CN1302156C - 制造单晶结构的方法 - Google Patents

制造单晶结构的方法 Download PDF

Info

Publication number
CN1302156C
CN1302156C CNB038004372A CN03800437A CN1302156C CN 1302156 C CN1302156 C CN 1302156C CN B038004372 A CNB038004372 A CN B038004372A CN 03800437 A CN03800437 A CN 03800437A CN 1302156 C CN1302156 C CN 1302156C
Authority
CN
China
Prior art keywords
spot
burning spot
accordance
substrate
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038004372A
Other languages
English (en)
Other versions
CN1516756A (zh
Inventor
托马斯·贝克
乔格·博斯坦乔格洛
奈杰尔-菲利普·考克斯
罗尔夫·威尔肯霍纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10243558A external-priority patent/DE10243558A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1516756A publication Critical patent/CN1516756A/zh
Application granted granted Critical
Publication of CN1302156C publication Critical patent/CN1302156C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/903Dendrite or web or cage technique
    • Y10S117/904Laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/905Electron beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明公开了一种在基板上制造单晶结构的方法。按照现有技术的结晶外延生长,常常需要在一个平面内产生多条行进轨迹,以修复一个待修复区域。这会导致晶体结构的搭接和错误定向。在本发明的方法中,该轨迹是如此之宽,从而不会出现搭接,因为其宽度与待修复区域的外形相适配。

