CN1327052C - Microwave thermal reaction device for graphitizing carbon fiber and processing technique - Google Patents

Microwave thermal reaction device for graphitizing carbon fiber and processing technique Download PDF

Info

Publication number
CN1327052C
CN1327052C CNB2004100122823A CN200410012282A CN1327052C CN 1327052 C CN1327052 C CN 1327052C CN B2004100122823 A CNB2004100122823 A CN B2004100122823A CN 200410012282 A CN200410012282 A CN 200410012282A CN 1327052 C CN1327052 C CN 1327052C
Authority
CN
China
Prior art keywords
microwave
carbon fiber
quartz ampoule
thermal reactor
technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100122823A
Other languages
Chinese (zh)
Other versions
CN1696365A (en
Inventor
陈新谋
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB2004100122823A priority Critical patent/CN1327052C/en
Publication of CN1696365A publication Critical patent/CN1696365A/en
Application granted granted Critical
Publication of CN1327052C publication Critical patent/CN1327052C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention relates to a heating device in the graphitization machining of carbon fibers and an improvement of machining technologies. The improved heating device is a microwave thermal reaction device, and is composed of a microwave generator, a power matcher, a snake waveguide pipe with a radial through groove hole, a water load and a quartz pipe thermal reactor arranged in the groove hole. Graphitization heating in a machining technology is carried out by a microwave method, non-contact heating to carbon fibers is realized by a microwave thermal reaction device, and high-purity argon is led in the quartz pipe thermal reactor for ensuring the technological conditions of graphitization.

