CN1461282A - 使用致密氧选择性透过陶瓷膜的甲烷部分氧化方法 - Google Patents

使用致密氧选择性透过陶瓷膜的甲烷部分氧化方法 Download PDF

Info

Publication number
CN1461282A
CN1461282A CN01815998A CN01815998A CN1461282A CN 1461282 A CN1461282 A CN 1461282A CN 01815998 A CN01815998 A CN 01815998A CN 01815998 A CN01815998 A CN 01815998A CN 1461282 A CN1461282 A CN 1461282A
Authority
CN
China
Prior art keywords
methane
partial oxidation
catalyst
membrane
ceramic membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01815998A
Other languages
English (en)
Inventor
栗村英树
加贺野井彰一
铃木洋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Original Assignee
Teikoku Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd filed Critical Teikoku Oil Co Ltd
Publication of CN1461282A publication Critical patent/CN1461282A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)

Abstract

甲烷部分氧化方法,其特征在于,在氧透过型膜式反应器的含有甲烷的气流的上游部分,将不发生失活量的碳析出性低的Ni系或Ru系等贵金属系的甲烷部分氧化催化剂平面配置在氧渗出的陶瓷膜的表面附近,还有,在该反应器的含有甲烷的气流的下游部分,相对于陶瓷膜立体配置碳析出低的甲烷部分氧化催化剂,进一步在供给到该反应器的含有甲烷的气体中,相对于该气体中的含碳量以0.25~0.5的比率投入水蒸汽。

