CN1309827A - 外腔激光器 - Google Patents

外腔激光器 Download PDF

Info

Publication number
CN1309827A
CN1309827A CN98814221A CN98814221A CN1309827A CN 1309827 A CN1309827 A CN 1309827A CN 98814221 A CN98814221 A CN 98814221A CN 98814221 A CN98814221 A CN 98814221A CN 1309827 A CN1309827 A CN 1309827A
Authority
CN
China
Prior art keywords
outside cavity
cavity gas
silicon
grating
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98814221A
Other languages
English (en)
Inventor
J·R·蒂德马斯
S·J·法沙姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Technology UK Ltd
Original Assignee
Bookham Technology PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bookham Technology PLC filed Critical Bookham Technology PLC
Publication of CN1309827A publication Critical patent/CN1309827A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种外腔激光器,包括第一和第二反馈装置,在它们之间具有光学增益介质(2),反馈装置之一由形成在硅波导上的光栅(4)提供。另一反馈装置由光学增益介质(2)的后反射面(2B)提供。因此能够在制造期间确定激光器在给定温度的输出波长,而且激光器能够利用批量生产技术制造。可以把光栅(4)绝热以便不需要温度控制装置(6)控制光栅(4)的温度。可以在单个芯片上设置激光器阵列。

Description

外腔激光器
本发明涉及外腔激光器,尤其是用于通讯的窄线宽激光器。
有几种方法用于构造窄线宽单模半导体激光器。实际的装置分为两种,即单片半导体装置和外腔激光器。它们都利用频率选择反馈以便在整个驱动电流范围内实现单模操作。
频率选择反馈可以由具有外部元件或者位于半导体内(即单片)的周期性结构提供,所述周期性结构可以采取DBR(分布式布拉格反射镜)或者DFB(分布反馈)激光器的形成。在DBR中光栅位于有源区之外但是在单片半导体上,而DFB激光器中的光栅在有源区之内。外腔激光器包括位于两个反射镜之间的光学增益介质,但是并不占据两个反射镜之间的整个距离,一个反射镜通常是增益介质的后面,另一个反射镜是可以制在光纤或波导中的外布拉格光栅。在前面描述的装置中外布拉格光栅形成在单模光纤中或者氮化硅(Si3N4)或者二氧化硅(SiO2)波导中。
DFB激光器的主要缺点在于因为输出波长是光栅周期和装置的有效折射率二者的函数,输出波长不能从硅片到硅片精确控制。因此为了在指定频率上利用DFB激光器,必须通过测试和选择把装置分类到波长范围内,然后调整温度以便获得期望的波长。这种调整要求使得装置的温度稳定性复杂化,因为必须包括诸如可变电阻器的元件,使得集成温度控制器复杂。DBR激光器有类似的问题(即有效折射率变化和光栅周期变化),还有另外的困难是由于制造误差,两个布拉格反射镜的相对光栅相位变得不能预测,导致产量降低,或者需要相位调整区。通常,DBR激光器比DFB更复杂,而且更难以制造。
对于用于WDM(波分复用)***,DFB激光器也需要驱动-补偿电路以便补偿改变装置的有效折射率的老化效应。这样也提高了控制电路的复杂性,所以可能损害装置的长期可靠性。
FGL(光纤光栅激光器)是外腔激光器,主要包括具有连接到光纤上的反射后面(通常是涂HR(高反射)层)的半导体激光器芯片,所述光纤上面刻有波长选择光栅,所述激光器芯片产生激光受涂在前面上的AR(减反射)层、斜面/波导或它们的组合的影响。
这样的光栅直接利用UV光刻技术刻蚀以便在光纤上以反射选择波长的周期结构形成F中心(疵点)。FGL具有输出波长不由有源区确定的优点(与DFB激光器比较),所以波长能够精确地预先确定,不需要分选和温度调节。FGL还表现出波长对温度的依赖性较小,所以能够在~30℃温度范围内工作而不需要温度补偿。然而,对于DFB激光器为了实现相同的工作范围(0℃-60℃),还需要TEC(热电冷却器)。
