CN1299295A - Method of selective photothermolysis - Google Patents

Method of selective photothermolysis Download PDF

Info

Publication number
CN1299295A
CN1299295A CN98814001A CN98814001A CN1299295A CN 1299295 A CN1299295 A CN 1299295A CN 98814001 A CN98814001 A CN 98814001A CN 98814001 A CN98814001 A CN 98814001A CN 1299295 A CN1299295 A CN 1299295A
Authority
CN
China
Prior art keywords
target
surrounding tissue
electromagnetic radiation
light
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98814001A
Other languages
Chinese (zh)
Other versions
CN1193805C (en
Inventor
齐奥恩·阿扎尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DELIGHT TECHNOLOGIES Ltd
Original Assignee
DELIGHT TECHNOLOGIES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DELIGHT TECHNOLOGIES Ltd filed Critical DELIGHT TECHNOLOGIES Ltd
Publication of CN1299295A publication Critical patent/CN1299295A/en
Application granted granted Critical
Publication of CN1193805C publication Critical patent/CN1193805C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B2018/1807Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using light other than laser radiation

Abstract

A method and device for selective photothermolysis of a surgical target within surrounding tissue. The target and the surrounding tissue are heated to about 60 deg.C. Then the target is heated to the point of coagulation, preferably by monochromatic light. The temperature difference between the coagulating target and the surrounding tissue is sufficiently mild that heat duffusing out of the target does not damage the surrounding tissue, even in the case of a relatively large target such as varicose veins.