Description

使用致密氧选择性透过陶瓷膜 的甲烷部分氧化方法
技术领域
本发明涉及构成费歇尔-特罗普歇(Fishcher-Tropsch)合成油、甲醇、二甲基醚等的绿色液体燃料的原料等的作为氢和一氧化碳的混合物的合成气体、在含有甲烷的气体作为原料制备的氧选择性透过陶瓷膜式反应器中,使催化剂使用量为最小限度,同时抑制催化剂恶化和大幅度提高反应效率为特征的反应技术。另外,使氧选择透过陶瓷中的氧透过量为最大限度,大幅度增加合成气体制造量的同膜式反应器设备的简洁化的技术。
背景技术
将含有甲烷的气体作为原料制备合成液体燃料,关系到“未利用天然气资源等的有效活用”和“对地球环境有益的绿色能源的供给”。但是,实际情况是,到现在为止除去化学原料甲醇的该合成液体燃料制备技术世界上几乎还未普及。这表示着在现有技术水平和燃料价格水平,从经济性的观点看,相同技术的普及是困难的,面向消减成本的进一步的技术开发是必要不可欠缺的。同技术由“从含有甲烷的气体制备合成气体”和“从合成气体制备液体燃料”的二个阶段构成,特别是占全部设备费用的约6成的前者的成本削减影响(效果)很大。在以资源枯竭问题、地球环境问题为背景的同技术普及的社会要求下,关于合成气体制备阶段的成本削减并且与高能效率相关联的技术开发是紧迫的课题。
现行的面向甲醇等合成气体制备主要通过水蒸汽改性进行,因为是很大的吸热反应,所以必须从外部供给热之外,为了避免由于碳析出引起催化剂性能低下和在下游设置的排热回收汽锅(ボイラ一)中的浸渍碳金属除尘(炭メタルダステイング)因为要投入过量的水蒸汽,所以造成低能效率、高设备费用。另外,通过水蒸汽改性的合成气体中的氢和一氧化碳的比为3,为了适合合成气体制备液体燃料,即为2或1,必须投入大量的CO2到原料气体,并且/或者必须从合成气体中分离部分氢。
这些缺点之中,特别是为了避免从外部供给热,直接将纯氧导入含有甲烷的气流中的内热式改性反应器技术的开发正在进行。同技术将对改性反应必要的热通过原料气体的内部燃烧而供给,用下述的总括式表示的甲烷的部分氧化(标准生成焓为298K)。
该技术根据反应形态大致分为气相部分氧化、固定床式自热改性、流动床式自热改性、催化剂部分氧化,但除去用一段进行部分氧化的“催化剂部分氧化”,与甲烷燃烧反应同样燃烧生成的CO2、H2O等与甲烷的改性反应,即,由下式表示的放热反应与吸热反应组合形成。
这些之中,一直适用于商业工厂的是气相部分氧化,对于固定床式自热改性的商业化成绩还很少。对于流动床式自热改性,处于中试阶段,对于催化剂部分氧化处于基础研究阶段。这些技术因为从内部供给热,与水蒸汽改性相比,可提高能源效率,但是因为需要通过深冷蒸馏空气分离装置的高价的纯氧气,大幅度成本削减是困难的。
代表现行深冷蒸馏方式的氧制备技术资本集约型而且能量多消耗型,虽然工艺方式等改良有进展,但是因为根据本质上沸点相当小的氧和氮的沸点差的分离技术,大幅度成本削减困难。该状况下,作为氧制备技术的新机轴,近年,特别在欧美进行急剧活跃研究开发的致密混合导电性陶瓷膜的高温(~850℃)氧分离技术因为具有简洁的设备并且可节省能源,所以得到很大关注。混合导电性陶瓷膜中,将膜的两侧的氧分压差作为驱动力,使空气中的氧在膜表面离子化的晶格中选择性地透过。此时,电子与氧离子逆方向移动,保持电中性。在空气侧的相反侧配置催化剂,通过使甲烷等发生氧化反应(消耗氧),可使甲烷侧的氧分压在最小限度,结果使氧分压差,即,氧选择透过驱动力为最大限度。另外,由于同种陶瓷材料在800~900℃的高温下发生混合导电性,甲烷等部分氧化反应与空气分离同时,即,通过一个单元进行,具有形成简洁且便宜的反应器的可能性。从这些观点来看,利用相同陶瓷膜的基础研究、即,关于甲烷氧化耦合、从甲烷制备合成气体的研究在各方面正在实施。特别是,对于由甲烷制备合成气体,因为具有大幅度削减成本、节省能源的可能性,美国能源省支援大型研究课题正在进行之中等,世界范围的研究开发正趋活跃。
通过使用陶瓷膜的膜式反应器、由含有甲烷的气体制备合成气体技术构成的基本技术,公开了涉及包括混合导电性陶瓷材料、薄膜化等膜材料的形状、甲烷改性催化剂及其配置等基本反应、含有密封方法的反应器形状及反应热供给方法等反应器、膜式反应器的全部工艺。
关于混合导电性陶瓷材料,不仅高的氧透过性而且材料稳定性、特别是在还原气氛中的结晶结构的稳定性是很重要的。若发生结晶结构或相变化,多数情况下,伴随有溶胀,结果关系到陶瓷膜的破坏。已经开发了具有相当程度的高的氧透过性和在还原气氛具有高材料稳定性的Sr1.7La0.3Ga0.6Fe1.4O5.15等材料(WO99/21649)等,世界上具有相当程度的高的氧透过性和在还原气氛具有高材料稳定性的陶瓷膜材料的开发在进行中。
关于膜材料的形状,为了谋求增大相对于陶器膜中氧的整体(バルク)扩散电阻的氧透过量,所以提案有需要薄膜化、对多孔质支持体通过有机金属化学蒸镀的无机薄膜的制备方法(特开平6-135703)。另外,有伴随薄膜化的氧选择性解离等表面交换为氧透过速度的限速阶段时,有要求增大表面积的附加多孔质层、附加氧催化解离催化剂的情形(WO98/41394等)。