FGL的主要困难在于制造。光栅刻蚀过程基本上是连续的,因此不适合于大批量生产。为了实现有源半导体和光纤之间很好地耦合,通常需要使用球透镜或透镜形光纤以便模式匹配。这样导致光纤与半导体之间的对准误差容限很小,因此需要主动对准,这是另一个不适合于批量生产的过程。
FGL也不适合于单个芯片与其他WDM元件集成,例如MUX(多路复用器)和DMUX(多路分用器)。
二氧化硅波导光栅激光器与FGL类似,只是光栅刻在二氧化硅平面波导上。二氧化硅波导光栅激光器具有与FGL类似的制造问题,即连续刻蚀过程以及由于需要控制高温度搀杂过程的困难引起的不能预先精确选择输出波长的附加问题,导致需要进行温度调节。
根据本发明的第一方面,提供了一种外腔激光器,包括第一和第二反馈装置,在它们之间具有光学增益介质,反馈装置之一由形成在硅波导上的光栅构成。
最好,激光器形成在硅芯片上,硅波导是集成在芯片上的肋型波导,光学增益介质由安装在芯片上的光学放大器提供。
光学放大器的后面最好形成另一反馈装置。
从下面的描述和所附的权利要求将清楚地看到本发明的其他特征。
因此本发明使得能够利用集成光学技术形成波长稳定的外腔激光器,利用反射放大器(RA)。所述RA耦合到硅波导光栅上。所产生的装置对现有技术诸如DBR或DFB的改进在于能够可重复地预定激光器的输出波长。这样不再需要温度调节,简化了温度控制稳定电路。
硅波导的折射率是已知的,所以在制造过程中能够设置激光器在给定温度的输出波长。
而且,因为光栅与激光器的有源区分开,老化对输出波长没有影响,结果也不需要补偿驱动电路。
这些特征的组合使得单芯片方案能够控制温度稳定和激光器驱动,而且所产生的装置能够利用批量生产技术制造,而不象上述FGL和波导光栅激光器一样。因此本发明具有上述不同现有技术装置的优点,而避免了它们的缺点。
根据本发明的另一方面,提供了一种上述外腔激光器阵列。可以提供多路复用装置以便把激光器阵列的输出组合到单个输出上。激光器阵列也可以使用共同的光学增益介质和功率分配装置以便把增益介质的输出分为多个信号,每个信号被传导到不同的光栅。
下面将仅以举例方式参考附图进一步描述本发明,其中:
图1是根据本发明第一实施例的外腔激光器的示意图;
图2是形成在用于图1所示的激光器的硅波导中的光栅的示意性透视图;
图3是形成在单个芯片上的诸如图1所述的外腔激光器阵列的示意图;
图4是在单个芯片上提供外腔激光器阵列的另一种结构的示意图。
图1示出形成在S01芯片1上的外腔激光器,所述SO1芯片1包括上部透光硅层,通过绝缘层与硅基质分开,所述绝缘层通常是二氧化硅。该装置包括与硅波导3对齐的RA2,在所述硅波导3内具有光栅4。
RA最好在与它的前面2A垂直的角度上包括波导。RA的后面2B涂有HR涂层而前面涂有AR涂层。
通过把RA的定位面支承在刻蚀在SO1芯片1上的定位槽5的定位面上,RA2被动排列在SO1芯片1上。安装光纤元件的这一方法的更多细节在WO97/43676中给出,该专利申请的内容包括在这里以供参考。
RA1连接到硅波导2上,在硅波导2内形成有布拉格光栅4。布拉格光栅4有效地形成外腔激光器的前面。
NTC(负温度系数)热敏电阻6位于靠近光栅4处以便感应光栅4的温度。热敏电阻6向温度补偿***提供输入,该***包括热敏电阻6、控制电路(未示出)和冷却装置。冷却装置可以包括安装在芯片下面的Peltier冷却器以便冷却芯片,或者至少冷却决定输出波长的光栅4。提供该温度补偿***以便扩展激光器的工作范围(如同在FGL中一样),而不是用于调整装置来补偿制造过程中的变化。
输出光纤7位于在SOI芯片1上各向异性刻蚀的V形槽中,以便使光纤被动地与硅波导3对齐。把光纤耦合到位于SOI芯片上的肋型波导上的方法在WO97/42534中有描述,把WO97/42534的内容包括在这里以供参考。也可以把外腔激光器的输出引导到设置在同一芯片上的其他光学器件。
设置有监控光电二极管8以便利用波导耦合器9监控外腔激光器的输出,所述波导耦合器9把一部分激光输出耦合到光电二极管8。耦合器9可以包括Y接头或者迅衰耦合器。
图2详细示出形成在硅波导3中的光栅4。布拉格波导光栅形成波长选择元件而且可以例如通过如下方式制造,即引导电子束记录在形成于波导上的阻光涂层上,然后利用RIE(活性离子刻蚀)刻蚀图案以便形成波导光栅的槽。
光栅槽最好通过肋型波导的高度H(其中从芯片相邻区域的上表面测量H通常在1.4-5微米范围内)的大约一半延伸。槽的深度D选择为使光栅耦合即它的反射率、激光器的输出功率和与光栅有关的光损失最佳,D最好为H的30-70%。
这样在H为1.4-1.5微米的肋型波导中,D将在0.4至1.1微米范围内。
光栅的其他尺寸由将要选择的波长决定,但是典型的光栅将具有周期P为200nm、50%传号/空号比的一系列槽,即每个槽宽大约为100nm(在平行于波导的光轴方向),而且与相邻槽的间距为100nm.光栅通常在大约1至5mm的波导长度L上延伸。