Description

制造单晶结构的方法
技术领域
本发明涉及一种制造定向凝固单晶结构的方法,尤其是制造那种超合金的定向凝固单晶结构的方法。
背景技术
带有单晶结构的金属工件被用作处于高机械、热和/或化学负荷运行条件下的机器的构件。例如燃气透平的叶片,尤其是航空发动机转子的叶片,但也包括固定式燃气透平的叶片。这种单晶工件的制造例如是通过将熔融金属定向凝固来完成的。在此涉及将液态金属合金定向凝固成单晶结构、即凝固成单晶工件的浇铸方法。例如公知一种特定的用于制造这种工件的浇铸方法,其中处于陶瓷态的液态合金在例如一台布里奇曼炉(Bridgemanofen)的定向温度场中获得结晶定向。在那里,枝状晶体沿着热流走向,且或者生成一种杆状结晶结构(即沿着整个工件长度走向的晶核,且按照通常的惯用语称作定向凝固),或者生成单晶结构,即整个工件由单一晶体构成。在这种方法中必须避免转变为球状(多晶)凝固,因为这种非定向的生长不可避免地形成横向和纵向晶界,这破坏了定向凝固或单晶构件的良好性能。当在上述文件谈到单晶结构和多个单晶结构时,那么既是没有晶界的单晶,又是仅有纵向走向晶界而没有横向走向晶界的晶体结构。在后一种晶体结构中称作定向凝固结构。
如果通常谈起定向凝固结构时,则既指没有晶界或具有最小角度晶界的单晶,又指具有纵向走向晶界但没有横向走向晶界的杆状晶体结构。
此外,利用所谓的镍基(Ni)、钴基(Co)或铁基(Fe)超合金来作为如用于所提到的单晶透平叶片的合金。尤其是镍基超合金具有突出的机械和化学高温特性。
这样的构件在使用中被磨损和损坏,但是可以进行重新修整,其中在必要时将所涉及的区域去掉并再在此区域上敷设新的材料(例如通过外延生长)。但是,在这种情况下应当达到同样的晶体结构。这样一种方法在美国专利说明书US 6 024 792 A和欧洲专利申请公开说明书EP 0 892 090 A1中作了描述。在这种方法中,待敷设的材料层在垂直于待加工表面长度的方向上分别沿着与待加工表面区域相应的狭长轨迹彼此相邻地涂覆在其上。这样一来形成各个焊道(在其上彼此生长新材料的轨迹)的搭接或接触,它们由于几何结构关系导致了带有不能令人满意的结晶定向的非结晶外延生长。因而其机械性能是有缺陷的。
发明内容
本发明要解决的技术问题是克服上述缺点。
上述技术问题通过一种在基板上制造单晶结构、部件或工件的方法,尤其是制造金属超合金的单晶结构、部件或工件特别是带有单晶结构或者通过外延生长的单晶结构的方法来解决,其中通过一个能源的能量输入借助该能源的燃烧斑使该构件的一个待加工表面熔化,向该熔化区域送入材料,使送入的材料完全熔化或者使送入的材料与该表面一起熔化,可以将该熔化的材料变成单晶结构,再让该熔化的材料凝固,按照本发明,所述燃烧斑具有一个基本上为线形、椭圆形或矩形的几何形状。
利用这种新方法可以在例如基板的定向凝固结构上沿一行进轨迹建立带有与基板相同定向凝固结构的一层或多层材料层以及一物体或一工件。这涉及一种结晶外延生长方法(结晶外延是指在一晶体底层上实现相同定向的晶体生长),在此方法中该敷设层承接了该基板的定向晶体结构。在这种情况下必须通过一相应的过程控制来避免球雏晶(globulitischer)结构。
本发明提供了一种新型的方法,利用此方法可以在带有单晶结构的基板上建立带有单晶结构的一层或多层材料层以及一物体或一工件。这涉及一种结晶外延方法,在此方法中该敷设层承接了该基板的定向晶体结构。
迄今还没有一种可能性来这样修复或修理一个单晶工件使得在该修复的位置也呈现该基材的单晶结构而不会出现许多不希望的晶体定向。利用新方法就可能以单晶方式修复损坏和磨损的单晶工件,即修补或新建优化晶体结构。在这种情况下,例如在单晶转子叶片的情况,在该基板上沿行进轨迹以单晶方式包覆一层又一层,直到再次到达该工件的原始尺寸和形状。在此,沿着该工件待加工表面纵向的涂覆分别以一个单一的连续行进来完成,而不是成蛇曲形横向运动以产生各个窄小的且沿纵向相搭接的焊道。
用于建立与基板相同、相近或不同材料的单晶的方法例如可以对具有单晶结构且被损坏或磨损的工件进行重建或修补。例如,目前燃气透平的转子叶片由所谓的超合金的单晶构成,如果其损坏了,则可用本方法来修复。
虽然单晶结构可以由熔融金属通过所谓的定向凝固来制得。但是这种由定向凝固制得的部件也会被磨损。利用新方法就可能以单晶方式修复损坏和磨损的单晶工件,即修补和重建晶体结构。在这种情况下,例如在单晶转子叶片的情况,在该基板上以单晶方式包覆一层又一层,直到再次到达该工件的原始尺寸和形状。