Description

Method of selective photothermolysis
Affiliated field and background technology
The present invention is relevant with the skin surgery operation, and relevant with selective light pyrolysis therapy specifically, this method is used under the situation of not damaging surrounding health tissue, too greatly can not be with the target of present known method elimination, as cirso-to such an extent as to eliminate.
Selective light pyrolysis therapy is a kind of surgical method (" selective light pyrolysis therapy: carry out accurate microsurgery by the radiating selectivity absorption of paired pulses " that is proposed by Anderson and Parrish in nineteen eighty-three, science, 220 volumes, the 524-527 page or leaf), in order under situation, remove on the skin or near the tissue some pathological changes or ugly it to surrounding health tissue's minimum degree damage.Removedly organize prerequisite characteristics to be, it compares significant strong under a certain electromagnetic radiation wavelength with surrounding tissue to the absorption of light.This method comprises with the pulsed electromagnetic radiation that is preferentially absorbed by target carries out radiation to target and surrounding tissue, and electromagnetic radiation is generally visible radiation.The energy of pulse and persistent period should make between target is heated to about 70 ℃ about 80 ℃, the protein coagulating of target under this temperature.Because target is better than surrounding tissue for the absorption of incident radiation, surrounding tissue is that the utmost point heats slightly.
Usually, radiation source is a laser instrument, for example the flash lamp pulsed dye laser.The advantage of lasing light emitter is its inherent monochromaticity.Other light source comprises the wideband light source that is used in combination with narrow-band filter, and what for example Gustaffson introduced in WO 91/15264 is such.A kind of similar device is known as " Photoderm-VL ", is made by the ESC medical system.
For selective light pyrolysis therapy, suitable target comprises: birthmark, port wine stains, arachnoid vein and cirso-, owing to contain the erythrocyte that contain HbO2 Oxyhemoglobin higher, so all these targets are redder than surrounding tissue than surrounding tissue.The light wavelength that Anderson and Parrish use is 577 nanometers, corresponding to the absorption band of the HbO2 Oxyhemoglobin of 577 nanometers.Subsequently 585 nanometers be confirmed as be more effective wavelength (Tian, Morrison and Kurban " 585 nanometers are used to handle port wine stains ", shaping and toolability surgical operation, 86 the volume, the 6th phase, 1112-1117 page or leaf).
For the restriction in pulse duration is that surrounding tissue mustn't be heated to it and also begins the temperature of solidifying.When target was heated, heat began from target to colder surrounding tissue diffusion.For making surrounding tissue not be heated to the temperature of damaged, pulse length must be maintained on the thermal relaxation time order of magnitude of target.For less target, for example birthmark, port wine stains, arachnoid vein, typical pulse length is on the hundred microsecond orders of magnitude, and for cirso-, the pulse length that should adopt is on the millisecond order of magnitude.
When using selective light pyrolysis therapy to handle cirso-, produce complex situations.Normal structure around the cirso-generally comprises other blood vessel, mainly is blood capillary, also absorbs incident radiation, but owing to more much smaller than cirso-, therefore has the thermal relaxation time of much shorter.Therefore, organize the thermal capacitance of diffusion easily surrounding tissue to be heated to the temperature of damaged towards periphery from these other blood vessels, thereby produce scar.
Invention does not damage surrounding tissue and effectively removes big surgical operation target, cirso-for example, selective light pyrolysis therapy, its demand is extensively approved, and is had significant advantage.
Summary of the invention
According to the present invention, it provides a kind of method that the target of being surrounded by surrounding tissue is carried out selective light pyrolysis treatment, and this method comprises the steps: that (a) is heated to target and surrounding tissue more than the normal body temperature; (b) target is heated to about 70 ℃ about 80 ℃ between.
According to the present invention, it provides a kind of equipment that is used for the target of being surrounded by surrounding tissue is carried out selective light pyrolysis treatment, and this equipment comprises: (a) in order to produce the device of broadband electromagnetic radiation; (b) in order to producing the device that at least one is essentially monochromatic pulse of electromagnetic radiation, described at least one each pulse and described broadband electromagnetic radiation that is essentially among the monochromatic pulse of electromagnetic radiation is synchronous basically.
Method of the present invention is based on such fact, promptly from proportional to the thermal diffusion speed and the thermal gradient object of colder object than hot object.Therefore, surrounding tissue is heated to above a certain temperature of normal body temperature, but be not enough to produce damage, have only at the moment and again target is heated to freezing point, so produced a kind of like this environment, under this environment, the thermal gradient between one side target and peripheral vessels, thermal gradient between target and other surrounding tissue on the other hand is unlikely to make surrounding tissue to produce damage all enough for a short time.In the context of the present invention, " more than the normal body temperature " is meant a temperature that is at least about 40 ℃, but preferably about 55 ℃ to 65 ℃ about between a certain temperature.And the monochromatic light pulse that is used for adding thermal target can have lower energy and shorter persistent period than the monochromatic light pulse of previous methods, because described target is from higher initial temperature heating.
Device of the present invention reaches this purpose by using the broadband electromagnetic radiation circumference to organize.The wave-length coverage of electromagnetic radiation of the present invention comprises all effective electromagnetic radiation wavelength, and the effective spectrum that is used for this purposes comprises microwave radiation; But the spectrum that preferably is used for circumference tissue and target is visible radiation.Preferred embodiment in order to generation broadband light (white light) is the high-intensity light source lamp, as xenon arc lamp.This device comprises that one makes the light that sends from illuminator produce the mechanism of pulse.This mechanism can comprise the loop (for example, this mechanism can turn round by opening and close illuminator) in order to the electric current of control input illuminator; Maybe can comprise mechanical shutter.
Two kinds of methods that are essentially monochromatic radiation that are used to add thermal target in order to generation are arranged.First kind is laser instrument, and it turns round under required wavelength, is preferably placed at about 570 nanometers to 610 nanometers wavelength between left and right.Second kind is will be derived from the light of high-intensity light source lamp by suitable wavelength selection system, for example a narrow-band filter or a monochromator.