实际中,光栅4的槽可以用其他材料例如二氧化硅填充或部分填充,但是光栅的实质要求是提供不同折射率周期***替的区域,以便他反射选择波长的一部分,而且能够使用批量生产技术形成。
在另一种结构中(未示出),光栅4可以由设置在肋型波导上的二氧化硅包覆层中的槽形成,代替硅肋中的槽,或者除它之外。
激光器腔的光学长度,从RA2的后面2B到光栅4的有效反射中心通常在12mm数量级。因为硅的折射率为3.5,因此腔的物理长度为12mm/3.5,即大约为3.4mm。
光纤与波导对齐也可以通过如同GB9809460.0(公开号)中描述的对接耦合或者能够实现波导与光纤芯之间对准良好的任何其他适当方法实现。该方法包括利用主动监视以便优化要求较高功率应用的功率输出。主动对准也可以扩展到定位RA2,其中较高功率装置的附加价值证明制造成本和复杂性提高。对于这样的应用,如上所述利用前面监视和在RA2的后面2B的100%HR涂层也能够实现较高输出功率。
对于要求较低功率的应用,可以使用传统的后面监视代替上述前面监视。
可以通过利用相位干涉掩膜制造波导光栅来改善装置的工艺性。这样将使得光栅光刻在传统的接触光刻***中完成,因此制造成本降低,而且能够大批量生产。
也可以使用其他方法诸如离子蚀刻形成光栅4。
NTC热敏电阻6邻近光栅4混成在芯片上。也可以使用其他类型的混成传感器,或者也可以使用集成在SOI芯片上的搀杂结构。可能结构包括邻近形成有光栅的波导或者与之交叉设置的p-i-n二极管或者p-n结,它们的性能随着温度而变化。使用这样的整体式传感器降低了操作所需的装置数目,而且能够最优和可重复定位温度传感器。
波导光栅4也可以设置在绝热基质上,诸如GB2320104A中描述的基质一样,通过使用加热电阻丝和温度传感器光栅温度保持在稳定温度上。这样将不需要冷却装置来对装置进行冷却,因为是光栅4的温度决定激光器的输出波长。
在这样的结构中,光栅形成在硅波导的基本上与它的周围绝热的部分上。波导的形成有光栅的部分上可以例如形成于延伸在硅芯片上的槽上方的硅层部分上,例如以桥的形式,或者在形成于硅层的相邻区域的相邻沟槽之间。所述沟槽最好通过硅层(所述硅层具有相对高的导热率)延伸到达所述绝缘层,但是也可以进一步通过所述绝缘层延伸到达芯片。所述沟槽可以是形成在肋型波导的任何一面上的V形槽。
这样的结构也简化了所需要的包装,因为可能不需要散热,因此低成本塑料或者陶瓷包装就可以了。这些因素相结合导致材料成本大为降低,因为冷却装置和包装通常占整个材料成本的很大百分比。
而且,假设电阻加热比热电冷却需要较少的功率,那么使用绝热光栅也使得温度控制电路容易集成到激光模块上,给***带来优点,诸如降低控制该装置的驱动电路的复杂性。
或者,例如上述结构可以用于微调激光器的波长,以便精确调整很窄WDM波段的中心。
如前所述,SOI技术简化了装置的集成,所以使得能够如图3所示在单个芯片上提供激光器阵列。图3中所示的每个激光器基本上与上面参考图1和2所描述的激光器相同,但是每个光栅设计为反射不同的波长。SOI技术使得阵列中的每个激光器能够利用传统的光刻技术同时形成。连接到激光器阵列上的光纤7可以是分离的光纤或者是部分光纤带。或者,复用装置(未示出)可以与激光器阵列集成以便把来自每个激光器的信号多路复用到单个输出波导上,从而制成单光纤多通道WDM源。
通过在芯片上提供一个或多个光电二极管,如上所述的外腔激光器或者这样的激光器阵列也可以用作发送接收器的一部分。
图4示出阵列的另一种形式,该种形式阵列包括连接到多个光栅4的单个RA2以便利用较少数目的有源元件产生多通道源。为了实现这一目的,在RA2和光栅4之间包括色散功率分配元件10,诸如透射或反射光栅或者级联Y接头阵列。这样的装置在各个光栅4的每个布拉格波长具有单模输出。
应该理解为了提供上述优点,光栅必须刻在硅波导上,最好是刻在SOI芯片上。理论上,装置与光纤光栅激光器(或者使用布拉格光栅作为反馈元件的其他外腔激光器)非常相似,主要区别是使用集成硅光学元件使得能够利用批量生产技术,以及把其他功能集成在单个装置上,所述装置具有较好的温度控制特性。激光器的输出波长由形成在硅波导上的光栅确定,所以能够在制造装置期间确定在给定温度下的输出波长,而不需要调节所述装置,而且激光器的所有部件可以利用批量生产技术制造。
使用SOI技术使得与现有技术相比显著地降低了制造成本,而且使得能够大批量生产该装置。SOI技术也使得能够在装置上重复而且精确定位被动排列有源元件。而且SOI技术允许在单个模块上附加功能,例如附加MUX/DMUX和Rx(接收器)元件。使用SOI波导还使得能够利用波导耦合器把输出光的一部分耦合到监视二极管来使用激光器的前面监视。这样减小了跟踪误差(光纤中的实际功率与从监视二极管推断的功率之间的差值),而且不需要后面监视(现有技术所述的所有装置都需要后面监视以便进行功率监视)。这样使得能够制造效率更高的激光器,因为后面上的HR涂层的反射率可以提高到100%。