激光射线束或电子束适于用作实现本发明方法的能源或热源,也是可以用来在一个大面积上或一个大体积内引入高能量的能源。
高能量和能量密度的射线束对准基板表面,从而基板的表面层很容易地被熔化。将例如为粉末状或金属丝的材料送入到射线束的工作区。该送入的材料同样被熔化。该送入的材料的熔化可以在该熔化的表面层的熔化池中完成,或者在通往熔化池的途中已完成。这过程优选在保护气体和/或真空中进行。
如果熔融金属的凝固在位于球雏晶区的外部、即在所使用的材料定向凝固区域的条件下进行,则材料以单晶形式凝固,并在基板上生长成结晶外延结构。如果熔融金属不是定向结晶,则对金属是指球雏晶凝固。于是,在从定向单晶转变到非定向时必然会形成一个或多个会影响单晶优点的晶界。
将单晶结构以薄层、薄板或者约一毫米或不足一毫米的复合方式成叠层地逐层敷设。如果通过盲道(即没有材料送入地)用激光或感应方式使基板到达一个在600℃到1100℃范围的预热温度,且这温度在建立期间被保持,则在基板和在所构成的单晶中的应力以及该基板和结晶外延生长地构成在该基板上的晶体结构之间的应力减小了,这有助于阻止晶体结构中的再结晶和蠕变。
基板和新敷设的单晶层在温度为约1000℃到1250℃的范围(对于CMSX-4约为1150℃)进行约一小时的消除应力退火和随后的缓慢冷却减小了会通过再结晶和蠕变而使单晶结构破坏的内应力。但是,该消除应力退火还可以在形成结晶外延层后立即用一高频装置来完成。
不同金属和金属合金的所谓GV图是不同的,且可以对每种合金进行计算或用实验来确定。在GV图上曲线L将以一定的凝固速度和温度梯度这两个参数使合金成球状凝固的区域与使合金凝固成枝状定向结构的区域分开。对GV图的描述和说明例如可以在《Material Science Engineering Band65》1984,J.D.Hunt,“Columnar to Equiangular Transition”中找到。
附图说明
下面结合附图和具体实施方式对本发明作详细说明:
图1示出本发明所使用的燃烧斑横截面上的强度分布;
图2示出了采用本发明方法的构件上的一个燃烧斑;
图3示出一射线束斑和该燃烧斑;
图4示出本发明所使用的燃烧斑横截面上的强度分布;
图5示出了现有技术的方法过程。
具体实施方式
图1示出了一能源的射线束2(见图2)在一平面上燃烧斑3上的强度分布,在那里燃烧斑不是圆形的,而在x方向和y方向具有不同的宽度。下面沿x方向表示宽。z方向相应于进给方向4(见图2)。x-z平面相应于一构件6的待加工表面21(见图2)。
射线束2沿x方向比如说具有一个几乎矩形的强度分布剖面。该射线束X方向的剖面终端处5例如存在一个受技术条件决定的曲线过渡。沿x方向也可以存在几乎为矩形的剖面。
该燃烧斑3沿y方向的强度分布比如具有一个也受技术条件所决定的、基本上为倒过来的抛物线形。沿y方向也可以存在几乎为矩形的剖面。
图2示出了通过借助能源15的射线束2的能量输入而在构件6上产生的燃烧斑3。该构件6具有一个基板18。该基板18比如有一个定向凝固的结构。该燃烧斑3以一个确定的速度沿进给方向4(z向)在构件6上方的一个轨迹5(其上敷设有材料13、由一直线表示)上行进。
通过材料供给装置30例如将材料13以粉末状送入。还可以利用多个材料供给装置30。该材料供给装置30可以随时间和随地点以及随两者关系而变化。
基板18在该构件6的一个待加工表面21上会随同熔化和再熔化。将材料13例如作为金属丝、金属薄片、或粉末输送到此液态的熔化池。该送入的可以为单晶或多晶结构的材料13将敷设到该熔化的基材的再熔化区,且完全熔化。该送入的材料13,例如熔化的粉末,则可以凝固成一层单晶层,或一个带有单晶枝状晶体的单晶结构层,即一层枝状单晶。但是,它还可以在材料13熔化前已存在于表面21上,然后作为该基板18表面21的一部分被熔化。
于是在构件6上得到了已用本发明方法加工了的区域8。
沿激光束2的进给方向4还存在着尚必须借助本发明方法来形成的区域11。在该区域11敷设了或添加了被熔化、且按照本发明的方法凝固的材料13。将所添加的、可具有单晶或多晶结构的材料13送至燃烧斑3的区域,且完全熔化。同样,在此将构件6的表面加热,位于该构件上的材料13被熔化。
带有比如大约成矩形截面的燃烧斑3沿着进给方向4扫掠过材料13。燃烧斑3的宽度(沿x方向)比如与应当填充材料的区域的宽度相适配,大约具有与该填充材料13沿x方向的延伸宽度相同的宽度从而在一个单次连续进给运动中完成对整个待加工表面21的完全扫掠以敷设一层由材料13构成的连贯附属层。