关于具有膜式反应器的、由含有甲烷的气体制备合成气体的制备工艺全部,提案有表示各种单元操作的工艺方式、考虑原料气组成的工艺运转条件(EP08826070A1、EP0926097A1)。
关于使用陶瓷膜的由含有甲烷的气体制备合成气体的反应器技术,公开的有,含有材料系的反应器概念(US Patent No.5306411、WO98/48921、WO99/21640、WO99/21649、EP0962422A1、EP0962423A1、US Patent No.6033632)、对烃类改性的热供热方法(WO98/48921)、对放热反应的烃部分氧化反应的温度控制方法(特开平11-70314、US Patent No.6010614)、陶瓷膜与金属结合部分的密封方法(US Patent No.5725218)。
关于制备合成气体的膜式反应器,因为沿着本来含有甲烷的气流使氧合流,特别是在其上游部分形成高甲烷浓度,容易发生碳析出。这可由如下反应式表示。
还有,由于费歇尔-特罗普歇合成油、甲醇、二甲基醚等绿色液体燃料化工艺的运转压力在30大气压以上,以及天然气等含有甲烷的气体压力在50大气压以上的高压,合成气体制备工艺的运转压力至少要在20大气压左右,同压力条件下的碳析出性要比在常压下的高得多。WO99/21649公开了对各种甲烷改性催化剂进行平面和立体的配置,但是没有指出从常压到高压条件下控制碳析出的具体方法。EP0999180A2提出了通过将以氢气为主体的膜式反应器生成物在原料侧再利用谋求控制碳析出,但是存在工艺复杂的缺点。另一方面,已知Ni系等甲烷部分氧化催化剂由于氧化失去甲烷改性功能。在膜式反应器,因为从膜渗出氧,在膜表面附近甲烷改性催化剂容易发生氧化失活。另外,由于甲烷改性反应进行低下,产生的含有甲烷的气体一侧氧分压上升而引起陶瓷膜的氧透过量大幅度降低。在制备合成气体的膜式反应器的实用化中,在所谓反应器设备的简洁化,即不损害该反应器最大特长下,必须具体明确解决这些问题的方法,过去尽管提出了关于同种反应器的种种技术方案,但与实用化相关的涉及甲烷部分氧化催化剂及其配置方法等反应的基本技术还没有公开。
本发明涉及以含有甲烷的气体和空气为原料制备合成气体的氧透过型膜式反应器,针对为了从常压到20气压左右的高压的压力范围高效、稳定、廉价地制备合成气体,抑制在催化剂上的碳析出、抑制由金属催化剂氧化引起的失活、进一步避免从用它们制备的膜中氧供给量减少、削减催化剂使用量的课题,提出了具体的解决方法。
发明内容
在氧透过型膜式反应器的含有甲烷气流的上游部分,通过将不发生氧化失活量的碳析出性低的Ni系或Ru等贵金属系甲烷部分氧化催化剂平面配置在氧渗出的陶瓷膜表面附近,此外,在该反应器的含有甲烷气流的下游部分,通过将相对于陶瓷膜碳析出性低的Ni系或Ru系贵金属系甲烷部分氧化催化剂立体配置,进一步,向该反应器中供给含有甲烷的气体中,以相对于该气体中碳量为0.25~0.5的比率,投入水蒸汽,以解决上述课题。这里所说的膜反应器可以是管型,平板型,原料气的流动相对于空气为相向流、同向流、还有垂直流的均可。管型的情况下,原料气流在管的内侧或外侧均可。
附图的简单说明
图1表示相对于膜式反应器的膜配置催化剂的模式图。
(a)平面接触配置的情况
(b)立体接触配置的情况
(c)表示在本发明的原料气流的上游部分平面接触配置,在下游部分立体接触配置的1例的模式图。
图2为使用致密氧选择透过陶瓷膜的氧透过甲烷部分氧化反应的实验方法的模式图。
(a)实施例1的情况
(b)比较例1、2、4、5的情况
(c)比较例3的情况
具体实施方式
通过使用氧选择透过陶瓷膜的膜式反应器制备合成气体中,即使假定利用不容易发生碳析出的二氧化碳改性用催化剂(特开2000-469等),通常对假定的陶瓷膜立体接触配置甲烷部分氧化催化剂[参照图1(b)],例如在管状陶瓷膜内部填充该催化剂,特别是在甲烷浓度高的含有甲烷的气流的上游,在高压条件下催化剂上引起激烈地巨大的碳析出。这是有下述造成的,即,在膜式反应器中,因为沿着含有甲烷的气流中氧流入,在该气流的上游部分的陶瓷膜表面分离的部分,例如在接近催化剂内部填充型管状陶瓷膜式反应器的中心部分,由甲烷的部分氧化反应产生的影响极小,即,反应生成物的氢等浓度极低,甲烷浓度极高。由此,在膜式反应器的含有甲烷的气流的上游部分将甲烷部分氧化催化剂进行的立体配置虽然能提供对甲烷部分氧化反应进行充分活性表面,但从碳析出的观点看不允许。从抑制碳析出的观点看,也假定了在陶瓷膜表面不配置甲烷部分氧化催化剂的方法,但因为在该膜表面只发生甲烷的完全燃烧反应的氧分压,比伴随甲烷部分氧化反应的情况大,所以引起氧透过量的显著降低。
本发明中,在膜式反应器的含有甲烷的气流的上游部分,通过在氧渗出的陶瓷膜的表面附***面配置甲烷部分氧化催化剂[参照图1(a)],达到避免由于碳析出引起的反应管闭塞、碳析出条件的显著缓和、还有使陶瓷膜氧透过量最大化,进而使催化剂使用量最小化。