Claims (16)

1.一种外腔激光器,包括第一和第二反馈装置,在它们之间具有光学增益介质,反馈装置之一由形成在硅波导上的光栅构成。
2.如权利要求1所述的外腔激光器,形成在硅芯片上,硅波导集成在芯片上,而且光学增益介质由安装在芯片上的光学放大器构成。
3.如权利要求2所述的外腔激光器,其中另一反馈装置由光学放大器的后面构成。
4.如权利要求2或3所述的外腔激光器,其中光学放大器安装在形成于硅芯片上的定位槽中。
5.如前述权利要求中任何一项所述的外腔激光器,其中所述硅波导是肋型波导,而所述光栅通过形成在波导肋上的一系列槽形成。
6.如权利要求5所述的外腔激光器,其中每个槽沿波导肋高度的30至70%路径延伸。
7.如前述权利要求中任何一项所述的外腔激光器,具有温度传感装置,用于感应光栅的温度。
8.如权利要求7所述的外腔激光器,其中所述温度传感装置包括临近其中形成有光栅的波导或者与之交叉形成的集成传感器,所述传感器最好由p-i-n或者p-n结构成。
9.如权利要求7或8所述的外腔激光器,包括用于至少加热或冷却光栅的加热或冷却装置。
10.如权利要求1至6中任何一项所述的外腔激光器,其中光栅形成在硅波导的基本上隔热的部分上。
11.如权利要求10所述的外腔激光器,形成在硅芯片上,其中所述硅波导部分形成于硅芯于片的槽上方延伸的部分硅层上。
12.如权利要求10所述的外腔激光器,形成在硅芯片上,其中所述硅波导部分在形成于硅芯片的相邻区域上的沟槽之间延伸。
13.如前述权利要求中任何一项所述的多个外腔激光器,设置在同一芯片上。
14.如权利要求13所述的多个外腔激光器,具有用于组合每个激光器的输出的多路复用装置。
15.如权利要求13或14所述的多个外腔激光器,具有共用光学增益介质和用于把增益介质的输出分割为多个信号的功率分配装置,每个信号被传导到不同光栅。
16.如前述权利要求中任何一项所述的外腔激光器或外腔激光器阵列,形成在硅绝缘体芯片上。
CN98814221A 1998-07-10 1998-12-02 外腔激光器 Pending CN1309827A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9815070.9 1998-07-10
GB9815070A GB2325334B (en) 1998-07-10 1998-07-10 External cavity laser