该燃烧斑3、从而该熔化区同样可以为线形的(即在长度延伸方向很窄)或椭圆形的。这样的燃烧斑3例如可以由盘形激光器得到。产生这种合适的燃烧斑几何尺寸的其他可能性是通过光导纤维的排列(光导纤维阵)、合适的射线束变换镜组、二极管堆以及可能的紧凑型如漏斗形特殊镜组来得到。
在该射线横截面的侧边缘区5未引入材料13。该矩形燃烧斑3的中间区域越宽,则由敷设材料13形成的焊道越宽。通过合适的措施可以改变此宽度。例如这通过激光器15的相应镜组来实现。
材料13如以粉末状沿x方向敷设成直线条12。所有的直线条12形成焊道,即基板18上新生成的层。
按照现有技术,射线束2沿x方向对每个直线条12来回成蛇曲形运动,直到步进式地沿进给方向(z方向)4运动。按照本发明可以省去这种来回的蛇曲形运动。这也使射线束的行进或者能源15或构件6的运动变得简单了。
此外可以这样调节功率,使得燃烧斑3中间区域的功率密度保持不变。于是在燃烧斑3运动期间允许焊道形成不同的或变化的宽度。
通过本发明的方法,以外延生长方式敷设了宽的焊道。通过重复该方法,允许一个个焊道逐层为任意厚度结构,不会由侧向(即沿x方向)的重叠而降低材料的性能。
应当注意到,单晶层生长的前提是送入的材料13完全熔化。如果不是这样,例如未完全熔化的粉末体成为枝状晶体或结晶的晶核,这就会干扰和破坏该结构的单晶生长。
在用一个结晶外延生长方法构造一个较大的结构或一个较大的物体时,在最后制成的这一层的表面形成球雏晶区。这种“等轴晶粒”是干扰或阻止晶体定向生长的晶核。
因此,在构造紧靠位于其上的一层时比较重要的是这些球雏晶完全熔化,从而会干扰单晶结构的枝状晶体消失了或者在表面下完全不会产生。
其他允许用来按照本发明方法构造单晶结构的超级合金例如是IN738LC、IN 939、IN 100、B 1914、CM 99、SRR 99、CM-247LC、CMSX-2、CMSX-3、CMSX-6、Mar-M 002。
例如用一个电子束作为能源的方法在真空中进行。用激光器作为能源的方法也可以在真空中进行。虽然在真空中不要求保护气体,但为此会给能源、基板和供送材料的操作带来困难。
温度控制可以通过一个确定什么时候应当生成下一个结晶外延层的光学镜头33来完成。
图3示出了被能量射线束2所覆盖的照射区24(用虚线表示其包围的边缘)。该区域24在表面21的上方行进。形成了一个表示由能量射线发射所产生的整个燃烧斑3的内部区域(灰色)和一个虽然也被能量射线2照射但能量太小而未产生燃烧斑(材料熔化)的外部区域27。在燃烧斑3较小的端侧达到一个均匀不变的能量分布。在迄今通用的圆形燃烧斑情况则不是这样。此外,该矩形燃烧斑3与待熔化区域的外形相适配。
通过合适地调节或控制光学镜头可以在加工期间将射线束截面调节到所希望的宽度。同样激光器功率可以同时通过一个计算机来适配。例如另一个前置的镜头可以得到待熔化区的最佳宽度,且就地传送给能源15,即可以获知该燃烧斑3必须多宽。尤其由此允许避免彼此相邻区域8的搭接。一个已结晶生长的区域与一个熔化区的接触会导致晶格错误定向。采用本发明的方法,通过使表面上待敷设材料13的区域通过一次沿z方向的运动来实现敷设,从而能避免出现这种搭接。沿y方向该方法可多次重复;在此也完成逐层的涂覆和熔化。
必要时,如果这些直线条12沿x方向如现有技术那样行进,搭接也是可能的。然而,通过本发明的燃烧斑3相对于现有技术而言在该燃烧斑3较小的端侧达到了一个沿x方向均匀且恒定的能量分布。
激光器就其激光波长这样来选择,使得该工件强烈吸收该激光射线束的能量,且/或反射较弱。例如,对于波长为1.06μm的钇铝石榴石激光器和对于高功率二极管激光器(0.81μm;0.94μm)就是这种情况。
图4示出了另一个射线束(燃烧斑3)沿x方向的强度分布。
燃烧斑3沿x方向在其剖面端部5相对于该燃烧斑3的中间区域具有一个增高的能源15能量输入强度36。于是表面张力效应可以被补偿。
图5示出了现有技术的方法过程。按照现有技术的方法,一层待敷设的材料在垂直于待加工表面长度的方向(x方向)上分别沿着与待加工表面区域相应的直线条12彼此相邻地涂覆在其上。这样一来形成各个焊道(在其上生长新材料的轨迹)的搭接或接触,它们由于几何结构关系导致了带有不能令人满意的结晶定向的非结晶外延生长。圆形的激光射线束2产生一个圆形的燃烧斑3。激光射线束2沿着x方向反复来回运动,且沿着z方向步进式地向前运动。