将甲烷部分催化剂平面配置的情况下,陶瓷膜的氧透过量主要依赖于还原状态的活性金属种类的表面积。即,还原状态的活性金属种类的表面积足够大时能得到较大的氧透过量,否则,氧透过量就小。这是因为,根据在陶瓷膜附近的甲烷或氢的完全燃烧产生的水、二氧化碳由于甲烷改性反应是否立刻被消耗掉的状态,氧分压有很大不同的缘故,还原状态的活性金属种类的表面积不足时,氧分压为高的状态,结果陶瓷膜中氧透过量减小。由此,相对于陶瓷膜的氧透过量甲烷部分氧化催化剂不足时,陶瓷膜的氧透过量和一氧化碳选择率(相对于反应生成物中的一氧化碳和二氧化碳的总量的一氧化碳的选择率)周期性地变化。具体来说,通过用相对于表面的平面配置的催化剂进行甲烷部分氧化反应,若陶瓷膜的含有甲烷的气流侧的氧分压降低,氧透过量增大,但若氧透过和甲烷部分氧化反应的平衡破坏,氧透过量过剩时,氧分压上升,结果氧透过量减少。因此,为了得到一定且最大限度的氧透过量,需要足够的甲烷部分催化剂的量。
另一方面,相对于陶瓷膜的氧透过能力有过剩的被还原的活性金属种的表面积时,即,平面配置过剩的催化剂时,偏离甲烷浓度高的陶瓷膜表面的位置,碳析出显著,主要原因是反应活性降低。以上,甲烷部分催化剂的平面配置中,为了抑制活性金属种类的氧化失活和催化剂上碳析出,必须根据陶瓷膜的氧透过能,有必要使配置的甲烷部分氧化催化剂的种类和用量为最合适。
本发明中,使用相对于陶瓷膜接触平面配置的Ni系或Ru等贵金属系甲烷部分氧化催化剂。Ni系甲烷部分氧化催化剂中,从抑制碳析出和氧化失活的观点来看,优选使用与Ni的载体相互作用强,结果可使Ni粒子的微粒分散可能的,且担载的氧供给能力高的具有根据固相晶析法用Nix/CaySr1-yTiO3(x=0.1~0.3,y=0.8或0.0)或者Nix/BaTiO3(x=0.1~0.3)表示的组成,优选x=0.2,y=0.8以及钌、铂、或铑相对于上述催化剂重量为0.1~1000重量ppm,优选1.0~100重量ppm。Ru等贵金属系甲烷部分氧化催化剂中,使用具有根据固相晶析法用Rux/CaySr1-yTiO3、Ptx/CaySr1-yTiO3、Rhx/CaySr1-yTiO3(x=0.005~0.05,y=0.8或0.0)或者Rux/BaTiO3、Ptx/BaTiO3、Rhx/BaTiO3(x=0.0005~0.005)表示的组成,优选x=0.001~0.0025。对于这些催化剂的平面配置方法,将烧结后的催化剂微粉末化,用有机溶剂制成浆状涂布在陶瓷膜表面,在900℃的高温下烧结。此时,所烧结的催化剂重量,相对于陶瓷膜单位面积(1cm2)和该膜的单位氧透过量(1scc/min/cm2),为1.5~3.5mg,优选2.0~3.0mg。
在膜式反应器的含有甲烷的气流的下游部分,因为甲烷部分氧化反应进行了相当程度,在含有甲烷的气体中,存在氢、一氧化碳、二氧化碳、水蒸汽,与上游部分相比碳析出条件缓和。另一方面,甲烷部分催化反应进一步进行,为了得到目的生成物的充分选择性,从陶瓷膜供给氧和提供给充分的甲烷部分催化反应的活性场所是不可缺少的。即,催化剂只靠平面配置,难于达到基本上完全的甲烷部分氧化反应。
本发明中,在膜式反应器的含有甲烷的气流的上游部分,平面配置催化剂的同时,在下游部分相对于陶瓷膜将提供给充分的反应活性场所的甲烷部分氧化催化剂相对于陶瓷膜进行接触立体配置,使甲烷部分氧化反应完全进行[参照图1(c)]。该下游部分,虽说碳析出条件得以缓和,与通常的水蒸汽改性操作条件相比,特别是在高压条件下的碳析出条件更苛刻。因此,与在上游部分平面配置的催化剂同样,使用Ni系或Ru等贵金属系甲烷部分氧化催化剂。在Ni系甲烷部分氧化催化剂中,使用担载根据固相晶析法用Nix/CaySr1-yTiO3(x=0.01~0.03,y=0.8或0.0)或者Nix/BaTiO3(x=0.1~0.3)表示的组成、优选x=0.2、y=0.8以及钌、铂或铑相对于上述催化剂重量为0.1~1000重量ppm,优选1.0~100重量ppm。Ru等贵金属系甲烷部分氧化催化剂中,使用具有根据固相晶析法用Rux/CaySr1-yTiO3、Ptx/CaySr1-yTiO3、Rhx/CaySr1-yTiO3(x=0.0005~0.005,y=0.8或0.0)或者Rux/BaTiO3、Ptx/BaTiO3、Rhx/BaTiO3(x=0.0005~0.005)表示的组成,优选x=0.001~0.0025。对于这些催化剂的立体配置方法,将烧结后的催化剂制成适于反应规模的大小、性状,相对于膜式反应器的上部到下部的含有甲烷的气流的流向,用同样的催化剂填充下部的相同流向空间。
因为甲烷部分氧化催化反应是放热反应,随着反应的进行,温度会上升。其程度因反应压力越大越显著。这是因为甲烷的改性反应使摩尔数增大,平衡论上低压时反应转化率高,高压时反应转化率低的缘故。即,在较大的放热反应的甲烷完全氧化反应后发生的甲烷改性反应(吸热反应)越高压时越不能进行的原因。为了得到充分的陶瓷膜的氧透过性能和甲烷部分氧化反应的能够进行,陶瓷膜式反应器的操作条件为850℃左右的高温。然而,比此再高的高温操作对陶瓷材料、密封材料的稳定性有不良影响。因此,反应器内的温度上升设在最小限度为上策,投入水蒸汽是必不可少的。只是过量投入水蒸汽使反应生成物的H2/CO的比2大得多,降低下游液体合成工艺的适合性。另外,通过H2O的投入,在陶瓷膜甲烷一侧表面的氧分压增大,所以氧透过量降低。本发明中,从上述观点看,将水蒸汽/碳的比设在0.25~0.5,这样,可同时谋求缓和碳析出条件。