Description

Carbon fiber and graphite processing microwave thermal reaction unit and processing technology
Technical field
Pin of the present invention adds used heater and the improvement of processing technology in man-hour with carbon fiber and graphiteization.
Background technology
Graphitized carbon fibre is the new material of a kind of high-quality, high-performance, high specific strength, high elastic modulus, have consequence and application widely in high-tech art fields such as Aeronautics and Astronautics, military affairs, physical culture, building, chemical industry, particularly have irreplaceable status at space industry.The preparation of graphitized carbon fibre at present, be earlier with polypropylene eyeball fiber, 400 ℃ of airtight heating down, with easily melting component pyrolysis, oxidation in the fiber, make its linear polymeric take place to form stability ladderlike polymer structure preferably after crosslinked, cyclisation, oxidation, the deoxidation, be called pre-oxidized fibers.Again with pre-oxidized fibers under the effect of drafting tension, send into heating furnace, under nitrogen atmosphere, temperature is increased to 1000 ℃-1500 ℃ heating after 5-20 minute pre-oxidized fibers finish carbonisation, carbon content can reach more than 90% in the fiber that is generated.Be two-dimentional carbon plane network structure in the carbon fiber microstructure, present the coarse parallel disorderly layer graphite-like structure of synusia, be referred to as the polyacrylonitrile carbon fibre, be called for short carbon fiber.Again with carbon fiber under the effect that continues drafting tension, send into heating furnace once more, under argon gas atmosphere, temperature is increased to 3000 ℃ of heating, two-dimentional carbon plane network structure in the carbon fiber microstructure is finished the graphitization conversion process of oriented and ordered arrangement, generate high modulus carbon fiber, claim graphitized carbon fibre again.This operation seems similar but different in essence with above-mentioned carbonization processing, its process conditions differ bigger, the electric furnace heating means that traditional technology is taked, need high-purity argon gas environment facies coupling, and will guarantee that multifibres bundle carbon fiber obtains the uniform heating process in 3000 ℃ of high-temperature electric resistance furnaces, have very big technology difficulty, thereby cause equipment huge and complicated, adjusting temperature difficulty, the thermal efficiency is low, cost is high, power consumption is big, the bad control of technical target of the product discreteness.
Summary of the invention:
The objective of the invention is crucial process equipment in the carbon fiber and graphite production and corresponding processing technology are done basic improvement.Provide that a kind of energy consumption is little, efficient is high, adjust quick, simple and direct New Heating, and supporting technology, with reduce the graphitization production cost significantly and improve bulk article produce in the discreteness of technical indicator.
Key idea of the present invention is to take the microwave thermal reaction unit to replace traditional electric furnace, and the steady and sure ring of the carbon of fiber district modelling processing key technology is improved.
In traditional manufacturing procedure, comprise at first pre-carbon fiber is arranged between the retractable silk mechanism, between retractable silk machine, constant drafting force is set, make carbon fiber successively by the surface coating treating apparatus in surface clean membrane removal, drying, heater and road, back, finish the graphitization processing task at last.Equipment crucial in the equipment of the technology of above routine and routine is to add electrothermal stove, and in huge furnace chamber, keeping ar gas environment and uniformity of temperature profile all is very unmanageable problem.
The present invention is directed to the crucial Equipment for Heating Processing of carbon fiber and graphite processing, adopted completely new concept, choose the combining structure that adds the quartz ampoule thermal reactor with the microwave thermal conversion equipment and replaced electric furnace, form new microwave thermal conversion equipment, this device is by microwave generator, the power match device, snakelike waveguide and water load be combined to form energy resource supply, on the tube wall of snakelike waveguide, have the slotted eye of perforation, air hermetic quartz ampoule thermal reactor is inserted from slotted eye, form " furnace chamber " of microwave thermal reaction unit, carbon fiber passes from the quartz ampoule thermal reactor, when passing through the thermal treatment zone under its receipts silk machine constant force traction in drafter, the thermal treatment zone that is formed by microwave leakage magnetic field makes carbon fiber by rapid eddy-current heating.Adjust district's orchestration, can rapidly and exactly fiber temperature be risen to graphitization temperature, at this moment, not that fire box temperature rises to carburizing temperature, but carbon fiber itself heats up, the process conditions that this promptly easily guarantees graphitizing process have guaranteed the uniformity when pre-oxidized fibers is heated again, have fundamentally solved the scarce limit of electric furnace heating.
Under argon atmospher, the condition of traditional handicraft could guarantee the uniformity of carbonization in the time of will making fire box temperature be increased to more than 3000 ℃, and this technology is as long as be controlled at the 2500-3000 ℃ of conversion process that can realize carbon fiber with quartz ampoule thermal reactor temperature, the design of the corresponding quartz ampoule thermal reactor of one tow, guarantee the uniformity of process conditions, thereby saved a large amount of energy.
Further specify below in conjunction with accompanying drawing and the objective of the invention is how to realize.
Description of drawings:
Fig. 1 is the structural representation of little liquid thermal reaction apparatus
Fig. 2 is the structural representation of quartz ampoule thermal reactor
Wherein 1 represent thread supplying machine, 1A represents carbon fiber, and the silk machine is received in 2 representatives, and 2A represents graphitized carbon fibre, 3 represent the quartz ampoule thermal reactor, and 4 represent microwave generator, and 5 represent microwave power divider, the snakelike waveguide of 6 representatives, 6A represents the radially penetrating slotted eye on the snakelike waveguide, and 7 represent water load.3A, 3B represent airtight end socket, 3A 1Represent the high-purity argon gas inflation inlet, 3A 2Represent filament inlet, I, II represent two heaters of I, II that snakelike waveguide 6 magnetic leakage places produce.3B 1Represent nitrogen to charge into mouth, 3B 2Represent filament mouth, 3C represents exhaust outlet.
The specific embodiment
The microwave thermal reaction unit is the key equipment of carbon fiber and graphite processing, and what this equipment adopted is the principle of waveguide leakage field eddy-current heating, utilize microwave energy, under ar gas environment, directly carbon fiber is heated to 2500-3000 ℃, finish graphitization processing.So this device except the microwave generator 4 of the microwave energy that can produce 915MHz, is provided with power district orchestration 5 in order to adjust the energy of leakage field, guarantees the realization of technological temperature.The key structure of realizing power conversion is the snakelike waveguide 6 that radially has penetrating slotted eye 6A.Snakelike waveguide 6 among Fig. 1 can form two eddy-current heating districts of I, II, and water load 7 is used for absorbing dump energy, and this water load can be designed to circulating water structure, to make full use of energy.The effect of quartz ampoule thermal reactor 3 is to create process environments, specifically be exactly generate an ar gas environment and prevent to heat up in the loss of carbon fiber heat, guarantee the accurate control of technological temperature.As can be seen from Figure 1, quartz ampoule thermal reactor 3 passes from penetrating slotted eye 6A, be located in thermal treatment zone I, the II and retractable silk mechanism (12) between.It is made by quartz and is oval tubulose, and both sides are provided with airtight end socket 3A and 3B, and the centre is provided with gas outlet 3C, and two ends are respectively arranged with filament inlet 3A 2, filament mouth 3B 2, inflated with nitrogen mouth 3A 1, 3B 1, snakelike waveguide 6 is provided with two elbows (S shape) at least, or establishes three above elbows, to form a plurality of outer heating zones.The also corresponding increasing of power that forms the required microwave generator of microwave thermal reaction unit that multi beam moves is side by side joined in the penetrating slotted eye 6A quantity of being opened on the snakelike waveguide 6 district corresponding with designed quartz ampoule thermal reactor 3 radicals, can also many generator correspondences, supporting microwave matching device 5 can take three screw-type adaptations.
Above device can be desirable the contactless direct heating of finishing carbon fiber, its energy consumption is little, air consumption is few, the environmental condition easy-regulating can low consumption, the high-caliber graphitization heating tasks of finishing carbon fiber.
After the equipment that has solved the graphitization heating, the carbon fiber and graphite processing technology just seems that simplification is many.Former technology is arranged on carbon fiber between receipts silk, the mechanism and applies constant drafting force, through surface clean, and the graphitization heating, after the cleaning, surface coating is packed rolling with graphitized carbon fibre at last once more.Be to replace electric furnace in this technology with the microwave thermal reaction unit, the corresponding quartz tube reactor of every synnema, the induction heating temperature during the carbon fiber and graphite processing is 2500-3000 ℃, every synnema in quartz tube reactor 3 pass through speed be 5-12 rice/minute.By the time reaction atmosphere be high-purity argon gas, high-purity notion be its remaining oxygen less than 0.1ppm, the residual water yield is less than 1ppm.For this reason, to increase deoxidation, purification and dried operation in this argon gas injection process.
By technology of the present invention, and the applied microwave thermal reaction apparatus carries out the graphitization heating and has tangible low consumption, can online rapidly and accurately adjusting process condition, and the graphitized carbon fibre of production has low discreteness, the clear superiority of high conformity.