Claims (10)

1.一种在基板(18)上制造单晶结构、部件或工件的方法,其中,通过一个能源(15)的能量输入借助该能源(15)的燃烧斑(3)使该构件(6)的一个待加工表面(21)熔化,向该熔化区域送入材料(13),使送入的材料(13)完全熔化或者使送入的材料(13)与该表面(21)一起熔化,可以将该熔化的材料变成单晶结构,再让该熔化的材料凝固,其特征在于:所述燃烧斑(3)具有一个基本上为线形、椭圆形或矩形的几何形状。
2.按照权利要求1所述的方法,其特征在于:所述能量输入由一激光器(15)来完成。
3.按照权利要求1所述的方法,其特征在于:所述能量输入由电子束来完成。
4.按照权利要求1所述的方法,其特征在于:所述燃烧斑(3)通过能量输入产生,以形成一个带有基本上为线形、椭圆形或矩形几何形状的熔化区。
5.按照权利要求1所述的方法,其特征在于:所述燃烧斑(3)的大小在加工期间可改变。
6.按照权利要求1所述的方法,其特征在于:所述燃烧斑(3)具有剖面端部(5),所述燃烧斑(3)的剖面端部(5)具有一个相对于该燃烧斑(3)的中间区域被加大了的能量输入强度(36)。
7.按照权利要求1所述的方法,其特征在于:所述材料的送入通过至少一个材料供给器(30)来实现,并且所述材料的送入可以随时间和随地点而变化。
8.按照权利要求1所述的方法,其特征在于:所述燃烧斑(3)的温度可控制。
9.按照权利要求1或5所述的方法,其特征在于:所述燃烧斑(3)沿着进给方向(4)在基板(18)上方运动,该基板(18)具有一个添加材料(13)的区域,且该燃烧斑(3)与这一区域的几何形状这样相适配,使得该燃烧斑(3)在垂直于该进给方向(4)上的宽度与这一区域的宽度相适配。
10.按照权利要求1所述的方法,其特征在于:所述燃烧斑(3)沿着进给方向(4)在基板(18)上方运动,该进给方向(4)位于该待加工表面(21)的长度延伸方向,且该能源(15)产生一燃烧斑(3),该燃烧斑在垂直于进给方向(4)上的尺寸相应于该待加工表面(21)的整个宽度,并在唯一一次连续的进给运动中完全扫掠该待加工表面(21)以敷设一层由材料(13)构成的连续覆盖层。
CNB038004372A 2002-04-15 2003-03-21 制造单晶结构的方法 Expired - Fee Related CN1302156C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10216662 2002-04-15
DE10216662.5 2002-04-15
DE10243558.8 2002-09-19
DE10243558A DE10243558A1 (de) 2002-04-15 2002-09-19 Verfahren zum Herstellen von einkristallinen Strukturen

Publications (2)

Publication Number Publication Date
CN1516756A CN1516756A (zh) 2004-07-28
CN1302156C true CN1302156C (zh) 2007-02-28

Family

ID=29251761

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038004372A Expired - Fee Related CN1302156C (zh) 2002-04-15 2003-03-21 制造单晶结构的方法

Country Status (7)