实施例
以下,通过实施例对本发明进行详细说明。(1)催化剂调制例
在枸橼酸水溶液中加入乙二醇,在其中分别溶解硝酸镍(II)六水合物、碳酸钡、四溴化钛各个金属盐,将各个枸橼酸溶液以在催化剂组成中各成分元素比(Ni/Ba/Ti=0.2/1.0/1.0)混合。将该混合溶液在80~90℃边搅拌边加热,调制含有蒸发了水份的金属有机物络合盐的溶胶。将其在200℃和500℃各加热分解5分钟,最后在空气中于900℃烧结10分钟,调制以Ni0.2/BaTiO3组成表示的催化剂。通过X线衍射,同定了钙钛矿型晶格结构的BaTiO3与微量的NiO。将该催化剂含浸在硝酸铑水溶液中,相对于催化剂重量担载100ppm的铑,干燥,在600烧结。(2)实施例1
本实施例为模拟在陶瓷膜式反应器中的甲烷部分氧化催化剂平面配置和立体配置的。具体来说,使用在1150℃烧结的具有Ba1-xSrxCo1-xFexO3-d组成的圆盘性状的致密陶瓷膜(有效直径:11mm,厚:1.2),在900℃烧结的催化剂调制例所示的甲烷部分氧化催化剂粉碎成平均粒径10μm,用有机溶剂调制成浆状,将该浆状物涂布在该陶瓷膜的一面,在900℃烧结。此时,烧结后的催化剂的重量约为25mg。将烧结了催化剂的陶瓷膜设置在图1所示的实验装置上,将具有与浆状涂布的的催化剂同样组成的粉末在面压约7ton/cm2一轴压缩成型后,将用20/40目整粒物300mg用石英毛(ウ一ル)固定在下游部分的石英管中。实验装置中央部分用电炉外部加热到850℃,以150scc/min供应空气,以30scc/min供给甲烷,得到表1所示的实验结果。
表1
    氧透过量(sec/min.cm2)     CH4转化率(%)     CO转化率(%)    H2/CO比
实施例1     10.1     64.0     97.8    2.02
比较例1     9.9     39.0     74.8    1.95
比较例2     7.1~9.8     34.4~39.2     74.1~75.0    1.95
比较例3     10.5     64.2     98.5    2.10
比较例4     8.5     24.3     49.3    2.62
比较例5     7.7     23.7     43.3    3.47
比较例6     1.8     2.8     0.0    -
比较例7     2.0     -     -    -
(3)比较例1
将烧结用与实施例1同样的方法得到催化剂的陶瓷膜设置在图1所示的实验装置上,实验装置中央部分分用电炉外部加热到850℃,以150scc/min供应空气,以30scc/min供给甲烷,得到表1所示的实验结果。(3)比较例2
根据实施例1所示的方法,在与实施例1同样的致密陶瓷膜上泥浆涂布约15mg甲烷部分催化剂。将含有催化剂的该膜设置在图1所示的实验装置上,实验装置中央部分用电炉外部加热到850℃,以150scc/min供应空气,以30scc/min供给甲烷,得到表1所示的实验结果。(4)比较例3
如图1所示,在实施例1所示的致密陶瓷膜上,将与实施例1所示的同样整粒的催化剂约900mg载在该膜上,实验装置中央部分用电炉外部加热到850℃,以150scc/min供应空气,以30scc/min供给甲烷,得到表1所示的实验结果。(5)比较例4
如图1所示,在实施例1所示的致密陶瓷膜上,将与实施例1所示的同样整粒的催化剂约25mg烧结在该膜上的烧结物设置在实验装置中,实验装置中央部分用电炉外部加热到850℃,以150scc/min供应空气,以30scc/min供给甲烷,得到表1所示的实验结果。(6)比较例5
除了水蒸汽供给量为20scc/min以外,其他在与比较例4同一条件下进行实验,得到表1所示的结果。(7)比较例6
不配置甲烷部分氧化催化剂,将实施例1所示的致密陶瓷膜与比较例1、2、4、5同样设置在实验装置上,实验装置中央部分用电炉外部加热到850℃,在陶瓷膜的一侧以150scc/min供应空气,另一侧以30scc/min供给甲烷,得到表1所示的实验结果。(8)比较例7
不配置甲烷部分氧化催化剂,将实施例1所示的致密陶瓷膜与比较例1、2、4、5同样设置在实验装置上,实验装置中央部分用电炉外部加热到850℃,在陶瓷膜的一侧以150scc/min供应空气,另一侧以30scc/min供给氦,得到表1所示的实验结果。
产业上的可利用性
本发明中,关于使用致密的氧选择性透过陶瓷膜的甲烷部分氧化反应,提出了从常压到20气压程度的高压的原料气蒸气压范围中,抑制甲烷部分氧化催化剂通常的碳析出和活性金属种类失活,同时使陶瓷膜的氧透过量和合成气体制备量为最大限度,并且使该催化剂的使用量为最小限度的方法,通过实施例,确认其效果。