Device of the present invention makes monochromatic light pulse and broadband electromagnetic radiation synchronous, what adopt is well-known method, be opened and before further adding thermal target in the monochromatic light pulse guaranteeing, surrounding tissue fully is heated, simultaneously with guarantee to organize around have an opportunity to cool off before target be further heated.In a word, this means that each monochromatic light pulse and a wideband pulse are synchronous basically so if broadband electromagnetic radiation is carried out pulse.Wherein, " synchronous basically " meaning is the monochromatic light pulse or is opened when wideband pulse is opened, and perhaps is opened immediately after wideband pulse is closed.
Brief description of drawings
With reference to accompanying drawing, the present invention is described by way of example here.
Wherein, Fig. 1 is the sketch of the preferred embodiment of apparatus of the present invention, and wherein monochromatic light source is a laser instrument;
Fig. 2 is the burst length table of Fig. 1 device;
Fig. 3 is the sketch of the preferred embodiment of apparatus of the present invention, and wherein monochromatic light source is identical with the light source of broadband light;
Fig. 4 is the burst length table of Fig. 3 device;
Fig. 5 is an alternate embodiment of Fig. 4 device;
Fig. 6 is the burst length table of Fig. 5 device.
The explanation of preferred embodiment
The present invention relates to a kind of method and apparatus that carries out selective light pyrolysis treatment for sizable surgical operation target.Specifically, the present invention can be used to remove cirso-and the similar tissue generation pathological changes or ugly, has only the damage of minimum degree simultaneously for surrounding health tissue.
The principle of selective light pyrolysis therapy of the present invention and the operation of device thereof can be understood better with reference to accompanying drawing and following explanation.
Refer now to accompanying drawing, Fig. 1 is the sketch of the preferred embodiment of apparatus of the present invention.The effect of high-intensity light source lamp 10 is that it is the light source of broadband light (white light) 14.Because the light all directions that lamp 10 sends have, parabolic shape reflector 12 is provided with concavees lens 16 and uses so that broadband light 14 is parallel, so all energy that sent by illuminator 10 all are sent on target and the surrounding tissue basically.Laser 20 also head for target and surrounding tissue sends basically monochromatic light 24, the wavelength of preferred 585 nanometers.Control system 30 provides energy to illuminator 10 and laser 20, opens illuminator 10 and laser 20 according to pass shown in Figure 2 simultaneously.
Preferably, illuminator 10 is an xenon arc lamp.Preferably, laser 20 is the flash lamp pulsed dye laser, for example the ScleroLASER that is made by Candela Corporation of Wayland MA.
Fig. 2 is the burst length table of Fig. 1 device.Solid line is represented the pulse duration and the intensity of broadband light 14 among Fig. 2.Dotted line is represented the persistent period and the intensity of monochromatic light 24 pulses among Fig. 2.Broadband light 14 is at T 0Constantly be opened, keep the sufficiently long time then until T 2Constantly, thus the target of making and surrounding tissue are heated to about 60 ℃.When temperature of tissue surrounding when the required final value, monochromatic light 24 is at T 1Constantly be opened, be retained to T then 3Constantly, the time long enough of maintenance so that target solidify, thereby but can not too grow surrounding tissue is sustained damage.Preferably, the persistent period of monochromatic light pulse about 0.1 millisecond to 10 milliseconds about between.
Fig. 3 is the sketch of another preferred embodiment of apparatus of the present invention.In this embodiment, illuminator 10 roles are that for target and surrounding tissue, it both had been the light source of broadband radiation, are the light source of the monochromatic radiation that is associated with it again.In this embodiment, mechanical shutter 32 usefulness so that broadband light 14 alternately by or get clogged, thereby make the light that from this equipment, sends produce pulse.The circular filter of one rotation has two parts, and white portion 36 and chrominance section 38 are in order to filter the wideband pulse by shutter 32.White portion 36 all is attenuated to substantially the same degree with the intensity of all wavelengths, therefore provides the wideband pulse with suitable intensity and persistent period that target and surrounding tissue are heated to about 60 ℃.Chrominance section 38 will be that light intensity beyond the narrow band light at center weakens divided by 585 nano wave lengths.Control system 30 makes shutter 32 and filter 34 synchronized movement provide light pulse with burst length table according to Fig. 4.
Notice that illuminator 10 is in the embodiments of figure 3 than having higher energy in the embodiment in figure 1.Reason is that in the embodiments of figure 3, illuminator 10 must provide near enough light energies of 585 nanometers that is positioned at that target is solidified.Just because of the existence of this reason, just require filter 34 to have white portion 36 in this embodiment.
Fig. 4 is the burst length table of Fig. 3 equipment.Identical with Fig. 2, solid line is represented wideband pulse, and dotted line is represented the monochromatic light pulse.At T 0Constantly, along with the change of filter 34 positions, make white portion 36 become the path of broadband light 14, shutter 32 is opened and is allowed broadband light 14 by white light part 36, and light intensity is weakened.At T 1Constantly, filter 34 rotates, and chrominance section 38 inserts the light path of broadband light 14.At T 2Constantly, all broadband light are all by chrominance section 38, to such an extent as to the light that sends from this equipment is essentially monochromatic light.At T 3Constantly, shutter 32 is closed, and the monochromatic light pulse is terminated.
Fig. 5 is the sketch of Fig. 3 alternate device.In the equipment of Fig. 5, removable mirror 40 is used for and will passes through the luminous reflectance of shutter 32 to fixed mirror 41 and monochromator 42.The equipment of Fig. 5 produces pulse by burst length table shown in Figure 6, and wherein, solid line is still represented wideband pulse, and dotted line is represented the monochromatic light pulse.At T 0Constantly, along with index glass 40 is withdrawn from, shutter 32 is opened, and makes broadband light 14 by being used for weakening the filter 44 of intensity, thereby arrives target and surrounding tissue.Alike with the white portion 36 of filter 34, the filter 44 that is used for weakening intensity all is attenuated to substantially the same degree with the light intensity of all wavelengths, so that the wideband pulse with suitable persistent period and intensity to be provided target and surrounding tissue is heated to about 60 ℃.At T 1Constantly, removable mirror 40 is got back to original position, and wideband pulse is stopped, and reflect broadband light 14 simultaneously and make it pass through fixed mirror 41, monochromator 42, thus produce the monochromatic light pulse.So the monochromatic light pulse produces after wideband pulse stops immediately.Light by monochromator 42 is the narrower spectrographic light at center with wavelength 585 nanometers just.At T 2Constantly, shutter 32 is closed, and makes the monochromatic light pulse termination.
Although the present invention is illustrated at limited embodiment to the greatest extent, it should be understood that this invention can carry out numerous changes, revise and use.