Country Link
US (1) US7306670B2 (zh)
EP (1) EP1495166B1 (zh)
JP (1) JP2005522342A (zh)
CN (1) CN1302156C (zh)
DE (1) DE50307242D1 (zh)
ES (1) ES2285121T3 (zh)
WO (1) WO2003087439A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250081B2 (en) 2003-12-04 2007-07-31 Honeywell International, Inc. Methods for repair of single crystal superalloys by laser welding and products thereof
FR2874624B1 (fr) * 2004-08-30 2007-04-20 Snecma Moteurs Sa Procede de rechargement d'une piece metallique monocristalline ou a solidification dirigee.
US20060049153A1 (en) * 2004-09-08 2006-03-09 Cahoon Christopher L Dual feed laser welding system
CN101272880B (zh) 2005-07-22 2012-03-21 西门子公司 用于修补部件的方法
US7784668B2 (en) 2005-12-16 2010-08-31 United Technologies Corporation Repair method for propagating epitaxial crystalline structures by heating to within 0-100° f of the solidus
JP2009025119A (ja) * 2007-07-19 2009-02-05 General Electric Co <Ge> 輪郭測定装置及び動作方法
US8089028B2 (en) * 2007-07-24 2012-01-03 United Technologies Corp. Methods for repairing gas turbine engine knife edge seals
DE102008016170A1 (de) * 2008-03-28 2009-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauteil mit sich überlappenden Schweißnähten und ein Verfahren zur Herstellung
DE102009051479A1 (de) * 2009-10-30 2011-05-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
DE102009051823A1 (de) * 2009-11-04 2011-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristallines Schweißen von direktional verfestigten Werkstoffen
EP2322314A1 (de) * 2009-11-16 2011-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einkristallines Schweissen von direktional verfestigten Werkstoffen
US8618434B2 (en) * 2010-03-22 2013-12-31 Siemens Energy, Inc. Superalloy repair welding using multiple alloy powders
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
US8816240B2 (en) * 2011-08-04 2014-08-26 General Electric Company Cladding system and method for applying a cladding to a power generation system component
US10415390B2 (en) 2012-05-11 2019-09-17 Siemens Energy, Inc. Repair of directionally solidified alloys
EP2756915A1 (de) * 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Auftragsschweißen mit vorherigem Umschmelzen
US20150033561A1 (en) * 2013-08-01 2015-02-05 Gerald J. Bruck Laser melt particle injection hardfacing
EP2862663A1 (de) * 2013-10-18 2015-04-22 Siemens Aktiengesellschaft Verfahren zur direktionalen Verfestigtung einer Schweissnaht während des Laser-Auftragsschweissens eines Substrats
JP6370557B2 (ja) * 2014-01-30 2018-08-08 三菱重工業株式会社 肉盛溶接方法
JP6344004B2 (ja) * 2014-03-28 2018-06-20 国立大学法人大阪大学 単結晶の製造方法
DE102015202347A1 (de) * 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungseinrichtung, Bearbeitungsmaschine und Verfahren zum Herstellen einer Schicht eines dreidimensionalen Bauteils
DE102015219513B4 (de) * 2015-10-08 2022-05-05 MTU Aero Engines AG Reparaturverfahren für Dichtsegmente
EP3441162A1 (en) * 2017-08-11 2019-02-13 Siemens Aktiengesellschaft Method of additively manufacturing a structure on a pre-existing component out of the powder bed
JP2020121315A (ja) * 2019-01-29 2020-08-13 住友重機械ハイマテックス株式会社 金属肉盛層の形成方法
DE102021114560A1 (de) 2021-06-07 2022-12-08 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Herstellung eines Bauteils durch Schichtaufbau
CN113618083B (zh) * 2021-07-07 2023-02-10 哈尔滨工程大学 一种利用超声冲击调控激光增材制造钛材料组织与性能的方法
CN114505496A (zh) * 2022-02-11 2022-05-17 北京航空航天大学 一种激光增材制造过程中控制合金晶粒定向生长的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707217A (en) * 1986-05-28 1987-11-17 The United States Of America As Represented By The Secretary Of The Navy Single crystal thin films
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP1065026A1 (de) * 1999-06-03 2001-01-03 ALSTOM POWER (Schweiz) AG Verfahren zur Herstellung oder zur Reparatur von Kühlkanälen in einstristallinen Komponenten von Gasturbinen
CN1340110A (zh) * 1999-02-19 2002-03-13 大众汽车有限公司 处理部件表面的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143755A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Laser, zone melting device
JPS5655519A (en) * 1979-10-08 1981-05-16 Fanuc Ltd Converging device of laser beam
JPS6046892A (ja) * 1984-07-19 1985-03-13 Toshiba Corp レ−ザ−光照射方法
JPH0698506B2 (ja) * 1986-12-08 1994-12-07 トヨタ自動車株式会社 金属基体上への分散合金層の形成方法
US4878953A (en) * 1988-01-13 1989-11-07 Metallurgical Industries, Inc. Method of refurbishing cast gas turbine engine components and refurbished component
US5106010A (en) * 1990-09-28 1992-04-21 Chromalloy Gas Turbine Corporation Welding high-strength nickel base superalloys
US5312584A (en) * 1992-02-18 1994-05-17 General Motors Corporation Moldless/coreless single crystal castings of nickel-aluminide
US5640767A (en) * 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US5900170A (en) * 1995-05-01 1999-05-04 United Technologies Corporation Containerless method of producing crack free metallic articles by energy beam deposition with reduced power density
JPH11269683A (ja) * 1998-03-18 1999-10-05 Armco Inc 金属表面から酸化物を除去する方法及び装置
US6333484B1 (en) * 2000-03-17 2001-12-25 Chromalloy Gas Turbine Corporation Welding superalloy articles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707217A (en) * 1986-05-28 1987-11-17 The United States Of America As Represented By The Secretary Of The Navy Single crystal thin films
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
CN1340110A (zh) * 1999-02-19 2002-03-13 大众汽车有限公司 处理部件表面的方法和装置
EP1065026A1 (de) * 1999-06-03 2001-01-03 ALSTOM POWER (Schweiz) AG Verfahren zur Herstellung oder zur Reparatur von Kühlkanälen in einstristallinen Komponenten von Gasturbinen