Claims (6)

1.甲烷部分氧化方法,其中,在致密的氧选择透过陶瓷膜的一侧接触空气,在另一侧接触以甲烷为主要成分的原料气体,从空气一侧到甲烷一侧通过陶瓷膜选择性地移动氧,进行甲烷部分氧化的膜式反应器中,在原料气蒸汽的上游部分相对于上述膜平面地接触配置甲烷部分氧化催化剂,并且在其下游部分相对于上述膜立体地接触配置甲烷部分氧化催化剂。
2.利用权利要求1所述的通过膜式反应器的甲烷部分氧化方法,其中,原料气为含有甲烷的天然气、石油气(炭田ガス)、煤热分解气、和/或焦炉气。
3.甲烷部分氧化方法,其中,在权利要求1所述的膜式反应器中,作为将Ni系或Ru等贵金属系甲烷部分氧化催化剂相对于陶瓷膜平面接触配置方法,将含有载体的该催化剂的微粉末用有机溶剂调制成浆状,在陶瓷膜上涂布、烧结。
4.甲烷部分氧化方法,其中,在权利要求1所述的膜式反应器中,作为将Ni系或Ru等贵金属系甲烷部分氧化催化剂相对于陶瓷膜立体接触配置方法,通过使含有载体的该催化剂粒子部分接触陶瓷膜,并且填充到反应器中的供给流向空间来配置。
5.甲烷部分氧化方法,作为权利要求3、4所述的Ni系甲烷部分氧化催化剂,使用Nix/CaySr1-yTiO3(x=0.1~0.3,y=0.8或0.0)或者Nix/BaTiO3(x=0.1~0.3)表示的组成中,担载相对于上述催化剂重量为0.1~1000重量ppm的钌、铂、或铑的催化剂。
6.甲烷部分氧化方法,其中,在权利要求1所述的膜式反应器中,在以甲烷为主要成分的原料气蒸汽中,相对于含碳量0.25~0.5的比率混入的水蒸汽。
CN01815998A 2000-09-20 2001-09-17 使用致密氧选择性透过陶瓷膜的甲烷部分氧化方法 Pending CN1461282A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP284647/2000 2000-09-20
JP2000284647 2000-09-20