Publications (1)

Publication Number Publication Date
CN1309827A true CN1309827A (zh) 2001-08-22

Family

ID=10835357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98814221A Pending CN1309827A (zh) 1998-07-10 1998-12-02 外腔激光器

Country Status (11)

Country Link
US (1) US6101210A (zh)
EP (1) EP1097394B1 (zh)
JP (1) JP2002520858A (zh)
KR (1) KR20010071852A (zh)
CN (1) CN1309827A (zh)
AU (1) AU1344299A (zh)
CA (1) CA2336981A1 (zh)
DE (1) DE69808342T2 (zh)
GB (1) GB2325334B (zh)
IL (1) IL140587A0 (zh)
WO (1) WO2000003461A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355163C (zh) * 2002-06-06 2007-12-12 阿尔法艾斯股份公司 谐振器
CN100417960C (zh) * 2004-03-29 2008-09-10 英特尔公司 为光束提供输出耦合器的方法和装置
CN100524983C (zh) * 2002-09-02 2009-08-05 Limo专利管理有限及两合公司 半导体激光器装置
US7860144B2 (en) 2004-07-30 2010-12-28 Osram Opto Semiconductors Gmbh Semiconductor laser component, optical device for a semiconductor laser component, and method for producing an optical device
CN111224312A (zh) * 2014-01-20 2020-06-02 洛克利光子有限公司 可调谐soi激光器
CN111323879A (zh) * 2020-04-13 2020-06-23 易锐光电科技(安徽)有限公司 光模块

