-02-12 2020-12-29 Tc1 Llc System and method for controlling the position of a levitated rotor
US11015605B2 (en) 2015-02-12 2021-05-25 Tc1 Llc Alternating pump gaps
US11724097B2 (en) 2015-02-12 2023-08-15 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US11639722B2 (en) 2015-11-16 2023-05-02 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device

Also Published As

Publication number Publication date
AU2002254996B2 (en) 2004-08-19
DE10123138A1 (de) 2002-11-28
WO2002088548A1 (de) 2002-11-07
EP1386081B1 (de) 2006-08-23
ATE337491T1 (de) 2006-09-15
US20030187321A1 (en) 2003-10-02
RU2277936C2 (ru) 2006-06-20
CA2411245A1 (en) 2002-12-02
EP1386081A1 (de) 2004-02-04
US7229474B2 (en) 2007-06-12
JP2004519994A (ja) 2004-07-02
CN1178006C (zh) 2004-12-01
CA2411245C (en) 2008-06-17
DE10123138B4 (de) 2007-09-27
JP2006087298A (ja) 2006-03-30
JP3994343B2 (ja) 2007-10-17

Similar Documents

Publication Publication Date Title
CN1178006C (zh) 对永磁支承的旋转件进行位置控制的方法
CN1172091C (zh) 用脉动压力调整液体输送***的辅助泵的方法
Mitterhofer et al. On the high speed capacity of bearingless drives
Mademlis et al. Loss minimization in surface permanent-magnet synchronous motor drives
US8378541B2 (en) Magnetic radial bearing and magnetic bearing system having a three-phase controller
Lin et al. Self-bearing control of a switched reluctance motor using sinusoidal currents
Chiba et al. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives
US20230121406A1 (en) Electric motor with passive and active magnetic bearings
CN108599501B (zh) 一种轴向单自由度无轴承异步电机
Fujii et al. Voltage sensorless control of split capacitor for three-phase four-wire motor system with zero-sequence suspension winding
Kuwajima et al. An estimation of the rotor displacements of bearingless motors based on a high frequency equivalent circuits
Li et al. Basic characteristics of a 4kW permanent-magnet type bearingless slice motor for centrifugal pump system
KR20120056951A (ko) 영구자석 스텝모터의 마이크로 스테핑 제어 방법
Radman et al. Performance evaluation of a bearingless flux-switching slice motor
CN104467338B (zh) 一种无转子位置传感器的开关磁阻电机
CN109802613A (zh) 基于开通关断角控制的bsrmwr转矩脉动抑制方法
Yu et al. Influence of rotor pole width on suspension performance of a new bearingless doubly salient electro-magnetic machine
CN113179067A (zh) 一种无传感器内嵌式永磁同步电机的高精度运行方法
Kioskeridis et al. Energy efficiency optimisation in synchronous reluctance motor drives
Wang et al. Levitation control of an improved modular bearingless switched reluctance motor
GB2506877A (en) Rotor control of motor at low speed
EP4350973A1 (en) Stable and passive observer-based v/hz control for synchronous motors
Van Verdeghem et al. Axial Position Estimation through an Injection-based Self-sensing Technique for Hybrid Active-Passive Self-bearing Machines
Suja et al. Field Oriented Control of Permanent Magnet Synchronous Motor
JP3669827B2 (ja) 無軸受回転機械

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: BERLIN HEARTS CO., LTD.

Free format text: FORMER NAME OR ADDRESS: MEDIPORT KARDIOTECHNIK GMBH

CP01 Change in the name or title of a patent holder

Address after: Berlin

Patentee after: Berlin Heart GmbH

Address before: Berlin

Patentee before: Berlin Kardiotechnik GmbH

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041201

Termination date: 20170429