Claims (13)

1. method that the target of being surrounded by surrounding tissue is carried out selective light pyrolysis treatment, this method comprises the steps:
(a) together be heated to target and surrounding tissue more than the normal body temperature; And
(b) further target is heated to about 70 ℃ about 80 ℃ between.
2. according to the process of claim 1 wherein the described a certain temperature that is meant more than the normal body temperature between being heated to about 55 ℃ about 65 ℃ that target and surrounding tissue together are heated to.
3. described target and surrounding tissue together are heated to more than the normal body temperature by using electromagnetic radiation to realize according to the process of claim 1 wherein.
4. according to the method for claim 3, wherein said electromagnetic radiation is meant microwave radiation.
5. according to the method for claim 3, wherein said electromagnetic radiation is pulse.
6. according to the method for claim 5, wherein said electromagnetic radiation is to be produced by the light source that comprises a lamp at least.
7. according to the method for claim 6, wherein said pulse is to be produced by the mechanism that comprises at least one shutter.
8. according to the process of claim 1 wherein that described further heating to target realizes by using pulse, comes down to monochromatic electromagnetic radiation.
9. method according to Claim 8, the characteristics of wherein said electromagnetic radiation be its wavelength about 570 nanometers to about 610 nanometers between.
10. method according to Claim 8, wherein said electromagnetic radiation is produced by laser instrument.
11. method according to Claim 8, wherein said electromagnetic radiation is produced by a system, and this system comprises:
(a) at least one illuminator;
(b) a wavelength selection mechanism.
12. according to the method for claim 11, wherein said wavelength selection mechanism comprises at least one wave filter.
13. according to the method for claim 11, wherein said wavelength selection mechanism comprises at least one monochromator.
CNB988140012A 1996-09-04 1998-04-30 Method of selective photothermolysis Expired - Fee Related CN1193805C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/707,562 US5759200A (en) 1996-09-04 1996-09-04 Method of selective photothermolysis
PCT/US1998/008657 WO1999056824A1 (en) 1996-09-04 1998-04-30 Method of selective photothermolysis