Claims (8)

1, carbon fiber and graphite processing microwave thermal reaction unit, combine by air hermetic quartz ampoule thermal reactor (3) and hot conversion equipment, it is characterized in that hot conversion equipment is by microwave generator (4), microwave power adaptation (5), snakelike waveguide (6) and water load (7) are formed, and offer on the wherein snakelike waveguide (6) and radially run through slotted eye (6A), and quartz ampoule thermal reactor (3) passes from slotted eye (6A), be arranged between retractable silk machine (1, the 2) mechanism.
2, according to the said microwave thermal reaction unit of claim 1, it is characterized in that snakelike waveguide (6) is provided with two elbows at least, the radical of slotted eye (6A) quantity of opening on the snakelike waveguide (6) that runs through the quartz ampoule anti-device of heat (3) and designed quartz ampoule thermal reactor (3) is complementary.
3, according to the said microwave thermal reaction unit of claim 1, what it is characterized in that microwave power adaptation (5) employing is three screw adaptations.
4, according to the said microwave thermal reaction unit of claim 1, it is characterized in that air hermetic quartz ampoule thermal reactor (3) is an oval tubulose of being made by quartz material, both sides are provided with airtight end socket (3A, 3B), and airtight end socket is provided with filament inlet (3A 2), filament mouth (3B 2), nitrogen inflation inlet (3A 1, 3B 1), quartz ampoule thermal reactor (3) middle part is provided with exhaust outlet (3C).
5, a kind of carbon fiber and graphite microwave method processing technology, comprise in the technology carbon fiber (1A) is arranged on folding and unfolding silk mechanism (1,2) between, through surface clean, heating graphitization, drawing-off, become graphitized carbon fibre (2A) after the surface treatment, when it is characterized in that in this technology the heating graphitization, application be the said microwave thermal reaction unit of claim 1, every synnema is heated to 2500-3000 ℃ by a quartz ampoule thermal reactor (3).
6, according to the said carbon fiber and graphite microwave method of claim 5 processing technology, the linear velocity when it is characterized in that every synnema continuously by the quartz ampoule thermal reactor be 5-12 rice/minute.
7, according to the said carbon fiber and graphite microwave processing of claim 5 technology, it is characterized in that carbon fiber is being an argon gas atmosphere by the reaction environment of quartz ampoule thermal reactor (3) when finishing graphitizing process continuously, wherein remaining oxygen should be less than 0.1PPm, and the residual water yield is less than 1PPm.
8,, it is characterized in that charging into the protection argon gas of quartz ampoule thermal reactor (3) through deoxidation, drying and cleaning procedure according to the said carbon fiber and graphite microwave processing of claim 7 technology.
CNB2004100122823A 2004-05-11 2004-05-11 Microwave thermal reaction device for graphitizing carbon fiber and processing technique Expired - Fee Related CN1327052C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100122823A CN1327052C (en) 2004-05-11 2004-05-11 Microwave thermal reaction device for graphitizing carbon fiber and processing technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100122823A CN1327052C (en) 2004-05-11 2004-05-11 Microwave thermal reaction device for graphitizing carbon fiber and processing technique

Publications (2)

Publication Number Publication Date
CN1696365A CN1696365A (en) 2005-11-16
CN1327052C true CN1327052C (en) 2007-07-18

Family

ID=35349252

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100122823A Expired - Fee Related CN1327052C (en) 2004-05-11 2004-05-11 Microwave thermal reaction device for graphitizing carbon fiber and processing technique

Country Status (1)