Publications (1)

Publication Number Publication Date
CN1461282A true CN1461282A (zh) 2003-12-10

Family

ID=18768824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01815998A Pending CN1461282A (zh) 2000-09-20 2001-09-17 使用致密氧选择性透过陶瓷膜的甲烷部分氧化方法

Country Status (10)

Country Link
US (1) US7105147B2 (zh)
EP (1) EP1333009A4 (zh)
JP (1) JP4953546B2 (zh)
CN (1) CN1461282A (zh)
AU (1) AU2001286258A1 (zh)
CA (1) CA2422567A1 (zh)
NO (1) NO20031264L (zh)
RU (1) RU2003111161A (zh)
WO (1) WO2002024571A1 (zh)
ZA (1) ZA200303049B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744060A (zh) * 2012-07-23 2012-10-24 福州大学 一种BaTiO3 负载钌氨合成催化剂及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058490A1 (ja) 2003-12-17 2005-06-30 Daihatsu Motor Co.,Ltd. 触媒組成物
US7419648B2 (en) * 2004-07-16 2008-09-02 Shell Oil Company Process for the production of hydrogen and carbon dioxide
EP1795260A1 (fr) * 2005-12-07 2007-06-13 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalyseur constitué d'un support solide, d'un oxyde, et d'une phase active métallique greffée sur l'oxyde, procédé pour sa préparation et application
CN100438978C (zh) * 2006-12-20 2008-12-03 中国科学院山西煤炭化学研究所 一种天然气部分氧化制备合成气的催化剂及其制备方法
EP2096257A4 (en) * 2006-12-27 2011-06-22 Milford Group Ventures Ltd METHOD FOR INCREASING OIL EFFORT FROM A PRODUCTIVE FORMATION
JP2009062258A (ja) * 2007-03-27 2009-03-26 Tdk Corp 燃料改質モジュール及び水素発生装置
US20080260631A1 (en) 2007-04-18 2008-10-23 H2Gen Innovations, Inc. Hydrogen production process
GB201000156D0 (en) * 2010-01-07 2010-02-24 Gas2 Ltd Isothermal reactor for partial oxidisation of methane
EP2374526A1 (en) 2010-03-29 2011-10-12 Centre National de la Recherche Scientifique (C.N.R.S) Solid composite membrane exhibiting both oxygen conductivity and a substrate catalyst interface
CN102424360A (zh) * 2011-09-13 2012-04-25 昆明理工大学 一种载氧膜连续催化甲烷制合成气的方法
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
WO2015081122A2 (en) 2013-11-27 2015-06-04 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CA2935937A1 (en) 2014-01-08 2015-07-16 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
CA3148421C (en) 2014-01-09 2024-02-13 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
WO2017065947A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
EP4071131A1 (en) 2016-04-13 2022-10-12 Lummus Technology LLC Apparatus and method for exchanging heat
US10539324B2 (en) * 2016-06-09 2020-01-21 King Fahd University Of Petroleum And Minerals System for combusting a methane stream and a method of combustion
CN107537499B (zh) * 2016-06-29 2020-06-09 中国石油化工股份有限公司 多孔陶瓷负载镍基费托催化剂及其使用方法
WO2018118105A1 (en) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Methods and systems for performing chemical separations
HUE064375T2 (hu) 2017-05-23 2024-03-28 Lummus Technology Inc Metán oxidatív csatolási folyamatainak integrálása
WO2019010498A1 (en) 2017-07-07 2019-01-10 Siluria Technologies, Inc. SYSTEMS AND METHODS FOR OXIDIZING METHANE COUPLING

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306411A (en) 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5360635A (en) 1992-01-02 1994-11-01 Air Products And Chemicals, Inc. Method for manufacturing inorganic membranes by organometallic chemical vapor deposition
US6033632A (en) 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US6355093B1 (en) * 1993-12-08 2002-03-12 Eltron Research, Inc Two component-three dimensional catalysis
US5725218A (en) 1996-11-15 1998-03-10 The University Of Chicago High temperature seal for joining ceramics and metal alloys
US5846641A (en) 1997-03-20 1998-12-08 Exxon Research And Engineering Company Multi-layer membrane composites and their use in hydrocarbon partical oxidation
US5980840A (en) 1997-04-25 1999-11-09 Bp Amoco Corporation Autothermic reactor and process using oxygen ion--conducting dense ceramic membrane
US5820654A (en) 1997-04-29 1998-10-13 Praxair Technology, Inc. Integrated solid electrolyte ionic conductor separator-cooler
US6077323A (en) 1997-06-06 2000-06-20 Air Products And Chemicals, Inc. Synthesis gas production by ion transport membranes
US5935533A (en) 1997-10-28 1999-08-10 Bp Amoco Corporation Membrane reactor hollow tube module with ceramic/metal interfacial zone
CA2256801C (en) 1997-12-23 2002-05-28 Air Products And Chemicals, Inc. Utilization of synthesis gas produced by mixed conducting membranes
JP4335356B2 (ja) 1998-04-14 2009-09-30 石油資源開発株式会社 リホーミング用ニッケル系触媒およびこれを用いた合成ガスの製法
US6139810A (en) 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
US6010614A (en) 1998-06-03 2000-01-04 Praxair Technology, Inc. Temperature control in a ceramic membrane reactor
US6153163A (en) 1998-06-03 2000-11-28 Praxair Technology, Inc. Ceramic membrane reformer
EP1098838B1 (en) * 1998-07-02 2005-10-26 Haldor Topsoe A/S Process for autothermal reforming of a hydrocarbon feedstock
US6458334B1 (en) * 2000-03-02 2002-10-01 The Boc Group, Inc. Catalytic partial oxidation of hydrocarbons
US6733692B2 (en) * 2000-04-20 2004-05-11 Conocophillips Company Rhodium foam catalyst for the partial oxidation of hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744060A (zh) * 2012-07-23 2012-10-24 福州大学 一种BaTiO3 负载钌氨合成催化剂及其制备方法
CN102744060B (zh) * 2012-07-23 2014-02-19 福州大学 一种BaTiO3 负载钌氨合成催化剂及其制备方法