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100277695B1 (ko) * 1998-09-12 2001-02-01 정선종 에스 오 아이 광도파로를 이용한 하이브리드 광집적회로용 기판 제조방법
US6330388B1 (en) 1999-01-27 2001-12-11 Northstar Photonics, Inc. Method and apparatus for waveguide optics and devices
US6278721B1 (en) * 1999-03-03 2001-08-21 Lucent Technologies, Inc. Method for minimizing locking range variability of a laser module
GB2353898A (en) * 1999-08-25 2001-03-07 Bookham Technology Ltd A semiconductor laser amplifier using waveguides
JP4103287B2 (ja) * 2000-02-14 2008-06-18 横河電機株式会社 Dfbレーザ駆動装置、dfbレーザ駆動方法、及び記憶媒体
US6661945B2 (en) 2000-04-28 2003-12-09 Kaiser Optical Systems, Inc. Multi-band wavelength dispersive device for use in dense wavelength division multiplexing (DWDM) networks
US6888863B1 (en) 2000-06-30 2005-05-03 Lucent Technologies Inc. System comprising optical semiconductor waveguide device
US6525864B1 (en) 2000-07-20 2003-02-25 Nayna Networks, Inc. Integrated mirror array and circuit device
US20020037025A1 (en) * 2000-09-25 2002-03-28 Bartman Randall K. Hybrid narrow -linewidth semiconductor lasers
US6954564B2 (en) * 2000-11-27 2005-10-11 Teem Photonics Apparatus and method for integrated photonic devices having high-performance waveguides and multicompositional substrates
US6690687B2 (en) * 2001-01-02 2004-02-10 Spectrasensors, Inc. Tunable semiconductor laser having cavity with ring resonator mirror and mach-zehnder interferometer
WO2002065600A2 (en) * 2001-02-14 2002-08-22 Gemfire Corporation Multi-channel laser pump source and packaging method therefor
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
US6771851B1 (en) 2001-06-19 2004-08-03 Nayna Networks Fast switching method for a micro-mirror device for optical switching applications
US6941043B1 (en) * 2001-07-10 2005-09-06 K2 Optronics, Inc. Wavelength stabilization of an external cavity laser diode (ECLD)
GB2378811A (en) * 2001-08-16 2003-02-19 Bookham Technology Plc A Laser System
JP5099948B2 (ja) * 2001-08-28 2012-12-19 古河電気工業株式会社 分布帰還型半導体レーザ素子
US6987784B2 (en) * 2001-09-10 2006-01-17 San Jose Systems, Inc. Wavelength agile laser
US7092419B2 (en) 2001-09-10 2006-08-15 San Jose Systems, Inc. Wavelength agile laser
EP1436870A2 (en) * 2001-10-09 2004-07-14 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs
US7672546B2 (en) * 2001-10-09 2010-03-02 Infinera Corporation Optical transport network having a plurality of monolithic photonic integrated circuit semiconductor chips
US20080044128A1 (en) * 2001-10-09 2008-02-21 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
US7751658B2 (en) * 2001-10-09 2010-07-06 Infinera Corporation Monolithic transmitter photonic integrated circuit (TxPIC) having tunable modulated sources with feedback system for source power level or wavelength tuning
US20040020896A1 (en) * 2002-02-15 2004-02-05 Lockheed Martin Corporation Tapered optical fiber for fiber to waveguide interconnection
US20030185514A1 (en) * 2002-03-29 2003-10-02 Bendett Mark P. Method and apparatus for tapping a waveguide on a substrate
US6788727B2 (en) * 2002-06-13 2004-09-07 Intel Corporation Method and apparatus for tunable wavelength conversion using a bragg grating and a laser in a semiconductor substrate
US7747114B2 (en) * 2002-10-08 2010-06-29 Infinera Corporation Tilted combiners/decombiners and photonic integrated circuits (PICs) employing the same
CA2462178C (en) * 2002-10-08 2012-04-03 Infinera Corporation Transmitter photonic integrated circuit (txpic) chips
GB0306634D0 (en) * 2003-03-22 2003-04-30 Qinetiq Ltd Optical wavelength division multiplexer/demultiplexer device
US7422377B2 (en) * 2003-06-30 2008-09-09 Finisar Corporation Micro-module with micro-lens
US20050025420A1 (en) * 2003-06-30 2005-02-03 Mina Farr Optical sub-assembly laser mount having integrated microlens
US7327771B2 (en) * 2003-10-21 2008-02-05 Electronics And Telecommunications Research Institute WDM-PON system with optical wavelength alignment function
KR100626656B1 (ko) * 2005-05-04 2006-09-25 한국전자통신연구원 파장 분할 다중 방식의 수동형 광 가입자 망의 기지국 측광 송신기 및 그의 제작 방법
US20060002443A1 (en) * 2004-06-30 2006-01-05 Gennady Farber Multimode external cavity semiconductor lasers
US7565084B1 (en) 2004-09-15 2009-07-21 Wach Michael L Robustly stabilizing laser systems
KR100647904B1 (ko) 2004-12-20 2006-11-23 한국전자통신연구원 광섬유 브라그 격자 외부 공진기를 갖는 레이저의제조방법 및 이에 의해 제조된 레이저
US20070041679A1 (en) * 2005-07-01 2007-02-22 Zhaoran Huang Integrated thin film MSM photodetector/grating for WDM
KR100697606B1 (ko) * 2005-10-05 2007-03-22 주식회사 두산 곡면의 반사 거울면을 포함하는 광 도파로 및 그 제조 방법
US20070280326A1 (en) * 2005-12-16 2007-12-06 Sioptical, Inc. External cavity laser in thin SOI with monolithic electronics
US20080088928A1 (en) * 2006-10-13 2008-04-17 Kaiser Optical Systems Optical configurations for achieving uniform channel spacing in wdm telecommunications applications
FR2909491B1 (fr) * 2006-12-05 2010-04-23 Commissariat Energie Atomique Dispositif laser a source laser et guide d'onde couples
JP2008158440A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 光電気配線板及び光電気配線装置の製造方法
KR101038264B1 (ko) * 2009-06-12 2011-06-01 (주)엠이엘 외부공진형 파장가변 레이저 모듈