Also Published As

Publication number Publication date
DE50307242D1 (de) 2007-06-21
EP1495166A1 (de) 2005-01-12
WO2003087439A1 (de) 2003-10-23
US20040112280A1 (en) 2004-06-17
US7306670B2 (en) 2007-12-11
CN1516756A (zh) 2004-07-28
ES2285121T3 (es) 2007-11-16
EP1495166B1 (de) 2007-05-09
JP2005522342A (ja) 2005-07-28

Similar Documents

Publication Publication Date Title
CN1302156C (zh) 制造单晶结构的方法
US11020955B2 (en) Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
KR101774023B1 (ko) 방향성 응고 합금들의 수리
US20050109818A1 (en) Welding method
CN107790717A (zh) 一种实现镍基合金晶体学织构调控的准连续激光金属3d打印方法
CN100564614C (zh) 对单晶金属片或定向固化金属片表面修整的方法
CN107030283B (zh) 使用二极管激光器光纤阵列在激光粉末床熔合加性制造中的凝固控制
JP2005522342A5 (zh)
US20150096963A1 (en) Laser cladding with programmed beam size adjustment
US20070138238A1 (en) Repair method for propagating epitaxial crystalline structures
CN103668461A (zh) 一种镍基超合金Rene80定向生长柱晶及单晶合金制备及零部件制造方法
CN111975006B (zh) 航空发动机叶片的修复方法
US11331727B2 (en) Method of additively manufacturing a structure on a pre-existing component out of the powder bed
CA2423146C (en) A method of welding single crystals
CN105002493B (zh) 一种不等宽损伤件多道均匀搭接激光熔覆修复方法
Rottwinkel et al. Challenges for single-crystal (SX) crack cladding
CN108115249B (zh) 一种用于修复单晶或定向晶合金叶片的***
US4498926A (en) Method for producing eutectics as thin films using a laser device as a heat source
US4498925A (en) Method for producing eutectics as thin films using an arc lamp, as a heat source in a line heater
US4498923A (en) Method for producing eutectics as thin films using a quartz lamp as a heat source in a line heater
US4498924A (en) Method for producing eutectics as thin films using a line heater
CN106342014B (zh) 一种用激光定向凝固技术对零件进行修复的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070228

Termination date: 20140321