Country Link
CN (1) CN1327052C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2348590T3 (en) * 2006-04-15 2010-12-09 Toho Tenax Co., Ltd. PROCEDURE FOR CONTINUOUS CARBON FIBER PRODUCTION.
RU2416682C1 (en) * 2009-07-28 2011-04-20 Марина Владимировна Соболева Method of stabilising carbonaceous fibre and method of producing carbon fibre
TWI384098B (en) * 2009-12-30 2013-02-01 High module carbon fiber and fabricating method thereof
CN102534866B (en) * 2010-12-17 2015-01-14 财团法人工业技术研究院 High-modulus carbon fibers and preparation method thereof
CN103541042B (en) * 2012-07-12 2016-01-20 永虹先进材料股份有限公司 High mode graphite fibre and manufacture method thereof
CN104599818B (en) * 2015-01-08 2017-02-01 国家电网公司 Main transformer online regeneration respirator with double microwave heating devices and using method of main transformer online regeneration respirator
CN109267182B (en) * 2017-07-18 2020-12-11 翁庆隆 Carbon fiber tow forming device and carbon fiber tow forming method
CN109594151A (en) * 2018-12-25 2019-04-09 中国科学院合肥物质科学研究院 A kind of equipment optimizing carbon fiber and graphite
CN110257959B (en) * 2019-06-28 2024-03-26 中国科学院合肥物质科学研究院 Carbon fiber microwave graphitization equipment capable of continuously processing
CN110257960A (en) * 2019-07-15 2019-09-20 中国科学院合肥物质科学研究院 A kind of microwave heating cavity for carbon fiber and graphite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1497282A (en) * 1923-06-19 1924-06-10 Peterson Carl Vehicle license-plate lamp
WO1999058748A1 (en) * 1998-05-13 1999-11-18 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
DE19845831A1 (en) * 1998-09-24 2000-03-30 Inst Angewandte Chemie Berlin Process for selectively heating a graphitic carbon species used e.g. as electrode material comprises subjecting the carbon in a screened system to and heating
US6514449B1 (en) * 2000-09-22 2003-02-04 Ut-Battelle, Llc Microwave and plasma-assisted modification of composite fiber surface topography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1497282A (en) * 1923-06-19 1924-06-10 Peterson Carl Vehicle license-plate lamp
WO1999058748A1 (en) * 1998-05-13 1999-11-18 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
DE19845831A1 (en) * 1998-09-24 2000-03-30 Inst Angewandte Chemie Berlin Process for selectively heating a graphitic carbon species used e.g. as electrode material comprises subjecting the carbon in a screened system to and heating
US6514449B1 (en) * 2000-09-22 2003-02-04 Ut-Battelle, Llc Microwave and plasma-assisted modification of composite fiber surface topography

Also Published As

Publication number Publication date
CN1696365A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
CN1327052C (en) Microwave thermal reaction device for graphitizing carbon fiber and processing technique
CN207891472U (en) Fiber pre-oxidation equipment
CN101910480B (en) Processes for producing flameproof fiber and carbon fiber
CN105264129A (en) Carbonization method and carbon fiber production method
CN104047070A (en) Preparation method of high-modulus graphite fibers
CN107532341A (en) The manufacture method of carbon fiber and carbon fiber
CN105568432A (en) Device and method for producing low-dispersion coefficient carbon fibers
CN103541042B (en) High mode graphite fibre and manufacture method thereof
CN105506786A (en) Carbon fiber pre-oxidation equipment
CN103911688B (en) A kind of major diameter polyacrylonitrile-radical high-module high-strength carbon fiber and preparation method thereof
CN103233297A (en) 6k polyacrylonitrile-based carbon fibre manufacturing method
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
CN100491613C (en) Method and equipment for producing graphitized fiber
CN102168324B (en) Carbonization device for electrostatically spinning nanometer tows and preparation method of carbon nanofibers
CN108203848A (en) A kind of hot high modulus pitch-based carbon fiber of high-strength highly-conductive and preparation method thereof
CN104446585A (en) Method for rapidly preparing high-density carbon/carbon composite material in batches
CN100339523C (en) Microwave thermal reaction device for carbonizing pre-oxidized fiber, and processing technique
CN1329567C (en) Continuous carbon fibre graphitizing method and apparatus
CN105714412A (en) Preparation method of electrospun polyacrylonitrile pre-oxidized fiber and carbon fiber
KR101914974B1 (en) Apparatus and Method manufacturing carbon fiber
JP5075654B2 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
CN110093685A (en) Oxidized fibre manufacturing method and oxidized fibre
CN104451963B (en) Carbon fiber precursor pre-oxidation experimental setup
CN105442096A (en) Method for reducing polyacrylonitrile-based carbon fiber graphitization temperature
CN100344810C (en) Production and apparatus for graphite carbon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070718