US8605766B2 (en) * 2009-10-13 2013-12-10 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser and a mach zehnder modulator
US8615025B2 (en) * 2009-10-13 2013-12-24 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser
US9923105B2 (en) 2013-10-09 2018-03-20 Skorpios Technologies, Inc. Processing of a direct-bandgap chip after bonding to a silicon photonic device
US11181688B2 (en) 2009-10-13 2021-11-23 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device
US9316785B2 (en) 2013-10-09 2016-04-19 Skorpios Technologies, Inc. Integration of an unprocessed, direct-bandgap chip into a silicon photonic device
WO2011046898A1 (en) * 2009-10-13 2011-04-21 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser
US8611388B2 (en) 2009-10-13 2013-12-17 Skorpios Technologies, Inc. Method and system for heterogeneous substrate bonding of waveguide receivers
US8559470B2 (en) * 2009-10-13 2013-10-15 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser and a phase modulator
US8867578B2 (en) * 2009-10-13 2014-10-21 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser for a cable TV transmitter
US8630326B2 (en) * 2009-10-13 2014-01-14 Skorpios Technologies, Inc. Method and system of heterogeneous substrate bonding for photonic integration
US8368995B2 (en) 2009-10-13 2013-02-05 Skorpios Technologies, Inc. Method and system for hybrid integration of an opto-electronic integrated circuit
US8270791B2 (en) * 2010-10-05 2012-09-18 Tdk Corporation Optical waveguide and thermally-assisted magnetic recording head therewith
US9922967B2 (en) 2010-12-08 2018-03-20 Skorpios Technologies, Inc. Multilevel template assisted wafer bonding
US9379515B1 (en) 2011-02-10 2016-06-28 Mellanox Technologies Silicon Photonics Inc. Laser combining light signals from multiple laser cavities
FR2973594B1 (fr) * 2011-03-31 2013-03-29 Thales Sa Systeme d'emission de signal optique
US9977188B2 (en) 2011-08-30 2018-05-22 Skorpios Technologies, Inc. Integrated photonics mode expander
US9116293B2 (en) 2011-09-08 2015-08-25 Skorpios Technologies, Inc. Tunable reflectors based on multi-cavity interference
WO2013055396A1 (en) * 2011-10-14 2013-04-18 Kotura, Inc. Reduction of mode hopping in a laser cavity
CN102565955B (zh) * 2012-01-16 2013-03-20 中国科学院半导体研究所 电可调谐光栅耦合器
GB2522410A (en) 2014-01-20 2015-07-29 Rockley Photonics Ltd Tunable SOI laser
US9664855B2 (en) 2014-03-07 2017-05-30 Skorpios Technologies, Inc. Wide shoulder, high order mode filter for thick-silicon waveguides
US10003173B2 (en) 2014-04-23 2018-06-19 Skorpios Technologies, Inc. Widely tunable laser control
WO2015183992A1 (en) 2014-05-27 2015-12-03 Skorpios Technologies, Inc. Waveguide mode expander using amorphous silicon
EP3215883A4 (en) 2014-11-05 2018-07-11 Elenion Technologies, LLC Photonic integrated circuit incorporating a bandgap temperature sensor
US9513437B2 (en) 2014-11-05 2016-12-06 Coriant Advanced Technology, LLC Photonic integrated circuit incorporating a bandgap temperature sensor
US9356419B1 (en) 2015-04-09 2016-05-31 International Business Machines Corporation Temperature insensitive external cavity lasers on silicon
WO2016172202A1 (en) 2015-04-20 2016-10-27 Skorpios Technologies, Inc. Vertical output couplers for photonic devices
CN105428998B (zh) * 2015-12-28 2019-05-17 中国科学院半导体研究所 外腔窄线宽激光器
GB2547467A (en) 2016-02-19 2017-08-23 Rockley Photonics Ltd Tunable laser
US11699892B2 (en) 2016-02-19 2023-07-11 Rockley Photonics Limited Discrete wavelength tunable laser
GB2554653B (en) 2016-09-30 2021-12-29 Lumentum Tech Uk Limited Lockerless tuneable DBR laser
US10811848B2 (en) 2017-06-14 2020-10-20 Rockley Photonics Limited Broadband arbitrary wavelength multichannel laser source
US10649148B2 (en) 2017-10-25 2020-05-12 Skorpios Technologies, Inc. Multistage spot size converter in silicon photonics
US11360263B2 (en) 2019-01-31 2022-06-14 Skorpios Technologies. Inc. Self-aligned spot size converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572050B2 (ja) * 1986-11-05 1997-01-16 シャープ株式会社 導波路型光ヘツド
US5537432A (en) * 1993-01-07 1996-07-16 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US6064783A (en) * 1994-05-25 2000-05-16 Congdon; Philip A. Integrated laser and coupled waveguide
JPH10148726A (ja) * 1996-11-19 1998-06-02 Mitsubishi Electric Corp 光導波路型グレーティングおよびその製法ならびに前記光導波路型グレーティングを用いた光フィルタおよび該光フィルタを用いた波長多重光伝送システム
GB2320104B (en) * 1997-10-16 1998-11-18 Bookham Technology Ltd Thermally isolated silicon layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355163C (zh) * 2002-06-06 2007-12-12 阿尔法艾斯股份公司 谐振器
CN100524983C (zh) * 2002-09-02 2009-08-05 Limo专利管理有限及两合公司 半导体激光器装置
CN100417960C (zh) * 2004-03-29 2008-09-10 英特尔公司 为光束提供输出耦合器的方法和装置
US7860144B2 (en) 2004-07-30 2010-12-28 Osram Opto Semiconductors Gmbh Semiconductor laser component, optical device for a semiconductor laser component, and method for producing an optical device
CN111224312A (zh) * 2014-01-20 2020-06-02 洛克利光子有限公司 可调谐soi激光器
CN111224312B (zh) * 2014-01-20 2022-02-11 洛克利光子有限公司 可调谐soi激光器
CN111323879A (zh) * 2020-04-13 2020-06-23 易锐光电科技(安徽)有限公司 光模块

