CN1199001C - 从地下岩层中获取数据的方法和设备 - Google Patents

从地下岩层中获取数据的方法和设备 Download PDF

Info

Publication number
CN1199001C
CN1199001C CNB99117979XA CN99117979A CN1199001C CN 1199001 C CN1199001 C CN 1199001C CN B99117979X A CNB99117979X A CN B99117979XA CN 99117979 A CN99117979 A CN 99117979A CN 1199001 C CN1199001 C CN 1199001C
Authority
CN
China
Prior art keywords
data
wellhole
antenna
sleeve pipe
data pick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB99117979XA
Other languages
English (en)
Other versions
CN1249392A (zh
Inventor
R·奇格勒内
J·R·塔巴诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Holdings Ltd
Original Assignee
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Holdings Ltd filed Critical Schlumberger Holdings Ltd
Publication of CN1249392A publication Critical patent/CN1249392A/zh
Application granted granted Critical
Publication of CN1199001C publication Critical patent/CN1199001C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for displacing a cable or a cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/053Measuring depth or liquid level using radioactive markers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明涉及一种用于在下套管井孔内与数据传感器建立通讯的方法和设备,该传感器在套管安装在井孔中之前已经远程布置在由井孔穿过的地下岩层中。该通讯是通过将天线安装在下套管井的孔中建立的。本发明还涉及一种方法和和设备,该方法和设备用于制造套管壁孔,然后将天线与该套管壁保持密封关系地***到孔中。一数据接收器***在下套管井孔中用于通过天线与该数据传感器通讯,以接收数据传感器检测并传送的岩层数据信号。

Description

从地下岩层中获取数据的方法和设备
技术领域
本发明整体涉及从地下岩层中获取数据的方法和设备,确定在被井孔穿过的地下岩层中的各参数,特别涉及在套管装在井孔中之后,通过穿过套管壁与安装套管之前布置在岩层中的遥感器通讯来进行确定。
背景技术
当今油井工作和生产需要对井孔的各种参数进行连续的监测。保证稳定生产的最关键的参数是储存压力,也称为岩层压力。对诸如储油层压力之类参数进行连续监测能够指出岩层压力在一段时间内变化,对预测地下岩层的产量和寿命是必要的。典型地,包括压力的岩层参数可用测井电缆岩层测试工具(wireline formation testingtool)进行监测,如在美国专利No.:3,934,468;4,860,581;4,936,139和5,622,223中所述的工具。
转让给Schlumberger技术公司,即本发明的受让人的‘468专利描述了一种细长的管形体,该管形体布置在无套管的井孔中以检测所关心的岩层区域。该管形体具有一密封垫,与该密封垫相对的第二井接合垫和一系列液压驱动器强迫该密封垫与岩层区域的井孔密封接合。该管形体备有一包括一可动探头的流体导入装置,该装置通过密封垫的中心孔与岩层流体通讯并获取岩层流体的样本。这样的流体通讯和取样允许收集岩层参数数据,包括岩层压力,但并不局限于岩层压力。‘468专利的可动探头特别适合于测试表现出不同的和未知的能力和稳定性的岩层区域。
也转让给本发明的受让人的‘581和‘139专利公开了提供许多功能的由标准件组合的岩层测试工具,这些功能包括在无套管的井孔中进行岩层压力测量和取样。这些专利描述的工具可在工具的单个行程内在多个岩层区进行测量和取样。
转让给Western Atlas International公司的‘505专利同样公开了一种岩层测试工具,该工具能在许多岩层区域测量由一无套管井孔穿过的岩层的压力和温度,并收集各种流体样本。
转让给Halliburton公司的‘223专利公开了另一种用于从无套管井孔中的所关心区域抽取岩层流体的测井电缆岩层测试工具(wireline formation testing tool)。该工具采用一种可膨胀的压封器,并且据说可操作以就地确定被抽吸的流体的类型和饱和压力,和有选择地收集基本上不含泥浆滤液的流体样本。
每个前述的专利的限制是,其中所述的岩层测试工具只有在该工具置于井孔中并与所关心岩层区物理接触时才能获取岩层数据。
也转让给本发明的受让人的美国专利申请No.09/019466描述了一种方法和设备,该方法和设备用于在进行钻井操作时将智能数据传感器,如压力传感器,从钻柱的钻铤中布置到井孔外的地下岩层中。如‘466申请中所述,数据传感器在油井的钻井阶段的定位是通过或者射、钻、液压强迫或者其他方法将传感器布置到岩层中来实现的,该‘466申请的全部内容结合在本文中并作为参考。
‘466申请还公开了用于在布置完很久以后,特别通过利用传感器中的伽马射线尖头信号标记(pig tag)确定这种数据传感器位置的装置的使用。这些伽马射线尖头信号标记发射出独特的放射性“特征讯号”,这些“特征讯号”很容易与局部各地下岩层的伽马射线背景轮廓或特征讯号对照,从而帮助确定岩层中每个传感器的位置。
在完井阶段某个时期,一系列套管装在井孔中。当井孔已经镶有套管并且套管已经注水泥后,如果必要,则不再可能从井孔内与套管外单个遥感器进行电磁波通讯。如果没有与布置在下套管井孔外的岩层中的数据传感器通讯的有效装置,则数据传感器不能被使用。因此,对在井孔生产寿命期间提供连续岩层监测能力的远程数据传感器来说,必须重新建立与数据传感器的通讯。此外,为了使与数据传感器的通讯最优选,在井孔下套管并注水泥后必须识别各传感器的位置。
上述专利‘468、‘581、‘139、‘505和‘223中所述的工具和方法并不是有意要用在下套管的井孔中,并且通常不能永久地连接到井孔或岩层上。然而,有意用在下套管井孔中的岩层测试工具和方法在现有技术中也是公知的,例如由美国专利No.:5,065,619;5,195,588和5,692,565所述示例。
转让给Halliburton Logging Service股份有限公司的‘619专利公开了一种装置,该装置用于测试井孔中套管后的岩层压力,该井孔穿过该岩层。一“支承底板”可由液压作用从一测井电缆岩层测试机(wireline formation tester)的一侧伸出以与套管壁接触,并且一测试探头可由液压作用从该测试机的另一侧伸出。该探头包括一个围绕的密封环,该密封环形成密封以不与支承底板对面的套管壁接触。一小块成形***位于该密封环中心,以在套管和周围的水泥层(如果存在的话)上打孔。岩层流体通过孔和密封环流入流送管线,以便输送到压力传感器和一对流体控制和取样箱。
也转让给本发明的受让人的‘588专利通过提供用于堵塞套管孔的装置改进了在套管上打孔以接近套管后面岩层的岩层测试机。特别是,‘588专利公开了一种工具,当仍放置在造孔位置的同时该工具能堵塞孔。通过堵塞及时关闭孔可防止井孔流体流入岩层中和/或岩层剥蚀形成巨大损失的可能性。它也可能防止岩层流体不加控制地流入井孔中,这在如气体侵入的情况下是有害的。
也转让给Schlumberger技术公司的‘565专利描述了一种用于对下套管井孔后面的岩层进行取样的进一步改进的设备和方法,其中该发明采用一柔性钻柱来制造比用成形***制造出来的更均匀的套管孔。由于成形***产生的孔不均匀,从而难以堵塞,常常需要固体塞和非固体密封材料,所以均匀的孔提供了使套管适当堵塞的更大可靠性。因此,该柔性柱提供的均匀孔增加了用塞子密封套管的可靠性。然而,一旦孔被堵塞,如果不重复成孔工序,则无法与岩层通讯。即使那样,也只有在岩层测试机放置在井孔中并且套管孔保持打开时才可能形成这种岩层通讯。
发明内容
为了克服相关技术的问题和缺陷,本发明的主要目的是提供一种用于穿过下套管井孔的套管壁和水泥层与远程布置的数据传感器重新建立通讯的方法和设备。
本发明的另一个目的是提供一种用于确定地下岩层中的每个这种数据传感器相对套管壁的位置的方法和设备。
本发明的另一个目的是提供一种用于在一个或一组数据传感器附近的给无套管井孔加衬套的套管壁和水泥层中制造孔的方法和设备。
本发明的另一个目的是提供一种用于将天线与该套管壁保持密封关系地安装在制造出的孔中以与远程数据传感器或多个传感器通讯的方法和设备。
本发明的另一个目的是提供一种用于将指令信号发送给远程数据传感器并通过安装的天线从远程数据传感器接收数据信号以检测井孔的方法和设备。
本发明的另一个目的是提供一种采用微波谐振腔并可定位在井孔内以通过安装的天线与远程数据传感器通讯的数据接收器。
上述目的和其他各种目的与优点可通过这样的方法和设备实现,即该方法和设备允许在套管安装在井孔中后,与一个在套管被安装在布置的深度之前远程布置在由该井孔穿过的地下岩层中的数据传感器通讯。通讯是这样建立的,即识别数据传感器在地下岩层中的位置,在靠近数据传感器位置的套管壁中制造出一孔,通过将天线安装该套管壁中,然后将数据接收器***到下套管的井孔内以通过天线与数据传感器通讯,以接收由数据传感器检测到并发送的岩层数据信号。
数据传感器在地下岩层中的位置是在天线被安装之前被识别的,所以天线可安装在数据传感器位置附近的套管壁孔中。同样可取的是,数据传感器备有发射特征讯号的装置,从而允许通过检测该特征讯号来识别数据传感器的位置。在这方面,该数据传感器最好备有一个用于发射尖头信号标记特征讯号的伽马射线尖头信号标记。数据传感器的位置是这样识别的,即首先建立该井孔的,然后利用伽马射线裸眼井测井图和数据传感器的尖头信号标记特征讯号确定数据传感器的深度,然后利用伽马射线探测器和尖头信号标记特征讯号确定数据传感器相对井孔的方位。该方位最好用校准的伽马射线探测器确定。
本发明还提供了一种用于从数据传感器获取下套管井孔中的数据信号的设备,该传感器在套管安装在井孔中之前已经远程地布置在由该井孔穿过的地下岩层中,该设备包括:
(a)适于安装在孔中的天线,该孔形成于安装在井孔中的套管壁上;(b)适于***到下套管的井孔中的数据接收器,该数据接收器用于通过所述天线与数据传感器通讯,从而接收由数据传感器发送的岩层数据信号;(c)用于识别数据传感器在地下岩层中的位置的装置;(d)用于在数据传感器位置附近制造出套管壁孔的装置;(e)用于将所述天线安装在套管壁孔中的装置。
天线最好用测井电缆工具安装在套管内的孔中并密封。
数据接收器最好用电缆***到下套管的井孔中,其包括一微波谐振腔。
在另一方面,本发明设想利用一具有钻铤和钻头的钻柱钻井孔。该钻柱具有一数据传感器,该数据传感器适于在选取的与井孔交叉的地下岩层中远程定位以检测并发送代表各种岩层参数的数据信号。在井孔完全下套管前,数据传感器从钻铤运动到选取的地下岩层中。在套管安装到井孔中以后,将天线安装在形成于该套管壁中的孔中。随后将一数据接收器***到下套管的井孔中通过天线与数据传感器通讯,以接收由数据传感器检测并发送的岩层数据信号。
在另一方面,本发明设想采用一钻铤,该钻铤包括一具有检测装置的工具,该检测装置可从工具内的缩进位置运动到井孔外地下岩层内的布置位置。该检测装置具有适合于检测选取的岩层参数并提供代表检测到的岩层参数的输出数据信号的电路。当钻铤和工具相对所关心的地下岩层定位于理想的位置时,该检测装置从工具内的缩进位置运动到远离钻柱并位于井孔外的所关心的地下岩层中。当套管安装到井孔中后,地下岩层中数据传感器的位置被识别,并且天线安装在穿过套管壁并与数据传感器位置附近的套管保持密封关系的横向孔中。然后将一接收装置***到下套管的井孔中,并且电启动该检测装置的电路,使该检测装置对选取的岩层参数进行检测,并发送代表检测到的岩层参数的数据信号。然后用接收装置接收发送的数据信号。
在另一方面,本发明包括一个适于连接在钻柱中并具有一传感器插孔的钻铤。一远程智能传感器位于该钻铤的传感器插孔内,并具有用于检测选取岩层的参数、接收指令信号、和发送代表检测到的岩层数据的数据信号的电路。该远程智能传感器适于从传感器插孔到井孔外地下岩层内的位置横向布置。在套管安装在井孔中之后,用一个装置安装用于与智能传感器通讯的天线,该装置也适于在该智能传感器附近的套管壁中造孔,并将天线与套管壁保持密封关系地***到制造出的孔中。还提供了一数据接收器,该数据接收器适于插在井孔中并具有一电路,该电路用于在天线安装好后通过天线发送指令信号,和通过天线从远程智能传感器接收岩层数据信号。
有利的是,数据接收器的发送和接收电路适合于发送频率为F的指令信号,并接收频率为2F的数据信号,而远程智能传感器的接收和发送电路适合于接收频率为F的指令信号,并发送频率为2F的数据信号。
有利的是,远程智能传感器包括一个用于在一时间段内获取岩层数据的电子储存电路。该远程智能传感器的数据检测电路最好包括用于将岩层数据输入给该电子储存电路的装置和一个线圈控制电路,该线圈控制电路用于接收该电子储存电路的输出,并启动该远程智能传感器的接收和发送电路,使其将代表检测到的岩层数据的信号从该远程智能传感器的布置位置发送到该数据接收器的发送和接收电路中。
本发明还提供了一种用于与数据传感器建立通讯的设备,该传感器位于由下套管井孔穿过的地下岩层中,该设备包括:用于识别数据传感器在岩层中的位置的装置;用于在被识别的数据传感器位置附近的套管中制钻孔的装置;用于与数据传感器通讯的天线;用于将所述天线插装在套管的套管孔中的装置。
为使本发明上述特征、优点和目的获得的方式得到详细理解,下面通过参考附图中展示的本发明的优选实施例来更详细地描述上面简要总结的本发明,这些附图作为该说明书的一部分。
然而,应该注意,附图只表示本发明的典型实施例,因此不能认为是对本发明的范围的限制,因为本发明也可通过其它其他等效的实施例来实施。
附图说明
图1是井孔中的钻柱截面的正视图,其示出了一钻铤和一远程定位的数据传感器,该传感器从钻铤进入所关心的地下岩层;
图2是套管已经装在井孔中之后地下岩层的剖视图,一天线安装在穿过程布置的数据传感器附近的套管壁和水泥层的孔中;
图3是一个一位于套管内的并带有上下旋转工具和中间天线安装工具的测井电缆岩层测试工具(wireline formation testing tool)的示意图;
图4是沿图3中4-4线取的下旋转工具的示意图;
图5是一个在所选取井孔深度取的横向辐射面,以将数据传感器尖头信号标记的伽马射线特征讯号与地下岩层背景的伽马射线特征讯号对照;
图6是一个用于在套管中形成一孔并将一天线安装在该孔中以便与该数据传感器通讯的工具的剖面示意图;
图6A是在该天线安装工具中使用的一对导板之一,导板用于传送在套管穿孔的柔性轴;
图7是图6所示工具工作顺序的流程图;
图8是一个用于在套管上打孔的另外一种工具的剖面图;
图9A-9C是表示在套管孔中安装一天线实例连续剖面图;
图9D是装配于套管孔中的第二天线实施例的剖面图;
图10是该天线安装工具的下部,特别是图9A-9C所示天线实施例用的天线盒和安装机构的详细剖面图;
图11是放置于套管内用于通过穿过套管壁孔安装的天线与远程布置的数据传感器通讯的数据接收器的示意图,并且示出了该数据接收器微波谐振腔中的电场和磁场;
图12是该数据接收器共振频率相对微波谐振腔长度的曲线;
图13是与该数据传感器通讯的数据接收器的示意图,并且包括该数据接收器电路的方框图;
图14是数据传感器电路方框图;
图15是表示数据传感器和数据接收器之间的数据信号发送定时的脉冲宽度调制图。
具体实施方式
现在参见各附图,首先参见附图1,本发明涉及利用一个带有钻铤12和钻头14的钻柱DS钻造井孔WB。钻铤具有许多智能数据传感器16,在钻井期间,传感器由钻铤携带***井孔中。如下将要详细描述的那样,数据传感器16具有其中集成的用于检测所选取的岩层参数的电子仪器和电子电路,和用于接收选取的指令信号并提供代表被检测的岩层参数的数据输出信号的电子电路。
每个数据传感器16都适合用于从其在钻铤12上的缩进或储存位置18布置到与井孔WB相交的选取的地下岩层20内的远程位置以检测并发送代表所选取的岩层的各种参数的数据信号,例如岩层压力,温度和穿透性。这样,当钻铤12由钻柱DS定位在相对地下岩层20的理想位置时,数据传感器16在推进器或液压顶杆的力或其它起源于钻铤并作用在数据传感器上的等效力的作用下运动到井孔WB外的地下岩层20中的布置位置。这种受力运动详细描述在美国专利申请No.09/019466中的关于带有布置***的钻铤的正文中。
如由希望的岩层数据的水平所确定的,在各种井孔深度处可放置希望数量的这种传感器。只要井孔保持打开,或未装套管,则布置的数据传感器可直接与包含数据接收器的钻铤、井下仪或测井电缆工具通讯,这一点在‘466申请中也有描述,以将表示岩层参数的数据发送给该数据接收器上的储存模块临时储存,或通过数据接收器直接发送给地面。
在井完成期间的某一时刻,将井孔完全下套管管,并且通常用水泥将套管固定在位置上。从这一时刻开始,就不再可能与布置在井孔WB外的岩层20中的数据传感器16正常通讯了。因此,必须穿过给该井孔加衬的套管壁和水泥层(如果存在水泥层)与所布置的数据传感器重新建立通讯。
现在参见图2,通过在套管壁24和水泥层26中产生孔22,然后将天线28安装在该套管壁中的孔22中并且密封来重新建立通讯。然而,为了获得最佳通讯,天线28应该位于靠近布置的数据传感器的地方。为了产生有效的电磁通讯,最好天线处于与岩层中的各自数据传感器或许多传感器相距10-15cm的范围内。因此,必须识别各数据传感器相对下套管的井孔的位置。
数据传感器位置的识别
为了能识别各数据传感器的位置,各数据传感器配备有用于发射各自特征讯号的装置。更具体地说,各数据传感器配备有用于发射尖头信号标记特征讯号的伽马射线尖头信号标记21。该尖头信号标记是一个类似纸材的小带,其浸满放射性溶液并位于传感器16中,以发射出伽马射线。
然后通过一个两步法识别每个数据传感器的位置。首先,利用伽马射线裸眼井测井图和已知的数据传感器的尖头信号标记特征讯号确定数据传感器的深度,该伽马射线裸眼井测井图是在布置完数据传感器后为井孔创建的。由于尖头信号标记21的放射性射线会引起数据传感器区域内局部环境中的伽马射线背景增加,因此该数据传感器可在该裸眼井测井图识别出。因此,与传感器之上和之下的岩层区域相比,在数据传感器处该裸眼井测井图上的背景伽马射线是不同的。这就可帮助识别数据传感器的垂直深度和位置。
然后,利用伽马射线探测器和数据传感器的尖头信号标记特征讯号确定该数据传感器相对井孔的方位。如下面一种多功能测井电缆工具的正文中所述,可用一校准的伽马射线探测器确定方位。
天线28最好用一测井电缆工具安装在套管内的孔22中并密封。在图3和4中整体标为30的测井电缆工具是一种执行许多功能的复杂装置,其包括上下旋转工具34,36和一个中间天线安装工具38。本技术领域的普通技术人员将会注意到,尽管此处的说明限制于一测井电缆工具的实施例,但工具30对至少某些其作为钻柱组件或工具的设想目的是同样有效的。
测井电缆工具30由一测井电缆或缆绳31放下,测井电缆或缆绳长度决定了工具30在井孔中的深度。可用深度仪来测量缆绳在一支承机构,例如一槽轮上的移动量,从而可按在现有技术中公知的方式得出测井电缆工具的深度。按这种方式,测井电缆工具30处于数据传感器16的深度处。测井电缆工具30的深度也可由电、核或其他传感器测量,该传感器将深度与前面在井孔中进行的测量关联起来,或者与井孔中的套管长度关联起来。缆绳31还提供了一种用于通过电缆传导的电流与地面上的控制和处理设备通讯的装置。
该测井电缆工具还包括上下旋转工具34、36形式的装置,当测井电缆工具被降低到由数据传感器位置识别过程第一步确定的合适的数据传感器深度位置后,该装置使测井电缆工具30旋转到识别的方位。如通过图3和4的上旋转工具34所展示的一种简单旋转工具的实施例包括圆筒形主体40,该圆筒形体带有一套两个共面驱动轮42、44,驱动轮穿过该主体的一侧伸出。驱动轮液压支撑活塞46以传统方式把驱动轮压靠在套管上。因此,液压活塞46的伸展使压紧轮48与套管内壁接触。由于套管24是用水泥浇注在井孔WB中,从而固定在岩层20上的,因此当压紧轮48已经与套管内壁接触后,活塞46的继续伸展迫使驱动轮42,44压靠在与该压紧轮相对的套管内壁上。
每个旋转工具的两个驱动轮分别通过一个诸如齿轮45a,45b之类的一齿轮传动链由电动司服马达50驱动。初级齿轮45a连接到该马达的输出轴上与之一起旋转。旋转力通过次级齿轮45b发送给驱动轮42、44,并且当驱动轮42、44绕该套管24的内壁“爬行”时,驱动轮和套管内壁之间的摩擦使测井电缆工具30旋转。这种驱动作用是由上下旋转工具34、36实现的,以使整个电缆测井组件30在套管24内绕该套管的纵轴线旋转。
天线安装工具38包括一个用于识别数据传感器16相对井孔WB的方位的并呈校准的伽马射线探测器形的装置32,从而用于该数据传感器位置识别过程的第二步。如前面示出的那样,校准的伽马射线探测器32可用于探测其探测区内的任何东西的放射特征讯号。在钻井工业中公知的校准伽马射线探测器配备有屏蔽材料,该屏蔽材料位于除探测器窗口小开口区域外的铊-活性碘化钠晶体上。该开口区是弧形的,并且其结构是狭窄的以便可精确地识别数据传感器的方位。
因此,在马达50的输出扭矩作用下测井电缆工具30在套管24内旋转360度角显示了在任何放置测井电缆工具或更具体地为放置校准的伽马射线探测器的特定深度处的横向辐射特性图。通过将该校准伽马射线探测器放置于数据传感器16的深度处,该横向辐射特性图包括相对于测量基准线的数据传感器的伽马射线特征讯号。该测量基准线与检测到的对应于各局部岩层的背景的伽马射线量有关。如图5所示,每个数据传感器16的尖头信号标记都在该基准线的顶部处产生一个强信号,并且识别数据传感器所处的方位。以这种方式,天线安装工具38可非常接近地对准相关的数据传感器。
如将要描述的那样,工具38的进一步操作由图7的流程图顺序示出。此时,测井电缆工具30处于合适的深度,且指向合适的方位,如图7中方框800所示,并且被放置于合适的位置以便在被识别的数据传感器16附近的套管24和水泥层26中钻出或用其它方法加工出横向孔22。为此,本发明采用了一种对同样转让给本发明的受让人的美国专利No.5,692,565所述的岩层取样工具进行改进后的工具。专利‘565的整个内容结合在本文中并作用参考。
套管成孔和天线安装
图6表示一个用于在套管24中加工出横向孔并安装天线的成孔工具38的实施例。工具38位于测井电缆工具30内上下旋转工具34、36之间,并且具有一包围内壳体214的圆筒形体217和相关零部件。固定活塞215按常规方式由液压驱动,迫使工具压封器217b抵靠在套管24的内壁上,从而在天线安装工具38和套管24和起稳定作用的工具30之间形成一压封密封,如图7中方框801所示。
图3示意性地示出了液压压封器组件41形式的压封器217b的替换方案,其包括一个处于一支承板上的密封垫,该密封垫可由液压活塞带动与套管24保持密封接触。本技术领域的普通技术人员应该注意到,其他等效的装置同样适合用于在天线安装工具38和欲被成孔区域的套管之间形成密封。
再参见图6,如下面将要详细说明的那样,内壳体214由壳体传动活塞216支承以便在圆筒形体217内沿该圆筒形体轴线运动。壳体214包括三个子***:即用于使套管成孔的装置;用于测试套管压力密封的装置;及用于将一天线安装在该孔中的装置。内壳体214通过传动活塞216的运动可使该内壳体的三个子***中的每一个的零部件定位在被密封的套管孔区域。
内壳体214的第一个子***包括柔性轴218,该柔性轴通过匹配的导板242传送,导板之一示出于图6A中。钻头219通过柔性轴218由驱动马达220驱动旋转,该马达由马达支架221固定。马达支架221由与连接到马达支架221上的螺母221a啮合的螺纹轴223连接到传动马达222上。这样,传动马达222使螺纹轴223旋转,从而使驱动马达220相对内壳体214和套管24向上和向下运动。驱动马达220向下运动对该柔性轴218施加一向下的力,从而增加了钻头219穿过套管24的穿透率。形成于导板242中的J-形导管243将该作用在轴218上的向下力转换为钻头219处的横向力,并且还可防止轴218在作用到钻头上的推力载荷作用下发生弯曲。当钻头在套管中钻孔时,它可加工出一个清洁均匀一致的孔,该孔比由成形***加工成的孔更可取。该钻孔工作由图7中方框802表示。套管钻孔完成后,通过使传动马达222反转而使钻头219退回。
内壳体214的第二子***涉及套管压力密封的测试。为此,壳体移动活塞216借助通过缆绳31的电路从地面控制设备接收能量,以使内壳体214向上移动使压封器217c运动到壳体217的孔附近。然后启动压封器放置活塞224b以迫使压封器217c抵靠在壳体217的内壁上,在套管孔和流送管线224之间形成一密封通道,如方框803所示。然后可按常规方式测量岩层压力,如果需要也可进行流体取样,如方框804所示。一旦合适的测量和取样完成,撤回活塞224b以使压封器217c缩回,如方框805所示。
图8表示一个用于在套管中钻孔的替换装置,其包括一个将铰接驱动轴332提供的扭矩转换为钻头331的扭矩的直角齿轮箱330。借助由通过流送管线333输送的流体驱动的液压活塞(未示出)将推力施加给钻头331。该液压活塞按常规方式驱动,以通过适于沿通道335滑动的支承件334使齿轮箱330在钻头331的方向运动。一旦套管孔加工完成,就用液压活塞将齿轮箱330和钻头331从该孔中撤出。
然后驱动壳体传动活塞16,使内壳体214进一步向上移动,以使天线盒226对齐到壳体孔上,如方框806所示。然后驱动天线定位活塞225,使天线28从天线盒226进入套管孔中。天线定位顺序具体表示在图9A-9C和10中。
首先参见图9A-9C,天线28包括为套管孔中整个组件设计的两个次级零部件:即管形套176和锥形体177。管形套176是由一种设计为可承受恶劣的井孔环境的弹性材料制成的,并且包含一个穿过其尾端的圆柱形孔和一个穿过其前端的小直径锥形孔。该管形套还备有一个用于限制天线向套管孔中移动的范围的尾端凸缘178,和在用于帮助增下套管管孔处压力密封的开槽区域之间的中间肋片179。
图10为天线盒226附近天线安装组件的细节剖视图。安装活塞225包括外活塞171和内活塞180。用两步过程将该天线安装于套管孔中。首先,在安装过程期间,驱动活塞171和180以使其通过谐振腔181,并将天线28压入套管孔中。这一过程使已经部分***在天线盒226内管形套176尾端孔中的锥形天线体177和管形套176向套管孔22运动,如图9A所示。如图9B所示,当尾端凸缘178与套管24的内壁接合时,外活塞171停止,但继续作用在活塞组件上的液压力使该内活塞180克服弹簧组件182的弹性力,向前穿过管形套176尾端的圆筒形孔。按这种方式,锥形体177全部***管形套176中,如图9C所示。
锥形天线体177配备有细长的天线销针177a,锥形绝缘套177b和外绝缘层177c,如图9C所示。天线销针177a的每一端都延伸超出套管孔的宽度,以便接收数据传感器16发出的数据信号,并将该信号传递给井孔中的数据接收器,这一点将在下面详细说明。绝缘套177b在靠近天线销针的前端的部分是锥形的,以在管形套176前端的锥形孔中形成一楔形紧配合,从而在天线/套管孔界面处提供一压封密封。
图10所示的天线盒226储存有许多天线28并在安装过程中供给天线。当一天线28安装在一套管孔中之后,活塞组件225完全撤回并且另一天线由推送组件183的弹簧186强迫向上运动。按这种方式,可将许多天线安装在套管24中。
图9D示出了一替换的天线结构。在该实施例中,天线销针312永久地处于绝缘套314中,而该绝缘套又永久地处于安装锥316中。绝缘套314是圆柱形的,而安装锥316具有一锥形外表面和一个处于其中的圆柱形孔,该孔的尺寸便于接收套314的外直径。安装套318具有一锥形内孔,该内孔的尺寸便于接收该安装锥316的外锥面,套318的外表面稍稍带有一点锥度,所以可使其易于***到套管孔22中。通过对锥316和套318施加的相对的力可获得金属对金属的过盈配合,因此可将天线组件310密封在套管孔22中。通过相对的液压驱动活塞在图9D中箭头所示方向施加力将迫使套318的外表面膨胀,锥316的内表面收缩,从而在天线组件用的套管孔或开口孔22处形成金属环式接触密封。
安装完的天线的整体性,或者是图9A-9C所示结构的天线,或图9D所示结构的天线或本发明同样适应的其他结构的天线,可再次通过利用传动活塞216移动内壳体214,使测量压封器217c移动到壳体217内的横向孔上,并利用活塞224b重新安装压封器而进行测试,如图7中方框808所示。如图中方框809所示,用一下降活塞或类似物降低流动线路压力,然后跟监控通过流送管线的压力泄漏。在采用一下降活塞的地方,当下降活塞停止工作后,泄漏将会通过流动线路压力上升到高于下降压力而显示出来。一旦压力测试完成,固定活塞215撤回,从而将工具38和测井电缆工具30与套管壁松开,如图中方框810所示。此时,工具30可再定位于套管中用于安装其它天线,或从井孔中卸除。
数据接收器
当天线28安装好并合适地密封就位后,一个含有数据接收器60的测井电缆工具***下套管的井孔中以便通过天线28与数据传感器16保持通讯。数据接收器60包括通过天线28将指令信号发送给智能数据传感器16的发射电路和通过天线从该智能数据传感器16接收岩层数据信号的接收电路。
更具体地,参见图11,套管24内的数据接收器60和位于套管外的数据传感器16之间的通讯,在一优选实施例中是通过两个小的环形天线14a和14b实现的。该天线植入在已经由天线安装工具38放置于套管孔22内的天线组件28中。第一天线回路14a与套管轴线平行,第二天线回路14b与套管轴线垂直。因此第一天线14a对垂直于套管轴线的磁场敏感,而第二天线14b对平行于套管轴线的磁场敏感。
数据传感器16也称为灵敏的插塞,在一优选实施例中其包括两个类似的环形天线15a和15b。该环形天线具有与环形天线14a和14b相同的相互定向关系。然而如图11所示,环形天线15a和15b串联连接,所以这两种环形天线结合起来对由环形天线14a和14b发射的磁场的两个方向都是敏感的。
在套管内的工具中的数据接收器采用一个具有一个适用于在紧靠在套管壁24的内表面上的窗口64的微波谐振腔62。该微波谐振腔的曲率半径与套管内半径相同或非常相近,所以该窗口表面区域的大部分与该内套管壁接触。除窗口64前部紧靠的钻孔22外,该套管可有效地封闭微波谐振腔62。这种定位可通过采用与上面关于测井电缆工具30中所述相似的零部件来实现,例如旋转工具,伽马射线探测器和定位活塞。(此处没有提供对这种数据接收器定位的进一步描述)通过将窗口64与套管孔22对齐,例如微波能量之类的能量可通过套管中的孔中射入并通过天线射出,从而在检测微波谐振腔62和数据传感器天线15a和15b之间提供一个双向通讯装置。
从微波谐振腔的通讯是以对应于特定共振模式的频率F提供的,而从数据传感器的通讯是以该频率的两倍或2F的频率获得的。微波谐振腔尺寸的选择为使其具有接近2F的共振频率。相关的电场和磁场70、72表示于图11中,以帮助使该微波谐振腔磁场模型形象化。在一优选实施例中,圆柱形谐振腔62具有5cm的半径和大约30cm的垂直宽度。使用柱坐标系(z,ρ,φ)表示该微波谐振腔中任何物理位置。在该微波谐振腔中激发的电磁场(EM)具有一个带有分量Ez,Eρ和Eφ的电场和一个带有分量Hz,Hρ和Hφ的磁场。
在发射模式中,谐振腔62由从传送器振荡器74和功率放大器76通过连接78供给的微波能量激发的,连接78是连接到数据接收器60的谐振腔62顶端的电偶极子上的同轴线。
在接收模式中,在谐振腔62中按频率2F产生的微波能量可由连接到调谐到2F的接收器放大器82上的垂直磁偶极子80检测到。
公知的事实是,微波谐振腔具有两个基本的共振模式。第一个称为横磁式或“TM”(Hz=0),而第二个称为横电式或简称为“TE”(Ez=0)。这两种模式是正交的,不但可由频率差别区分开,而且可通过位于该谐振腔中用于激发或检测这两种模式的电偶极子或磁偶极子的物理定向区分开,这即是本发明用于将按频率F激发的信号与按频率2F激发的信号区分开的特征。共振时,当谐振腔内电磁场EM的频率接近共振频率时,谐振腔表现出高Q值,或阻尼损失效果,当谐振腔内电磁场EM的频率与谐振腔共振频率不同时,谐振腔表现出非常低的Q值,从而提供了每种模式的附加放大,和不同模式之间的隔离。
TM和TE模式的电场(E)分量和磁场(H)分量的数学表达式由下列条件给出:
对于TM模式:
Ez=λni 2/R2Jnni/Rρ)cos(nφ)cos(mπz/L)
Eρ=-mПλni/LRJn’(λni/Rρ)cos(nφ)sin(mπz/L)
Eφ=nmП/LρJnini/Rρ)sin(nφ)sin(mπz/L)
Hz=0
Hρ=jnk/ρ(ε/μ)1/2Jnni/Rρ)sin(nφ)cos(mπz/L)
Hφ=-jnkλni/R(ε/μ)1/2Jn’(λni/Rρ)cos(nφ)cos(mπz/L)
共振频率FTMnim=c/2((λni/πR)2+(m/L)2)1/2
对于TE模式:
Ez=0
Eρ=-jnk/ρ(μ/ε)1/2Jnni/Rρ)sin(nφ)sin(mπz/L)
Eφ=jkσni/R(μ/ε)1/2Jn’(σni/Rρ)cos(nφ)sin(mπz/L)
Hz=σni 2/R2Jn(σni/Rρ)cos(nφ)sin(mπz/L)
Hρ=mπσni/LRJn’(σni/Rρ)cos(nφ)cos(mπz/L)
Hφ=-nmπ/LρJnni/Rρ)sin(nφ)cos(mπz/L)
共振频率FTEnim=c/2((σ1/πR)2+(m/L)2)1/2
其中:Q=阻尼系数;
n,m=表示方位(φ)分量和垂直(z)分量共振频率的无穷级数特征的整数;
i=方程根序列;
c=光在真空中的速度;
μ,ε=分别是谐振腔介质的磁特性和介电特性;
F=频率;
ω=2πF;
k=波数=(ω2με+iωμσ)1/2
R,L=分别为谐振腔的半径和长度;
Jn=序列为n的Bessel函数;
Jn’=δJn/δρ;
λn=为Jnni)=0的根;
σni=为Jnni)=0的根。
谐振腔的尺寸(R和L)选取为使:
FTEnim=c/2((σ1/ПR)2+(m/L)2)1/2=2FTMnim=c((λni/πR)2+(m/L)2)1/2
FTMnim的一个解是选取对应n=0,i=1,m=0,λ01=2.40483的TM模式,其对应于最低的TM频率模式(降低频率使谐振腔阻尼损失降低)。这种选择产生了如下结果:
Ez=λ01 2/R2J001/Rρ)
Eρ=0
Eφ=0
Hz=0
Hρ=0
Hφ=-jkλ01/R(ε/μ)1/2J0’(λ01/Rρ)
FTM010=c/2λ01/πR。
FTEnim的一个解是选取对应n=2,i=1,m=1,σ21=3.0542的TM模式。这一选择与上面TM010的方式选择正交,并为TE模式产生等于TM010频率2倍的频率。由这种TE模式选择可得出下列结果:
Ez=0
Eρ=-j2k/ρ(μ/ε)1/2J221/Rρ)sin(2φ)sin(πz/L)
Eφ=jkσ21/R(μ/ε)1/2J2’(σ21/Rρ)cos(2φ)sin(πz/L)
Hz=σ21 2/R2J221/Rρ)cos(2φ)sin(πz/L)
Hρ=Пρ21/LRJ2’(σ21/Rρ)cos(2φ)cos(πz/L)
Hφ=-2П/LρJ221/Rρ)sin(2φ)cos(πz/L)
FTE211=c/2((σ21/πR)2+(1/L)2)1/2
TM模式可或者由垂直电偶极子(Ez)或者由水平磁偶极子(垂直回路Hφ)激发,而TE方式可由垂直磁偶极子(水平回路Hz)激发。
在图12中,2FTM010和FTE211是作为谐振腔长度L的函数绘制的,其中谐振腔半径R=5cm。对于 L ≅ 28 cm ,TE模式的共振频率为TM模式的两倍,对给出的谐振腔尺寸,共振频率确定如下:
FTM010=494MHz,FTE211=988MHz。
受益于本发明公开相关技术领域的普通技术人员将会注意到,对于谐振腔形状、尺寸和填充材料的变化,共振频率的准确值可能与上述不同。还应该懂得,前述两种模式只是共振模式的一种可能组合,原则上讲,存在可从中进行选择的无穷多的组合。在任何情况下,对本发明可取的频率范围处于100MHz到100GHz的范围内。还应该懂得,在不偏离本发明的精神实质的情况下,该频率范围可拓宽超出该优选频率范围。
公知的是可通过将一电偶极子、磁偶极子、孔(即导电表面上的绝缘槽)或它们的组合适当置于谐振腔中或谐振腔外表面上来激发谐振腔。例如,耦合环形天线14a和14b可由电偶板子或一简单的孔取代。数据传感器环形天线也可由单个电偶极子和/或磁偶极子和/或孔或它们的组合取代。
图13示出本发明的一示意图,其包括数据接收电路的方框图。如上所述,可调谐的微波振荡器74按频率F工作,从而驱动连接在数据接收器60一侧中心附近的电偶极子78上的微波功率放大器76。该电偶极子与z轴对齐以提供与TM010模式的Ez分量最大的耦合(下面的方程(1)(ρ=0,Ez最大))。
为了确定振荡器频率F是否调谐到谐振腔62的TM010共振频率,水平磁偶极子88,即对HφTM010(下面的方程(2))敏感的小垂直回路,通过一同轴线连接到开关81上,并经过开关81连接到调谐到F的微波接收放大器90上。借助于反馈83调节频率F直到在调谐接收器90中接收到最大信号为止。
EZTM010=λ01 2/R2J001ρ/R)                       (1)
HφTM010=-jkλ01/R(ε/μ)1/2J0’(λ01ρ/R)         (2)
F=cλ01/2πR                                       (3)
HZTE211=σ21 2/R2J221ρ/R)sin(2φ)cos(πz/L)     (4)
2F=c/2((σ21ρ/R)2+(1/L)2)1/2                      (5)
为了将该谐振腔调谐到TE211模式的频率2F,通过借助于和数据传感器16一起使用的二极管19类似的二极管对通过开关85从振荡器74过来的频率为F的信号进行检波可在调谐电路84中产生一2F调谐信号。调谐器84的输出通过一同轴线连接到垂直磁偶极子86上,即一个对TM211(上面的方程(4))的Hz敏感的小水平回路,以便按频率2F激发TE211模式。一类似的水平磁偶极子80,即一个也对TM211(方程(4))的Hz敏感的小水平回路,连接到一个调谐到2F的微波接收电路82上。接收电路82的输出连接到马达控制器92上,该控制器92驱动一个使活塞96运动的电动机94,以便以对于可调谐谐振腔已知的方式改变谐振腔的长度,直到接收到最大的信号并且接收器82调谐好为止。对本技术领域普通技术人员很明显,单个环形天线可取代连接到电路82和84两者上的环形天线80和86。
假设谐振腔62的窗口64已经位于数据传感器16的方向上,并且包含环形天线14a和14b的天线28或其他等效的通讯装置已经合适地安装在套管孔22中,则一旦TM频率F和TE频率2F都调谐好,就可开始测量操作过程。如果数据接收器60定位为使天线28与微波谐振腔62的垂直中心大致对齐,则对TE211模式可获得最大的耦合。在这方面,应该注意到,HφTM010与z坐标无关,但HzTE211在z=L/2时最大。
岩层数据测量与获得
岩层数据测量和获得顺序是用振荡器74、功率放大器76和电偶极子78把微波能量激发到谐振腔62而开始的。该微波能量通过天线组件28中的耦合环形天线14a和14b耦合连接到数据传感器或灵敏的插塞环形天线15a和15b上。按这种方式,微波能量以频率F发射到套管的外面,频率F由振荡器频率确定并且表示在图15定时曲线的120处。如上所述,频率F可在100MHz到10GHz的范围内选择。
再次参见图13,一旦灵敏的插塞16受到发射的微波能量激发,则位于灵敏的插塞内的接收器环形天线15a和15b以2F或原始频率的两倍的频率将电磁波辐射回来,如图15中121处所示。一低阈值二极管19连接在环形天线15a和15b之间。在正常情况下,特别是在“休眠”模式下,电子开关17打开,以使功率消耗最少。当环形天线15a和15b由发射的电磁微波场触发时,在环形天线15a和15b中感应出电压,从而产生流过天线的电流。但二极管19只允许电流向一个方向流动。这种非线性去除了以基频F感应的电流,并产生基频为2F的电流。在这期间,该微波腔62也用作一接收器并且连接到调谐到2F的接收器放大器82上。
更具体地,参见图14,当调谐到2F的数据传感器检测电路100检测到超过固定阈值的信号时,灵敏的插塞数据传感器16从休眠状态进入激活状态。其电路切换到获取和发送模式,并且控制器102被触发。在紧接控制器102的指令后的时刻,压力表104检测到的压力信息,或由合适的检测器检测到的其他信息转化为数字信号并且由模数转换器(ADC)储存电路106储存。然后控制器102通过将压力表数字信息转换为串行数字信号来触发发送顺序,该串行数字信号通过接收器线圈控制电路108使开关17接通和断开。
可采用各种数据发送方案。为便于展示,图15示出了一脉冲宽度调制发送方案。通过在一预定的时间Ts内使开关17断开和接通而发送一同步波形来开始发送顺序。字节1和0对应于一类似的波形,但带有不同的“接通/断开”时间顺序(T1和T0)。由数据传感器按2F发送回来的信号只有在开关17断开时才发送。因此一些独特的时间波形被图13所示工具电路的数字译码器110接收并解码。在图15中这些波形以参考号码122,123和124表示。形状122被译成一同步指令;123译成字节1;而124译成字节0。
当压力表或其他数字信息已经被检测到并储存在数据接收电路中后,断开工具功率输送器。不再向目标数据传感器提供能量,因此传感器切换到“休眠”模式,直到数据接收工具启动下一个获取步骤为止。位于数据传感器内部的小电池112在获取和发送期间给相应的电路提供电力。
本技术领域的普通技术人员应该注意到,一旦远程数据传感器,例如这里所述的优选“灵敏的插塞”的实施例,已经布置在井孔岩层中并通过如在裸眼井中钻井时的压力测量等测量提供了数据获取能力后,较理想的是在套管已经被安装入该井孔中之后继续使用这些数据传感器。这里公开的本发明描述了一种用于与套管后的数据传感器通讯的方法和装置,允许在井生产期间使用这些数据传感器继续监控岩层参数,例如压力、温度和渗透性。
本技术领域的普通技术人员还应该注意到,本发明最通常的用途可能是和6 3/4英寸的钻柱一起用在8 1/2英寸的井孔内。为在放置数据传感器16时获得最优化并保证成功,必须模拟并估算几个相关参数。这些参数包括:岩层穿透阻力对所需要的岩层穿透深度;布置“射枪”***参数和要求对在钻铤中可获得的空间;数据传感器(“插塞”)速度对冲击减速度;其他。
对于大于8 1/2英寸的井孔来说,几何要求不是非常严格。可在该布置***中采用较大的数据传感器,特别是在穿透阻力降低的较浅深度处。因此可以想象得到,对于大于8 1/2英寸的井孔来说,数据传感器尺寸将会更大;将容纳更多的电特性;可在离井孔更大的距离上进行通讯;并能进行多种测量,例如抵抗力,核磁共振探头,加速仪功能;还能作为离井孔更远处的传感器的数据中继站。
然而,可以预见到未来小型化的零部件的发展将可能减少或消除与井孔大小有关的各种限制。
根据上述内容,很明显,本发明可很好地适用于实现上述所有的各目的和在本文所公开的装置中固有的其他目的。
如本技术领域的普通技术人员可容易清楚的,在不偏离本发明的精神实质或本质特征的情况下,本发明可容易地以其他特定形式实现。因此本发明的实施例只能作为说明性的而不是限制性的。本发明的范围由后续各权利要求限定,而不是由上面的描述限定,因此在各权利要求等效物的含义和范围内的所有变化都应该包括在本发明的范围内。

Claims (24)

1.一种用于在套管(24)已经被装入井孔中后与数据传感器(16)通讯的方法,该传感器(16)在安装套管(24)之前已经远程布置在由该井孔穿过的地下岩层(20)中,该方法包括下列步骤:
(a)识别数据传感器(16)在地下岩层(20)中的位置;
(b)在靠近数据传感器(16)位置的套管壁中制造出一孔(22);
(c)将一天线(28)插装在套管壁的孔(22)中;
(d)将一数据接收器(60)***到天线(28)附近的下套管井孔中以通过天线(28)与数据传感器(16)通讯,以接收由数据传感器(16)检测并发送的岩层数据信号。
2.根据权利要求1中所述的方法,其特征在于,该数据传感器(16)备有用于发射特征讯号的装置,通过检测该特征讯号识别数据传感器(16)的位置。
3.根据权利要求1中所述的方法,其特征在于,该数据传感器(16)配备有用于发射尖头信号标记特征讯号的伽马射线尖头信号标记,识别数据传感器(16)位置的步骤包括下列步骤:
利用伽马射线裸眼井测井图和数据传感器(16)的尖头信号标记特征讯号确定数据传感器(16)的深度;及
用伽马射线探测器(32)和尖头信号标记特征讯号确定数据传感器(16)相对井孔的方位。
4.根据权利要求3中所述的方法,其特征在于,数据传感器(16)的方位是利用校准的伽马射线探测器(32)确定的。
5.根据权利要求1中所述的方法,其特征在于,天线(28)是用测井电缆工具(30)安装在套管孔(22)中的。
6.根据权利要求5中所述的方法,其特征在于,该数据接收器(60)包括一微波谐振腔。
7.根据权利要求1中所述的方法,其特征在于,识别数据传感器(16)位置的步骤包括识别数据传感器(16)相对井孔的深度和方位的步骤。
8.一种测量地下岩层参数的方法,包括下列步骤:
(a)用带有钻铤和钻头的钻柱在地下岩层(20)中钻出一井孔,钻铤具有可从钻铤内的缩进位置运动到井孔外地下岩层(20)内的布置位置的检测装置,该检测装置中具有适于检测选取的岩层参数并提供代表检测到的岩层参数的输出信号的电路;
(b)当钻铤位于相对所关心的地下岩层(20)的理想位置时,把检测装置从工具内的缩进位置运动到井孔外所关心的地下岩层(20)内的布置位置;
(c)将套管(24)安装在井孔内;
(d)识别数据传感器(16)在地下岩层(20)中的位置;
(e)在靠近数据传感器(16)的位置在套管(24)壁中制造出一个孔(22)并将天线(28)安装在该孔(22)中;
(f)将一接收装置***到下套管的井孔中;
(g)电启动检测装置,使检测装置检测选取的岩层参数并发送代表被检测到的岩层参数的数据信号;
(h)用接收装置接收来自检测装置的数据输出信号。
9.一种用于从数据传感器(16)获取下套管井孔中的数据信号的设备,该传感器在套管(24)安装在井孔中之前已经远程地布置在由该井孔穿过的地下岩层(20)中,该设备包括:
(a)适于安装在孔(22)中的天线(28),该孔形成于安装在井孔中的套管(24)壁上;及
(b)适于***到下套管的井孔中的数据接收器(60),该数据接收器用于通过所述天线(28)与数据传感器(16)通讯,从而接收由数据传感器(16)发送的岩层数据信号;
(c)用于识别数据传感器(16)在地下岩层(20)中的位置的装置;
(d)用于在数据传感器(16)位置附近制造出套管壁孔(22)的装置;
(e)用于将所述天线(28)安装在套管壁孔(22)中的装置。
10.一种用于从地下岩层(20)中获取数据的设备,其包括:
(a)一数据传感器(16),其适于从放置在井孔中的钻柱的钻铤中远程定位到选取的与该井孔交叉的地下岩层(20)内的布置位置,以检测并发送代表该岩层的至少一个参数的数据信号;
(b)用于在套管安装于井孔中后识别数据传感器在地下岩层中的位置的装置;
(c)用于与所述数据传感器(16)通讯的天线(28);
(d)用于将所述天线(28)安装在靠近数据传感器(16)位置的套管壁孔(22)中的装置。
11.根据权利要求10中所述的设备,其特征在于,所述数据传感器(16)备有用于发送特征讯号的装置,该特征讯号可由所述位置识别装置使用。
12.根据权利要求10中所述的设备,其特征在于,所述数据传感器(16)备有一个用于发送一尖头信号标记特征讯号的伽马射线尖头信号标记,所述位置识别装置包括:用于确定所述数据传感器(16)深度的伽马射线裸眼井测井图;用于确定所述数据传感器相对井孔的方位的伽马射线探测器(32)。
13.根据权利要求12中所述的设备,其特征在于,所述伽马射线探测器(32)是一个校准的伽马射线探测器(32)。
14.根据权利要求10中所述的设备,其特征在于,所述天线安装装置包括测井电缆工具(30)。
15.根据权利要求14中所述的设备,其特征在于,所述测井电缆工具(30)包括:
用于识别数据传感器(16)相对井孔的方位的装置;
用于使测井电缆工具(30)旋转到识别的方位的装置;
用于在识别的方位制造出一个通过该套管(24)和水泥层的孔(22)的装置;
用于将所述天线(28)安装在该套管(24)中的孔(22)中的装置。
16.根据权利要求10中所述的设备,还包括一数据接收器(60),该数据接收器(60)适于定位在该并所述天线(28)附近的下套管井孔中以通过所述天线(28)与所述数据传感器(16)通讯,从而接收由所述数据传感器(16)发送的岩层数据信号。
17.一种用于与数据传感器(16)建立通讯的设备,该传感器位于由下套管井孔穿过的地下岩层(20)中,该设备包括:
用于识别数据传感器(16)在岩层(20)中的位置的装置;
用于在被识别的数据传感器(16)位置附近的套管(24)中制钻孔的装置;
用于与数据传感器(16)通讯的天线(28);
用于将所述天线(28)插装在套管(24)的套管孔中的装置。
18.根据权利要求17中所述的设备,还包括一个适于运动通过下套管井孔的壳体(214),所述位置识别装置、所述钻孔装置、所述天线(28)和所述天线***装置装载在该壳体(214)中。
19.根据权利要求18中所述的设备,其特征在于,所述壳体(214)悬吊在可使所述壳体(214)在井孔中上升和下降的测井电缆上。
20.根据权利要求18中所述的设备,其特征在于,数据传感器(16)发射独特的放射性信号,所述位置识别装置包括:
用于确定数据传感器(16)的深度的裸眼井放射测井图;
装载于所述壳体内用于确定数据传感器(16)相对井孔的方位的放射探测器(32)。
21.根据权利要求18中所述的设备,其特征在于,所述壳体(214)中具有一横向孔,所述设备还包括用于使所述壳体相对下套管井孔旋转以使所述壳体内的孔基本上位于数据传感器(16)方位的装置。
22.根据权利要求21中所述的设备,其特征在于,所述成孔装置包括:
用于使所述壳体(214)固定在下套管井孔中的基本上固定的位置上的装置;
装载于所述壳体(214)内用于在井孔的套管(24)中造孔的钻孔装置;
装载于所述壳体(214)内用于启动所述钻孔装置的装置。
23.根据权利要求22中所述的设备,其特征在于,钻孔装置包括:
适于在套管(24)上钻孔的钻头(219);
用于使钻头(219)相对该套管(24)旋转以在其中造孔的装置;
连接在所述壳体(214)上的装置,该装置用向横切井孔的钻头(219)施加力以当转动装置使钻头(219)转动时驱动钻头(219)穿过套管。
24.根据权利要求18中所述的设备,其特征在于,所述天线***装置包括:
装载于所述壳体(214)内用于储存许多适于与数据传感器(16)通讯的天线(28)的装置;
用于将一根天线(28)运动到准备***到孔中的位置上的装置;
用于强迫一根天线(28)通过所述壳体(214)中的孔进入套管(24)孔的装置。
CNB99117979XA 1998-08-18 1999-08-18 从地下岩层中获取数据的方法和设备 Expired - Fee Related CN1199001C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/135774 1998-08-18
US09/135,774 1998-08-18
US09/135,774 US6070662A (en) 1998-08-18 1998-08-18 Formation pressure measurement with remote sensors in cased boreholes

Publications (2)

Publication Number Publication Date
CN1249392A CN1249392A (zh) 2000-04-05
CN1199001C true CN1199001C (zh) 2005-04-27

Family

ID=22469602

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB99117979XA Expired - Fee Related CN1199001C (zh) 1998-08-18 1999-08-18 从地下岩层中获取数据的方法和设备

Country Status (10)

Country Link
US (1) US6070662A (zh)
EP (1) EP0984135B1 (zh)
CN (1) CN1199001C (zh)
AU (1) AU758816B2 (zh)
BR (1) BR9903775A (zh)
CA (1) CA2278080C (zh)
DE (1) DE69914838T9 (zh)
ID (1) ID23247A (zh)
NO (1) NO316539B1 (zh)
RU (1) RU2169837C2 (zh)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115236A (en) * 1996-03-28 2003-04-30 Shell Int Research Method for monitoring well cementing operations
US6234257B1 (en) * 1997-06-02 2001-05-22 Schlumberger Technology Corporation Deployable sensor apparatus and method
US6691779B1 (en) * 1997-06-02 2004-02-17 Schlumberger Technology Corporation Wellbore antennae system and method
US6464021B1 (en) 1997-06-02 2002-10-15 Schlumberger Technology Corporation Equi-pressure geosteering
US6766854B2 (en) 1997-06-02 2004-07-27 Schlumberger Technology Corporation Well-bore sensor apparatus and method
US6693553B1 (en) 1997-06-02 2004-02-17 Schlumberger Technology Corporation Reservoir management system and method
US6426917B1 (en) 1997-06-02 2002-07-30 Schlumberger Technology Corporation Reservoir monitoring through modified casing joint
US6429784B1 (en) * 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
US6538576B1 (en) * 1999-04-23 2003-03-25 Halliburton Energy Services, Inc. Self-contained downhole sensor and method of placing and interrogating same
US6386288B1 (en) * 1999-04-27 2002-05-14 Marathon Oil Company Casing conveyed perforating process and apparatus
US6727827B1 (en) * 1999-08-30 2004-04-27 Schlumberger Technology Corporation Measurement while drilling electromagnetic telemetry system using a fixed downhole receiver
AU751676B2 (en) * 1999-09-13 2002-08-22 Schlumberger Technology B.V. Wellbore antennae system and method
AU754992B2 (en) * 2000-03-20 2002-11-28 Schlumberger Holdings Limited A downhole tool including an electrically steerable antenna for use with a formation deployed remote sensing unit
US7059428B2 (en) * 2000-03-27 2006-06-13 Schlumberger Technology Corporation Monitoring a reservoir in casing drilling operations using a modified tubular
US6614229B1 (en) * 2000-03-27 2003-09-02 Schlumberger Technology Corporation System and method for monitoring a reservoir and placing a borehole using a modified tubular
US6408943B1 (en) * 2000-07-17 2002-06-25 Halliburton Energy Services, Inc. Method and apparatus for placing and interrogating downhole sensors
US6467387B1 (en) 2000-08-25 2002-10-22 Schlumberger Technology Corporation Apparatus and method for propelling a data sensing apparatus into a subsurface formation
CA2398381A1 (en) 2000-11-03 2002-08-01 Charles H. King Instrumented cementing plug and system
MY127805A (en) * 2001-01-18 2006-12-29 Shell Int Research Determining the pvt properties of a hydrocarbon reservoir fluid
US6822579B2 (en) 2001-05-09 2004-11-23 Schlumberger Technology Corporation Steerable transceiver unit for downhole data acquistion in a formation
US6769296B2 (en) * 2001-06-13 2004-08-03 Schlumberger Technology Corporation Apparatus and method for measuring formation pressure using a nozzle
GB0122929D0 (en) * 2001-09-24 2001-11-14 Abb Offshore Systems Ltd Sondes
AU2002342775A1 (en) * 2001-09-28 2003-04-14 Shell Internationale Research Maatschappij B.V. Tool and method for measuring properties of an earth formation surrounding a borehole
GB2380802B (en) * 2001-10-12 2003-09-24 Schlumberger Holdings Method and apparatus for pore pressure monitoring
GB2387859B (en) 2002-04-24 2004-06-23 Schlumberger Holdings Deployment of underground sensors
US20040207539A1 (en) * 2002-10-22 2004-10-21 Schultz Roger L Self-contained downhole sensor and method of placing and interrogating same
US20040182147A1 (en) * 2003-03-19 2004-09-23 Rambow Frederick H. K. System and method for measuring compaction and other formation properties through cased wellbores
US7158049B2 (en) * 2003-03-24 2007-01-02 Schlumberger Technology Corporation Wireless communication circuit
US6978833B2 (en) * 2003-06-02 2005-12-27 Schlumberger Technology Corporation Methods, apparatus, and systems for obtaining formation information utilizing sensors attached to a casing in a wellbore
US7168487B2 (en) * 2003-06-02 2007-01-30 Schlumberger Technology Corporation Methods, apparatus, and systems for obtaining formation information utilizing sensors attached to a casing in a wellbore
US20040246141A1 (en) * 2003-06-03 2004-12-09 Tubel Paulo S. Methods and apparatus for through tubing deployment, monitoring and operation of wireless systems
US7257050B2 (en) * 2003-12-08 2007-08-14 Shell Oil Company Through tubing real time downhole wireless gauge
US7204308B2 (en) * 2004-03-04 2007-04-17 Halliburton Energy Services, Inc. Borehole marking devices and methods
US7140434B2 (en) * 2004-07-08 2006-11-28 Schlumberger Technology Corporation Sensor system
EP1662673B1 (en) * 2004-11-26 2017-01-25 Services Pétroliers Schlumberger Method and apparatus for communicating across casing
US7278480B2 (en) * 2005-03-31 2007-10-09 Schlumberger Technology Corporation Apparatus and method for sensing downhole parameters
US7296927B2 (en) * 2005-04-07 2007-11-20 Halliburton Energy Services, Inc. Laboratory apparatus and method for evaluating cement performance for a wellbore
US7380466B2 (en) * 2005-08-18 2008-06-03 Halliburton Energy Services, Inc. Apparatus and method for determining mechanical properties of cement for a well bore
US8540027B2 (en) 2006-08-31 2013-09-24 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US7602668B2 (en) * 2006-11-03 2009-10-13 Schlumberger Technology Corporation Downhole sensor networks using wireless communication
EP1936113B1 (en) * 2006-12-21 2009-11-04 Services Pétroliers Schlumberger 2d well testing with smart plug sensor
GB2444957B (en) * 2006-12-22 2009-11-11 Schlumberger Holdings A system and method for robustly and accurately obtaining a pore pressure measurement of a subsurface formation penetrated by a wellbore
US7549320B2 (en) * 2007-01-11 2009-06-23 Halliburton Energy Services, Inc. Measuring cement properties
US7621186B2 (en) * 2007-01-31 2009-11-24 Halliburton Energy Services, Inc. Testing mechanical properties
US20080230221A1 (en) * 2007-03-21 2008-09-25 Schlumberger Technology Corporation Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors
EP2000630A1 (en) * 2007-06-08 2008-12-10 Services Pétroliers Schlumberger Downhole 4D pressure measurement apparatus and method for permeability characterization
US7552648B2 (en) * 2007-09-28 2009-06-30 Halliburton Energy Services, Inc. Measuring mechanical properties
US8016036B2 (en) 2007-11-14 2011-09-13 Baker Hughes Incorporated Tagging a formation for use in wellbore related operations
CN101235716B (zh) * 2008-02-22 2012-07-04 中国海洋石油总公司 一种避免油气钻井相邻井眼碰撞的预警方法及***
EP2180137A1 (en) * 2008-10-23 2010-04-28 Services Pétroliers Schlumberger Apparatus and methods for through-casing remedial zonal isolation
GB0900446D0 (en) 2009-01-12 2009-02-11 Sensor Developments As Method and apparatus for in-situ wellbore measurements
US8601882B2 (en) * 2009-02-20 2013-12-10 Halliburton Energy Sevices, Inc. In situ testing of mechanical properties of cementitious materials
US8471560B2 (en) * 2009-09-18 2013-06-25 Schlumberger Technology Corporation Measurements in non-invaded formations
US8783091B2 (en) 2009-10-28 2014-07-22 Halliburton Energy Services, Inc. Cement testing
CN102418504B (zh) * 2010-09-27 2014-06-04 中国石油天然气股份有限公司 智能化井下配水控制装置
US8726987B2 (en) * 2010-10-05 2014-05-20 Baker Hughes Incorporated Formation sensing and evaluation drill
US10131419B2 (en) 2010-10-15 2018-11-20 Goodrich Corporation Systems and methods for detecting landing gear ground loads
CN102071929B (zh) * 2010-12-09 2013-06-05 中国石油天然气股份有限公司 一种白云岩储层地球化学图版生成方法
US8646520B2 (en) 2011-03-15 2014-02-11 Baker Hughes Incorporated Precision marking of subsurface locations
US20140368198A1 (en) * 2011-12-21 2014-12-18 Schlumberger Technology Corporation Insulation Structure For Well Logging Instrument Antennas
CN102518420B (zh) * 2011-12-26 2014-07-16 四机赛瓦石油钻采设备有限公司 一种不限层电控压裂滑套
US8960013B2 (en) 2012-03-01 2015-02-24 Halliburton Energy Services, Inc. Cement testing
US8794078B2 (en) 2012-07-05 2014-08-05 Halliburton Energy Services, Inc. Cement testing
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
CN105229258A (zh) 2013-01-04 2016-01-06 卡博陶粒有限公司 电气地导电的支撑剂以及用于检测、定位和特征化该电气地导电的支撑剂的方法
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
US9482708B2 (en) 2013-01-29 2016-11-01 ETS-Lindgren Inc. Enhanced reverberation chamber
US9482631B2 (en) 2013-05-14 2016-11-01 Chevron U.S.A. Inc. Formation core sample holder assembly and testing method for nuclear magnetic resonance measurements
US9746423B2 (en) 2013-05-15 2017-08-29 ETS-Lindgren Inc. Reverberation chamber loading
US9702680B2 (en) 2013-07-18 2017-07-11 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
NO342721B1 (no) * 2013-12-12 2018-07-30 Sensor Developments As E-felt trådløst kommunikasjonssystem for en borebrønn
WO2015088355A1 (en) 2013-12-12 2015-06-18 Sensor Developments As Wellbore e-field wireless communication system
US9714567B2 (en) * 2013-12-12 2017-07-25 Sensor Development As Wellbore E-field wireless communication system
US20150184468A1 (en) * 2013-12-30 2015-07-02 Trican Well Service, Ltd. Tractor for installing tubing encapsulated cable into coil tubing
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture
EP2990593A1 (en) * 2014-08-27 2016-03-02 Welltec A/S Downhole wireless transfer system
US9851315B2 (en) 2014-12-11 2017-12-26 Chevron U.S.A. Inc. Methods for quantitative characterization of asphaltenes in solutions using two-dimensional low-field NMR measurement
US10634746B2 (en) 2016-03-29 2020-04-28 Chevron U.S.A. Inc. NMR measured pore fluid phase behavior measurements
WO2019125409A1 (en) 2017-12-19 2019-06-27 Halliburton Energy Services, Inc. Energy transfer mechanism for wellbore junction assembly
GB2593458B (en) 2017-12-19 2022-04-27 Halliburton Energy Services Inc Energy transfer mechanism for wellbore junction assembly
US11591885B2 (en) 2018-05-31 2023-02-28 DynaEnergetics Europe GmbH Selective untethered drone string for downhole oil and gas wellbore operations
WO2019229521A1 (en) 2018-05-31 2019-12-05 Dynaenergetics Gmbh & Co. Kg Systems and methods for marker inclusion in a wellbore
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11339614B2 (en) 2020-03-31 2022-05-24 DynaEnergetics Europe GmbH Alignment sub and orienting sub adapter
US11808093B2 (en) 2018-07-17 2023-11-07 DynaEnergetics Europe GmbH Oriented perforating system
WO2020050815A1 (en) * 2018-09-04 2020-03-12 Halliburton Energy Services, Inc. Position sensing for downhole electronics
CN110344823B (zh) * 2019-06-19 2023-04-07 中国石油天然气集团有限公司 一种基于旋转导向工具的随钻伽马电阻率成像测井仪器
WO2021063920A1 (en) 2019-10-01 2021-04-08 DynaEnergetics Europe GmbH Shaped power charge with integrated igniter
CZ2022303A3 (cs) 2019-12-10 2022-08-24 DynaEnergetics Europe GmbH Hlava rozněcovadla
US11988049B2 (en) 2020-03-31 2024-05-21 DynaEnergetics Europe GmbH Alignment sub and perforating gun assembly with alignment sub
NO346972B1 (en) * 2021-06-03 2023-03-20 Fishbones AS Apparatus for forming lateral bores in subsurface rock formations, and wellbore string

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528000A (en) * 1954-03-05 1970-09-08 Schlumberger Well Surv Corp Nuclear resonance well logging method and apparatus
US3934468A (en) * 1975-01-22 1976-01-27 Schlumberger Technology Corporation Formation-testing apparatus
US4446433A (en) * 1981-06-11 1984-05-01 Shuck Lowell Z Apparatus and method for determining directional characteristics of fracture systems in subterranean earth formations
US4651100A (en) * 1984-08-20 1987-03-17 Dresser Industries, Inc. Antenna construction for well logging of subsurface earth formations
US4893505A (en) * 1988-03-30 1990-01-16 Western Atlas International, Inc. Subsurface formation testing apparatus
US4936139A (en) * 1988-09-23 1990-06-26 Schlumberger Technology Corporation Down hole method for determination of formation properties
US4860581A (en) * 1988-09-23 1989-08-29 Schlumberger Technology Corporation Down hole tool for determination of formation properties
US5065619A (en) * 1990-02-09 1991-11-19 Halliburton Logging Services, Inc. Method for testing a cased hole formation
GB9026846D0 (en) * 1990-12-11 1991-01-30 Schlumberger Ltd Downhole penetrometer
US5195588A (en) * 1992-01-02 1993-03-23 Schlumberger Technology Corporation Apparatus and method for testing and repairing in a cased borehole
GB2344911B (en) * 1995-02-10 2000-08-09 Baker Hughes Inc Method for remote control of wellbore end devices
US5622223A (en) * 1995-09-01 1997-04-22 Haliburton Company Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements
US5692565A (en) * 1996-02-20 1997-12-02 Schlumberger Technology Corporation Apparatus and method for sampling an earth formation through a cased borehole
US5687806A (en) * 1996-02-20 1997-11-18 Gas Research Institute Method and apparatus for drilling with a flexible shaft while using hydraulic assistance
US5765637A (en) * 1996-11-14 1998-06-16 Gas Research Institute Multiple test cased hole formation tester with in-line perforation, sampling and hole resealing means
US5810083A (en) * 1996-11-25 1998-09-22 Halliburton Energy Services, Inc. Retrievable annular safety valve system

Also Published As

Publication number Publication date
RU2169837C2 (ru) 2001-06-27
CN1249392A (zh) 2000-04-05
CA2278080A1 (en) 2000-02-18
EP0984135A3 (en) 2000-08-02
US6070662A (en) 2000-06-06
DE69914838D1 (de) 2004-03-25
AU4015399A (en) 2000-03-09
EP0984135A2 (en) 2000-03-08
DE69914838T9 (de) 2005-06-30
ID23247A (id) 2000-03-30
EP0984135B1 (en) 2004-02-18
AU758816B2 (en) 2003-04-03
BR9903775A (pt) 2001-10-09
NO993947D0 (no) 1999-08-17
NO316539B1 (no) 2004-02-02
DE69914838T2 (de) 2004-12-09
CA2278080C (en) 2004-08-24
NO993947L (no) 2000-02-21

Similar Documents

Publication Publication Date Title
CN1199001C (zh) 从地下岩层中获取数据的方法和设备
RU2374441C2 (ru) Развертывание подземных датчиков в обсадной колонне
US10358914B2 (en) Methods and systems for detecting RFID tags in a borehole environment
US6943697B2 (en) Reservoir management system and method
US6864801B2 (en) Reservoir monitoring through windowed casing joint
RU2413841C2 (ru) Система двусторонней телеметрии по бурильной колонне для измерений и управления бурением
CN1580488A (zh) 可起出的地下核测井***
CA2703417C (en) Instrumentation of appraisal well for telemetry
EP0918919B1 (en) Logging method
US9347277B2 (en) System and method for communicating between a drill string and a logging instrument
US10301931B2 (en) Measuring while drilling systems, method and apparatus
EP2610432A1 (en) Downhole ultrasonic transducer and method of making same
US20070126595A1 (en) Logging system, method of logging an earth formation and method of producing a hydrocarbon fluid
WO2015199986A1 (en) Methods and systems for detecting rfid tags in a borehole environment
CN1407350A (zh) 通过金属管状物进行井下信号的通讯和测量
RU2272907C2 (ru) Способ и система выполнения операций обработки в скважинах
CN108643886B (zh) 一种深水井环空圈闭压力监测装置及方法
CN102425410A (zh) 一种随钻测量超声波数据传输方法及装置
CN1502787A (zh) 利用改进管件进行的随起下测井
CA2431152C (en) Well-bore sensor apparatus and method
KR20150004570A (ko) Bop 테스트 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050427

Termination date: 20150818

EXPY Termination of patent right or utility model