Publications (2)

Publication Number Publication Date
CN1299295A true CN1299295A (en) 2001-06-13
CN1193805C CN1193805C (en) 2005-03-23

Family

ID=26794099

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988140012A Expired - Fee Related CN1193805C (en) 1996-09-04 1998-04-30 Method of selective photothermolysis

Country Status (11)

Country Link
US (1) US5759200A (en)
EP (1) EP1079895A4 (en)
JP (1) JP4153165B2 (en)
CN (1) CN1193805C (en)
AU (1) AU748623B2 (en)
BR (1) BR9815839A (en)
CA (1) CA2330029C (en)
EA (1) EA002506B1 (en)
IL (2) IL139336A0 (en)
MX (1) MXPA00010474A (en)
WO (1) WO1999056824A1 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9618051D0 (en) * 1996-08-29 1996-10-09 Sls Wales Ltd Wrinkle removal
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US6214034B1 (en) * 1996-09-04 2001-04-10 Radiancy, Inc. Method of selective photothermolysis
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
NO972244L (en) * 1997-05-15 1998-11-16 Photocure Device for illumination of a defined area
EP0991372B1 (en) 1997-05-15 2004-08-04 Palomar Medical Technologies, Inc. Apparatus for dermatology treatment
JPH11104145A (en) * 1997-09-30 1999-04-20 Nidek Co Ltd Laser therapeutic device
AUPP176898A0 (en) * 1998-02-12 1998-03-05 Moldflow Pty Ltd Automated machine technology for thermoplastic injection molding
ES2245506T3 (en) 1998-03-12 2006-01-01 Palomar Medical Technologies, Inc. ELECTROMAGNETIC RADIATION APPLICATION SYSTEM ON SKIN.
EP1066086B1 (en) * 1998-03-27 2013-01-02 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
WO1999051157A1 (en) * 1998-04-07 1999-10-14 The General Hospital Corporation Apparatus and methods for removing blood vessels
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
RU2181571C2 (en) 1999-03-18 2002-04-27 Закрытое акционерное общество "LC" Device and method for performing therapeutic and cosmetic phototreatment of biological tissue
AU1582100A (en) 1999-12-02 2001-06-12 Radiancy Inc. Selective photothermolysis
EP2316372A1 (en) * 2000-01-25 2011-05-04 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
GB2370229A (en) * 2000-12-22 2002-06-26 Icn Photonics Ltd Light delivery system for improving the appearance of skin
DE60124585T2 (en) * 2000-12-28 2007-10-04 Palomar Medical Technologies, Inc., Burlington Apparatus for therapeutic electromagnetic radiation therapy of the skin
US7090497B1 (en) 2001-02-21 2006-08-15 Harris David M Method of periodontal laser treatment
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US20040158300A1 (en) * 2001-06-26 2004-08-12 Allan Gardiner Multiple wavelength illuminator having multiple clocked sources
US7150710B2 (en) * 2001-06-26 2006-12-19 Photomed Technologies, Inc. Therapeutic methods using electromagnetic radiation
AU2002316500A1 (en) 2001-07-02 2003-01-21 Palomar Medical Technologies, Inc. Laser device for medical/cosmetic procedures
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
US20040127892A1 (en) * 2002-01-31 2004-07-01 Harris David M. Periodontal laser and methods
WO2003077783A1 (en) * 2002-03-12 2003-09-25 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
US20080177359A1 (en) * 2002-05-03 2008-07-24 Advanced Light Technology, Llc. Differential photochemical and photomechanical processing
US20070239143A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
CA2489506A1 (en) * 2002-06-19 2003-12-31 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
AU2003275471A1 (en) * 2002-10-07 2004-05-04 Palomar Medical Technologies, Inc. Apparatus for performing photobiostimulation
CA2501098C (en) 2002-10-23 2014-04-08 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7354433B2 (en) * 2003-02-28 2008-04-08 Advanced Light Technologies, Llc Disinfection, destruction of neoplastic growth, and sterilization by differential absorption of electromagnetic energy
US20110040295A1 (en) * 2003-02-28 2011-02-17 Photometics, Inc. Cancer treatment using selective photo-apoptosis
EP1613202B1 (en) 2003-03-27 2011-02-09 The General Hospital Corporation Apparatus for dermatological treatment and fractional skin resurfacing
US7184184B2 (en) 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
EP2343021A1 (en) 2004-04-01 2011-07-13 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US20070055224A1 (en) * 2004-04-29 2007-03-08 Lee Fred T Jr Intralumenal microwave device
US7244254B2 (en) * 2004-04-29 2007-07-17 Micrablate Air-core microwave ablation antennas
US7467015B2 (en) 2004-04-29 2008-12-16 Neuwave Medical, Inc. Segmented catheter for tissue ablation
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
FR2878185B1 (en) * 2004-11-22 2008-11-07 Sidel Sas PROCESS FOR MANUFACTURING CONTAINERS COMPRISING A HEATING STEP BY MEANS OF A COHERENT ELECTROMAGNETIC RADIATION BEAM
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
WO2006127847A2 (en) * 2005-05-24 2006-11-30 Micrablate, Llc Microwave surgical device
WO2006138382A2 (en) 2005-06-14 2006-12-28 Micrablate, Llc Microwave tissue resection tool
AU2006281029A1 (en) * 2005-08-17 2007-02-22 Y.K. Holdings Ltd. Lice extermination system and method
BRPI0616167A2 (en) 2005-09-15 2011-06-07 Palomar Medical Tech Inc optical skin characterization device
US20070288079A1 (en) * 2006-03-24 2007-12-13 Micrablate Energy delivery system and uses thereof
WO2007112081A1 (en) 2006-03-24 2007-10-04 Micrablate Transmission line with heat transfer ability
US8672932B2 (en) 2006-03-24 2014-03-18 Neuwave Medical, Inc. Center fed dipole for use with tissue ablation systems, devices and methods
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US20080172111A1 (en) * 2007-01-16 2008-07-17 The General Hospital Corporation Method and apparatus for selective photothermolysis of veins
FR2913210B1 (en) * 2007-03-02 2009-05-29 Sidel Participations IMPROVEMENTS IN THE HEATING OF PLASTIC MATERIALS BY INFRARED RADIATION
FR2917005B1 (en) * 2007-06-11 2009-08-28 Sidel Participations HEATING FACILITY FOR PREFORMING BODIES FOR BLOWING CONTAINERS
WO2009146077A1 (en) * 2008-04-03 2009-12-03 The General Hospital Corporation Method and apparatus for selective photothermolysis of veins
US20100047734A1 (en) * 2008-08-20 2010-02-25 PathoLase, Inc. Periodontal laser treatment and laser applicator
US8939966B2 (en) * 2008-08-21 2015-01-27 University Of Florida Research Foundation, Inc. Differential laser-induced perturbation (DLIP) for bioimaging and chemical sensing
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
DK2459096T3 (en) 2009-07-28 2015-01-19 Neuwave Medical Inc ablation device
EP2566410B1 (en) 2010-05-03 2020-12-09 Neuwave Medical, Inc. Energy delivery systems
EP3769712A1 (en) 2011-12-21 2021-01-27 Neuwave Medical, Inc. Energy delivery systems
WO2013158299A1 (en) 2012-04-18 2013-10-24 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
JP2014018320A (en) * 2012-07-13 2014-02-03 Scandinavia Corp Thermal light irradiation device
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
EP3367942B1 (en) 2015-10-26 2021-01-20 Neuwave Medical, Inc. Energy delivery systems
US10531917B2 (en) 2016-04-15 2020-01-14 Neuwave Medical, Inc. Systems and methods for energy delivery
US10806513B2 (en) * 2018-01-16 2020-10-20 Bin Rao Methods and apparatus for optimizing selective photothermolysis
KR102627248B1 (en) 2018-02-26 2024-01-19 싸이노슈어, 엘엘씨 Q-switched cavity dumping subnanosecond laser
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
US10799292B2 (en) * 2018-05-04 2020-10-13 Bin Rao High power tunable optical parametric oscillator for selective photothermolysis laser surgeries
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU186081B (en) * 1981-09-02 1985-05-28 Fenyo Marta Process and apparatus for stimulating healing of pathologic points on the surface of the body first of all of wounds, ulcera and other epithelial lesions
JPS60137342A (en) * 1983-12-27 1985-07-20 オリンパス光学工業株式会社 Electronic scope
EP0202265B1 (en) * 1984-10-25 1990-04-04 Candela Laser Corporation Long pulse tunable dye laser
WO1991013652A1 (en) * 1990-03-14 1991-09-19 Candela Laser Corporation Apparatus for treating abnormal pigmentation of the skin
SE465953B (en) * 1990-04-09 1991-11-25 Morgan Gustafsson DEVICE FOR TREATMENT OF UNDESECTED EXTERNAL ACCOMMODATIONS
US5071417A (en) * 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
US5860967A (en) * 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5604629A (en) * 1993-07-27 1997-02-18 The United States Of America As Represented By The Secretary Of The Navy Discrete vacuum ultra violet reflective interference filter
US5441531A (en) * 1993-10-18 1995-08-15 Dusa Pharmaceuticals Inc. Illuminator and methods for photodynamic therapy
US5521392A (en) * 1994-04-29 1996-05-28 Efos Canada Inc. Light cure system with closed loop control and work piece recording
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis

Also Published As

Publication number Publication date
IL139336A0 (en) 2001-11-25
CA2330029A1 (en) 1999-11-11
EA002506B1 (en) 2002-06-27
CN1193805C (en) 2005-03-23
EP1079895A4 (en) 2005-06-22
JP4153165B2 (en) 2008-09-17
AU7169598A (en) 1999-11-23
BR9815839A (en) 2000-12-26
JP2002513658A (en) 2002-05-14
EA200001132A1 (en) 2001-04-23
IL139336A (en) 2008-11-03
EP1079895A1 (en) 2001-03-07
WO1999056824A1 (en) 1999-11-11
MXPA00010474A (en) 2002-10-17
AU748623B2 (en) 2002-06-06
CA2330029C (en) 2012-08-07
US5759200A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
CN1193805C (en) Method of selective photothermolysis
AU742982B2 (en) Pulsed filament lamp for dermatological treatment
US5968034A (en) Pulsed filament lamp for dermatological treatment
EP0565331B1 (en) Device for therapeutic electromagnetic treatment
EP0991372B1 (en) Apparatus for dermatology treatment
AU756025B2 (en) Selective photothermolysis of the skin
US7097656B1 (en) Device for the therapeutic and cosmetic photo-processing of biological tissue and method for using the same
US5571098A (en) Laser surgical devices
AU726267B2 (en) Method and apparatus for skin rejuvenation and wrinkle smoothing
JP2004530464A (en) Apparatus and method for photocosmetic and photoderma procedures
CA2576077A1 (en) Optical scanning device
CA2398238A1 (en) Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US20040087889A1 (en) Therapeutic treatment device
AU2002300881B2 (en) Method and apparatus for heating a target
KR100504990B1 (en) Apparatus for selective photothermolysis
CN112438799B (en) Tip for multibeam tissue treatment
LASER et al. HO-YAG
AU2006201454A1 (en) Apparatus and method for treatment of skin
IL101547A (en) Skin treatment device with incoherent pulsed light source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050323

Termination date: 20150430

EXPY Termination of patent right or utility model