Also Published As

Publication number Publication date
EP1097394A1 (en) 2001-05-09
CA2336981A1 (en) 2000-01-20
AU1344299A (en) 2000-02-01
IL140587A0 (en) 2002-02-10
DE69808342T2 (de) 2003-05-22
GB2325334A (en) 1998-11-18
JP2002520858A (ja) 2002-07-09
GB9815070D0 (en) 1998-09-09
DE69808342D1 (de) 2002-10-31
US6101210A (en) 2000-08-08
EP1097394B1 (en) 2002-09-25
KR20010071852A (ko) 2001-07-31
GB2325334B (en) 1999-04-14
WO2000003461A1 (en) 2000-01-20

Similar Documents

Publication Publication Date Title
CN1309827A (zh) 外腔激光器
US20230024334A1 (en) Adjustable grid tracking transmitters and receivers
US6323987B1 (en) Controlled multi-wavelength etalon
US6910780B2 (en) Laser and laser signal combiner
US7440643B2 (en) Variable light controlling device and variable light controlling method
EP1044487B1 (en) An integrated optical transceiver
JP2001290038A (ja) アレイ導波路型回折格子
WO2002063372A1 (en) Tunable optical device using a scanning mems mirror
KR100420950B1 (ko) 파장 가변 레이저 광원
US20040141676A1 (en) Integrated optical spectrometer with high spectral resolution in particular for high-speed telecommunications and metrology and a method for manufactruing same
JP2004179465A (ja) 波長安定化レーザ
Ehlers et al. Optoelectronic packaging of arrayed-waveguide grating modules and their environmental stability tests
JP4410584B2 (ja) 熱光学光機能部品及びその制御方法
KR100695769B1 (ko) 광합분파기
KR20150047699A (ko) 고효율 외부 공진기형 파장가변 레이저
KR20010033579A (ko) 집적 광 송수신기

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication