CN1256503C - 测量地层现场静态温度的方法 - Google Patents

测量地层现场静态温度的方法 Download PDF

Info

Publication number
CN1256503C
CN1256503C CNB028038169A CN02803816A CN1256503C CN 1256503 C CN1256503 C CN 1256503C CN B028038169 A CNB028038169 A CN B028038169A CN 02803816 A CN02803816 A CN 02803816A CN 1256503 C CN1256503 C CN 1256503C
Authority
CN
China
Prior art keywords
fluid
stratum
temperature
center conduit
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028038169A
Other languages
English (en)
Other versions
CN1486394A (zh
Inventor
***·N·哈舍姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1486394A publication Critical patent/CN1486394A/zh
Application granted granted Critical
Publication of CN1256503C publication Critical patent/CN1256503C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Earth Drilling (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种测量由井孔所贯穿的地层的现场温度的方法,包括:将一工具向下放到井孔内的一预定位置,所述工具包括一具有一入口并设有一与流体相接触的温度传感器的中央导管,流体分析装置,以及流体排出装置;仅使地层流体通过中央导管;分析地层流体;以及连续地测量温度,直至地层流体是未污染的流体,将地层的现场静态温度确定为未污染的地层流体的温度。本发明的测量方法比现有的方法更精确。

Description

测量地层现场静态温度的方法
技术领域
本发明涉及在钻井阶段的井中测量地层现场静态温度。停止循环亦指关井。停止循环使井孔充满钻井泥浆,而钻井泥浆的温度通常不同于未受干扰地层的温度。
背景技术
一种测量这种温度的方法为:将一温度计放下至充满钻井泥浆的井孔内,并记录预定深度处的温度,该温度为中止循环后的时间(Δt)的函数。所述温度计可为一自装备式温度记录器或一表面记录温度计。当温度不随时间变化时,即可认为该恒定温度为地层现场静态温度。但是,上述方法较为费时。
下面为上述方法的一种改进方法。在该方法中,绘出温度相对于log((tk+Δt)/Δt)的关系曲线,其中tk为循环时间,Δt为中止循环后的时间。用外推法所求出的log((tk+Δt)/Δt)的结果基本上等于零,这意味着循环时间相对于中止循环后的时间可被忽略不计。由外推法所求出的温度即可认为是地层现场静态温度。
但是,如将循环时间弄错,则会对外推温度产生很大的影响。而这种错误是很容易产生的,例如当钻井阶段完成之后,钻工牵引着钻头向上行进数百米,并且在关井之前,为了清洁钻头,循环要持续若干小时。在这种情况下,钻工将报告出特定阶段钻探所需的循环时间与清洁钻头所需时间的总和,作为循环时间。但是为了求出温度记录,循环时间应为特定阶段钻探所需的循环时间。
发明内容
本发明的一个目的是提供一种更为精确的现场静态温度的测量方法。
为此,本发明提供了一种由井孔所贯穿的地层的现场静态温度的测量方法,该测量方法包括如下步骤:
a)将一工具向下放到钻井内的一预定位置,所述工具包括一具有一入口并设有一与流体相接触的温度传感器的中央导管,流体分析装置,以及用于排出流体的装置;
b)在地层和中央导管入口之间形成封闭式流体连通;
c)使地层流体通过中央导管;
d)分析地层流体;以及
e)连续地测量温度,直至地层流体是未污染的流体,将地层的现场静态温度确定为未污染的地层流体的温度。
下面将对本发明作更为详细的描述。本发明提供了测量由井孔所贯穿地层的现场静态温度的测量方法,该方法的第一步为将一工具向下放到井孔内的一预定位置,所述工具包括一具有一入口并设有一与流体相接触的温度传感器的中央导管,流体分析装置,以及流体排出装置。所述预定位置可为井孔的底部,或为地层中欲对地层现场静态温度进行测量的一位置处。所述工具通过例如一钢丝绳放下至井孔内。
然后,在地层和中央导管入口之间形成封闭式流体连通(exclusivefluid communication)。为了形成封闭式流体连通,将一探测器伸入地层内,其中探测器的出口与工具的中央导管入口直接以流体连通。由于探测器的入口位于地层内,因此存在于井孔内的钻井泥浆无法进入中央导管,从而在地层和中央导管入口之间形成了封闭式流体连通,同时井孔流体则被隔离。
然后使地层流体通过中央导管。此过程借助于一抽吸泵完成,该抽吸泵将地层流体经探测器吸入中央导管,并将地层流体由中央导管排出。可以理解,在钻井孔期间,钻井泥浆会侵入地层。因此,当地层流体被抽出时,首先钻井泥浆会被抽出,然后钻井泥浆和原始地层流体的混合物被抽出,最后未污染地层流体才被抽出。
当地层流体通过中央导管时,对其进行分析以测定其成分。
然后连续测量地层流体的温度,直至地层流体基本上为未污染的流体。申请人发现,未污染的地层流体的温度不单纯是流体的温度,而且还确实是现场静态温度。
在实际测量过程中,温度和成分均被记录,而地层的现场静态温度即为基本上未污染的地层流体的温度。
由于在本发明的方法中,未污染地层流体的温度是被测出来的,所以这种方法比公知方法更为准确。
另外,本发明的方法可通过一用于采集地层流体样品的工具加以实施,例如Schlumberger的模块化动态地层测试器(ModularDynamic Formation Tester)工具。该工具还包括一用于校准压力传感器的精确温度计,该精确温度计的输出信号可用于本发明的方法中。本领域公知的其他可采用的合适工具有Halliburton的重复动态测试器和Western Atlas的贮层特征仪器(reservoir characterizationinstrument)。
如果烃类储层流体是粘度较高的所谓重油,那么将难以获取具有代表性的储层流体的样品。为了获取具有代表性的样品,形成封闭式流体连通的步骤还包括启动设置于探测器附近的加热装置以加热地层。
作为一个合适的实施例,探测器与组件中的封隔器垫相连,而加热装置则设置于封隔器垫中。作为可选的实施例,加热装置设置于工具上。加热装置可以是产生微波、光波或红外波的装置。加热装置还可以是电加热器、化学加热器或核能加热器。
本发明的方法同样可适用于带套管的井孔。在这种情形下,将工具放下至井孔内的步骤包括两个步骤。首先在需确定温度的位置处形成穿过套管壁进入地层内的一射孔组,其中射孔组包括至少一个伸入地层内的射孔。然后将工具放下至套管井孔内。该工具还包括设置于中央导管入口两侧的一上封隔器和一下封隔器,其中,中央导管开口于下封隔器的下方或上封隔器的上方,并且上、下封隔器之间的距离大于一射孔组的高度。
形成封闭式流体连通这一步骤则包括设置封隔器,从而使射孔组跨于封隔器之间。

Claims (3)

1.一种测量由井孔所贯穿的地层的现场静态温度的方法,其特征在于,所述方法包括以下步骤:
a)将一工具向下放到井孔内的一预定位置,所述工具包括一具有入口并设有一与流体相接触的温度传感器的中央导管,流体分析装置,以及用于排出流体的装置;
b)在所述地层和所述中央导管入口之间形成封闭式流体连通;
c)使地层流体通过所述中央导管;
d)分析所述地层流体;以及
e)连续地测量温度,直至地层流体是未污染的流体,将地层的现场静态温度确定为未污染的地层流体的温度。
2.根据权利要求1所述的方法,其特征在于,在所述地层和所述中央导管入口之间形成封闭式流体连通的步骤包括:将一探测器伸入所述地层中,所述探测器具有一与所述工具的中央导管入口直接流体连通的出口。
3.根据权利要求1所述的方法,其特征在于,所述地层由带套管的井孔所贯穿,其中步骤a)包括:
a1)在需确定温度的位置处形成穿过所述套管壁进入所述地层内的一射孔组;
a2)将所述工具向下放入井孔内到达所述射孔组,所述工具还包括设置于中央导管入口两侧的一上封隔器和一下封隔器,其中,所述中央导管开口于所述下封隔器的下方或所述上封隔器的上方,并且上、下封隔器之间的距离大于一射孔组的高度,以及
步骤b)包括设置所述封隔器,以使所述射孔组跨于所述封隔器之间。
CNB028038169A 2001-01-18 2002-01-15 测量地层现场静态温度的方法 Expired - Fee Related CN1256503C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01200179 2001-01-18
EP01200179.8 2001-01-18
US30298201P 2001-07-03 2001-07-03
US60/302,982 2001-07-03

Publications (2)

Publication Number Publication Date
CN1486394A CN1486394A (zh) 2004-03-31
CN1256503C true CN1256503C (zh) 2006-05-17

Family

ID=26076816

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028038169A Expired - Fee Related CN1256503C (zh) 2001-01-18 2002-01-15 测量地层现场静态温度的方法

Country Status (10)

Country Link
US (1) US20030145987A1 (zh)
EP (1) EP1352151B1 (zh)
CN (1) CN1256503C (zh)
AU (1) AU2002237277B2 (zh)
BR (1) BR0206516A (zh)
CA (1) CA2435089C (zh)
EA (1) EA004832B1 (zh)
MY (1) MY129691A (zh)
NO (1) NO324191B1 (zh)
WO (1) WO2002057595A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789937B2 (en) * 2001-11-30 2004-09-14 Schlumberger Technology Corporation Method of predicting formation temperature
US6905241B2 (en) 2003-03-13 2005-06-14 Schlumberger Technology Corporation Determination of virgin formation temperature
GB2431673B (en) * 2005-10-26 2008-03-12 Schlumberger Holdings Downhole sampling apparatus and method for using same
US8496054B2 (en) * 2007-01-17 2013-07-30 Schlumberger Technology Corporation Methods and apparatus to sample heavy oil in a subterranean formation
CN101498215B (zh) * 2008-02-01 2014-12-10 普拉德研究及开发股份有限公司 增强的井下流体分析
CN101916504B (zh) * 2010-07-16 2012-11-14 天津市国土资源和房屋管理局 分布串列式地层精细温度测量和有线传输采集***
US9976409B2 (en) 2013-10-08 2018-05-22 Halliburton Energy Services, Inc. Assembly for measuring temperature of materials flowing through tubing in a well system
US9347307B2 (en) 2013-10-08 2016-05-24 Halliburton Energy Services, Inc. Assembly for measuring temperature of materials flowing through tubing in a well system
US10738602B2 (en) 2017-09-20 2020-08-11 Saudi Arabian Oil Company In-situ thermal response fluid characterization
CN108825218A (zh) * 2018-04-27 2018-11-16 中国石油天然气股份有限公司 地层温度测试方法及装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725283A (en) * 1952-04-30 1955-11-29 Exxon Research Engineering Co Apparatus for logging well bores
US2983586A (en) * 1957-11-07 1961-05-09 Schlumberger Well Surv Corp Borehole testing method and apparatus
US3456504A (en) * 1966-11-07 1969-07-22 Exxon Production Research Co Sampling method
US3417827A (en) * 1967-01-09 1968-12-24 Gulf Research Development Co Well completion tool
US3668927A (en) * 1970-10-16 1972-06-13 Atlantic Richfield Co Borehole thermal conductivity measurements
US3813936A (en) * 1972-12-08 1974-06-04 Schlumberger Technology Corp Methods and apparatus for testing earth formations
US3934468A (en) * 1975-01-22 1976-01-27 Schlumberger Technology Corporation Formation-testing apparatus
US4074756A (en) * 1977-01-17 1978-02-21 Exxon Production Research Company Apparatus and method for well repair operations
US4109717A (en) * 1977-11-03 1978-08-29 Exxon Production Research Company Method of determining the orientation of hydraulic fractures in the earth
US4369654A (en) * 1980-12-23 1983-01-25 Hallmark Bobby J Selective earth formation testing through well casing
US4375164A (en) * 1981-04-22 1983-03-01 Halliburton Company Formation tester
US4535843A (en) * 1982-05-21 1985-08-20 Standard Oil Company (Indiana) Method and apparatus for obtaining selected samples of formation fluids
US4573532A (en) * 1984-09-14 1986-03-04 Amoco Corporation Jacquard fluid controller for a fluid sampler and tester
US4893505A (en) * 1988-03-30 1990-01-16 Western Atlas International, Inc. Subsurface formation testing apparatus
US4860580A (en) * 1988-11-07 1989-08-29 Durocher David Formation testing apparatus and method
US4884439A (en) * 1989-01-26 1989-12-05 Halliburton Logging Services, Inc. Hydraulic circuit use in wireline formation tester
US4951749A (en) * 1989-05-23 1990-08-28 Schlumberger Technology Corporation Earth formation sampling and testing method and apparatus with improved filter means
GB9026846D0 (en) * 1990-12-11 1991-01-30 Schlumberger Ltd Downhole penetrometer
US5195588A (en) * 1992-01-02 1993-03-23 Schlumberger Technology Corporation Apparatus and method for testing and repairing in a cased borehole
US5473939A (en) * 1992-06-19 1995-12-12 Western Atlas International, Inc. Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations
US5361836A (en) * 1993-09-28 1994-11-08 Dowell Schlumberger Incorporated Straddle inflatable packer system
GB9420727D0 (en) * 1994-10-14 1994-11-30 Oilphase Sampling Services Ltd Thermal sampling device
GB9517149D0 (en) * 1995-08-22 1995-10-25 Win Cubed Ltd Improved downhole tool system
DE69636665T2 (de) * 1995-12-26 2007-10-04 Halliburton Co., Dallas Vorrichtung und Verfahren zur Frühbewertung und Unterhalt einer Bohrung
US5692565A (en) * 1996-02-20 1997-12-02 Schlumberger Technology Corporation Apparatus and method for sampling an earth formation through a cased borehole
US6026915A (en) * 1997-10-14 2000-02-22 Halliburton Energy Services, Inc. Early evaluation system with drilling capability
US6128949A (en) * 1998-06-15 2000-10-10 Schlumberger Technology Corporation Phase change analysis in logging method
US6164126A (en) * 1998-10-15 2000-12-26 Schlumberger Technology Corporation Earth formation pressure measurement with penetrating probe
US6325146B1 (en) * 1999-03-31 2001-12-04 Halliburton Energy Services, Inc. Methods of downhole testing subterranean formations and associated apparatus therefor
US6633164B2 (en) * 2000-01-24 2003-10-14 Shell Oil Company Measuring focused through-casing resistivity using induction chokes and also using well casing as the formation contact electrodes
MY130493A (en) * 2001-01-18 2007-06-29 Shell Int Research Determining the in situ effective mobility and the effective permeability of a formation.
US6622554B2 (en) * 2001-06-04 2003-09-23 Halliburton Energy Services, Inc. Open hole formation testing
US6729399B2 (en) * 2001-11-26 2004-05-04 Schlumberger Technology Corporation Method and apparatus for determining reservoir characteristics
US6672386B2 (en) * 2002-06-06 2004-01-06 Baker Hughes Incorporated Method for in-situ analysis of formation parameters

Also Published As

Publication number Publication date
CA2435089A1 (en) 2002-07-25
US20030145987A1 (en) 2003-08-07
BR0206516A (pt) 2004-02-17
MY129691A (en) 2007-04-30
AU2002237277B2 (en) 2007-06-07
CA2435089C (en) 2009-08-25
EP1352151B1 (en) 2004-10-06
NO20033253D0 (no) 2003-07-17
CN1486394A (zh) 2004-03-31
NO324191B1 (no) 2007-09-03
WO2002057595A1 (en) 2002-07-25
EA200300794A1 (ru) 2003-12-25
EP1352151A1 (en) 2003-10-15
NO20033253L (no) 2003-09-08
EA004832B1 (ru) 2004-08-26

Similar Documents

Publication Publication Date Title
EP2668370B1 (en) Method and apparatus for evaluating fluid sample contamination by using multi sensors
CA2605830C (en) Methods and apparatus of downhole fluid analysis
AU2002300917B2 (en) Method of predicting formation temperature
AU2012209236A1 (en) Method and apparatus for evaluating fluid sample contamination by using multi sensors
US8393207B2 (en) Methods and apparatus to use multiple sensors to measure downhole fluid properties
RU2479716C2 (ru) Способ для расчета отношения относительных проницаемостей текучих сред формации и смачиваемости скважинной формации и инструмент для испытания формации для осуществления этого способа
US10012763B2 (en) Utilizing fluid phase behavior interpretation to increase sensor measurement information accuracy
AU2004237814A1 (en) Method for determining pressure of earth formations
CN1256503C (zh) 测量地层现场静态温度的方法
GB2453051A (en) Downhole characterisation of formation fluids by measurement of bubble point pressure
US6905241B2 (en) Determination of virgin formation temperature
GB2466558A (en) Method and apparatus for evaluating formation properties of a fluid mixture obtained from two disparate locations a wellbore
US9752432B2 (en) Method of formation evaluation with cleanup confirmation
GB2481744A (en) Well cleanup monitoring and prediction during sampling
US8360143B2 (en) Method of determining end member concentrations
US7944211B2 (en) Characterization of formations using electrokinetic measurements
US6892138B2 (en) Determining the viscosity of a hydrocarbon reservoir fluid
AU2002237277A1 (en) Measuring the in situ static formation temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060517

Termination date: 20100222