Also Published As

Publication number Publication date
US7105147B2 (en) 2006-09-12
WO2002024571A1 (fr) 2002-03-28
JPWO2002024571A1 (ja) 2004-01-29
JP4953546B2 (ja) 2012-06-13
AU2001286258A1 (en) 2002-04-02
CA2422567A1 (en) 2003-03-18
RU2003111161A (ru) 2004-08-27
EP1333009A4 (en) 2004-08-04
NO20031264L (no) 2003-05-19
US20040101472A1 (en) 2004-05-27
EP1333009A1 (en) 2003-08-06
ZA200303049B (en) 2004-04-19
NO20031264D0 (no) 2003-03-19

Similar Documents

Publication Publication Date Title
CN1461282A (zh) 使用致密氧选择性透过陶瓷膜的甲烷部分氧化方法
Shi et al. A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system
Al-Fatesh et al. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst
Asif et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking
US9138718B2 (en) Compact catalytic membrane reactor for chemical process intensification
Hu et al. Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/CexZr1− xO2-CaO catalysts
CN1931708A (zh) 一种液态烃类在钯膜反应器中制取高纯氢气的方法
EP1322548A2 (en) Suppression of methanation acitvity by a water gas shift reaction catalyst
CN102674247B (zh) 一种脱碳和脱氢双重强化甲烷水蒸汽重整制氢的方法及装置
Lytkina et al. Catalysts for the steam reforming and electrochemical oxidation of methanol
Ge et al. Chemical looping oxidation of CH4 with 99.5% CO selectivity over V2O3‐based redox materials using CO2 for regeneration
GB2473550A (en) Fuel cell catalyst materials and methods for reforming hydrocarbon fuels
Shen et al. Hydrogen production by ethanol steam reforming over Ni-doped LaNi x Co 1− x O 3− δ perovskites prepared by EDTA-citric acid sol–gel method
KR20050103568A (ko) 고성능 수성가스 전환 반응용 촉매와 이의 제조방법
KR100858924B1 (ko) 액화천연가스의 수증기 개질반응에 의한 수소가스 제조용담지 촉매, 그 제조방법 및 상기 담지 촉매를 이용한수소가스 제조방법
Gao et al. Modification strategies of heterogeneous catalysts for water–gas shift reactions
Xie et al. Effect of oxygen vacancy influenced by CeO2 morphology on the methanol catalytic reforming for hydrogen production
US9486787B1 (en) Method and apparatus for chemical process intensification
Liu et al. Catalytic performance of Cu‐Ni/La0. 75Sr0. 25Cr0. 5Mn0. 5O3‐δ for dry methane reforming
JP4227777B2 (ja) 水性ガスシフト反応方法、該方法を用いた水素製造装置および燃料電池システム
JP2005238025A (ja) 燃料改質触媒、およびこれを用いた燃料改質システム
CN114260016A (zh) 一种将Pd/ZnFexAl2-xO4催化剂用于甲醇重整制氢的方法
JP4127685B2 (ja) 一酸化炭素選択メタン化器、一酸化炭素シフト反応器及び燃料電池システム
KR100499860B1 (ko) 고효율 합성가스 제조용 촉매를 이용한 합성가스의 제조공정
Julbe et al. Role of membranes and membrane reactors in the hydrogen supply of fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication