CN1197846A - High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material - Google Patents

High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material Download PDF

Info

Publication number
CN1197846A
CN1197846A CN98111860A CN98111860A CN1197846A CN 1197846 A CN1197846 A CN 1197846A CN 98111860 A CN98111860 A CN 98111860A CN 98111860 A CN98111860 A CN 98111860A CN 1197846 A CN1197846 A CN 1197846A
Authority
CN
China
Prior art keywords
slag
furnace
vanadium iron
vanadium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98111860A
Other languages
Chinese (zh)
Other versions
CN1094985C (en
Inventor
罗发应
甘友平
李敏
马东海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMEI IRON ALLOY (GROUP) STOCK-SHARING Co Ltd
Original Assignee
EMEI IRON ALLOY (GROUP) STOCK-SHARING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMEI IRON ALLOY (GROUP) STOCK-SHARING Co Ltd filed Critical EMEI IRON ALLOY (GROUP) STOCK-SHARING Co Ltd
Priority to CN98111860A priority Critical patent/CN1094985C/en
Publication of CN1197846A publication Critical patent/CN1197846A/en
Application granted granted Critical
Publication of CN1094985C publication Critical patent/CN1094985C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

The present invention uses large amount of lime and magnesite as flux and duriron as reducing agent in extracting vanadium in high-vanadium iron slag and produce high- silicon low-vanadium iron product through material preparation, arc striking to regulate slag, reduction of poor slag. The product may be used as furnace burden for smelting ferrovanadium alloy and the utilization of high- vanadium iron slag provides vanadium resource for producing ferrovanadium alloy. The present invention has the advantages of simple process, low production cost and low "three waste" pollution.

Description

High-silicon low-vanadium iron smelting process by using high-vanadium iron slag and process thereof
The invention relates to the technical field of metallurgy, in particular to a high-silicon low-ferrovanadium product smelted by using high-ferrovanadium slag as a raw material and a production process thereof.
It is known that in the technical field of engineering materials, vanadium is an important alloy without element, the vanadium-containing alloy material plays an extremely important role in national economy in China, and the vanadium alloy material has unique and excellent high-temperatureresistance and is widely applied to the technical fields of engineering such as aerospace, machining and the like. So far, in the metallurgical industry, the high ferrovanadium slag discharged when producing and smelting high ferrovanadium is still directly discharged and discarded as industrial waste slag, and is determined as follows: the main component of the discharged high-vanadium iron slag is Al2O3(about 85%) and V2O5(about 7 percent), a large amount of high-vanadium iron slag is discharged and discarded, which not only causes huge pollution to the natural environment, but also causes huge pollution to the natural environmentThe great waste of vanadium resources, how to develop and utilize the high-vanadium iron slag and how to extract vanadium elements in the high-vanadium iron slag are important subjects of changing waste into valuable in the current metallurgical industry, and the method has very obvious social, economic and environmental benefits. The current development and utilization of the high-vanadium iron slag are as follows: the high ferrovanadium slag is only used as a material for paving roads or a common material for floor tiles and refractory bricks, which still wastes a huge amount of vanadium resources.
The invention aims to provide a high-silicon low-vanadium iron product smelted by using high-vanadium iron slag as a raw material and a production process thereof.
The purpose of the invention is realized by the following technical scheme.
A high-silicon low-vanadium iron product smelted by high-vanadium iron slag and a production process thereof are disclosed, wherein the raw materials are proportioned (by weight):
main furnace charge: 100 parts of high-vanadium iron slag reducing agent: 15-25 parts of ferrosilicon
Main fusing agent: 30-40 parts of lime as an auxiliary flux: 5-8 parts of magnesia
The furnace type is adopted as follows: the transformer for the furnace with tilting electric arc furnace and 1800-2500 kVA power, the furnace lining and the furnace repairing material are knotted by the body furnace burden, namely, the high-vanadium iron furnace slag is levigated, brine is used as a binder to manufacture the furnace lining brick and the material for repairing the furnace lining, the material cost of the furnace lining can be reduced, and the aluminum (or siliceous) furnace lining can be prevented from being washed at high temperature to cause Al to be generated2O3(or SiO)2) The entering slag influences the reduction effect and increases the slag quantity, thereby improving the recovery rate of vanadium.
The production process is carried out according to the following steps in sequence:
① preparing materials, namely crushing the high-vanadium iron slag, controlling the granularity to be 20-30 mm, uniformly mixing the high-vanadium iron slag and the lime according to the weight ratio of 1: 0.3-0.4 to prepare mixed furnace burden, and putting the mixed furnace burden into a storage bin for later use;
② arc striking and slag regulating, namely firstly throwing 25-35% of the total amount of the ferrosilicon into the furnace, transmitting power for arc striking, throwing mixed furnace burden after the arc light is stabilized, and throwing magnesia to adjust the slag shape after the furnace burden forms a molten pool, thereby effectively preventing the furnace bottom from rising;
③ reducing the lean slag, namely, raising the temperature in the furnace to melt the furnace charge, adding the rest ferrosilicon, stirring the ferrosilicon sufficiently with strong force, and carrying out the following reduction reaction:
through the reduction reaction, vanadium is reduced out and enters molten iron to form vanadium-containing ferroalloy, and the lean slag is sampled and analyzed to reduce until the content of vanadium in the slag is lower than 0.5%;
④ discharging slag and iron, namely obtaining the high-silicon low-vanadium iron product.
The high-silicon low-vanadium iron product is produced by smelting high-vanadium iron slag as a raw material by the process method, and comprises the following main components in percentage by weight:
25-50 Si, 15-35V, less than or equal to 2.08 Al, less than or equal to 1C, less than or equal to 0.034P, less than or equal to 0.007S and the balance of Fe.
The high silicon low vanadium iron product is mainly used for smelting important and expensive vanadium iron alloy, such as FeV50And the furnace burden in the first period provides important vanadium resources for smelting ferrovanadium.
The invention adopts large amount of lime and magnesia as flux to adjust slag, uses ferrosilicon as reducing agent to reduce and extract vanadium element in high-vanadium iron slag, and prepares high-silicon low-vanadium iron product with high vanadium and silicon content, which can be used as first-stage furnace charge for producing and smelting important ferrovanadium alloy, and provides important vanadium resource for producing ferrovanadium alloy. The main advantages of the invention are: simple process, low production cost, reduction of 'three wastes' pollution and obvious social, economic and environmental benefits.
The practice of the invention is further illustrated below:
the first embodiment is as follows:
a high-silicon low-vanadium iron product smelted by high-vanadium iron slag and a production process thereof are disclosed, wherein the raw materials are proportioned (by weight):
main furnace charge: 100 parts of high-vanadium iron slag reducing agent: 15 parts of silicon iron
Main fusing agent: 30 parts of lime as an auxiliary flux: 5 portions of magnesia
The furnace type is adopted as follows: the transformer for the furnace with tilting electric arc furnace and 1800-2500 kVA power, the furnace lining and the furnace repairing material are knotted by the body furnace burden, namely, the high-vanadium iron furnace slag is levigated, brine is used as a binder to manufacture the furnace lining brick and the material for repairing the furnace lining, the material cost of the furnace lining can be reduced, and the aluminum (or siliceous) furnace lining can be prevented from being washed at high temperature to cause Al to be generated2O3(or SiO)2) The entering slag influences the reduction effect and increases the slag quantity, thereby improving the recovery rate of vanadium.
The production process is carried out according to the following steps in sequence:
① preparing materials, namely crushing the high-vanadium iron slag, controlling the granularity to be 20-30 mm, uniformly mixing the high-vanadium iron slag and the lime according to the weight ratio of 1: 0.3 to prepare a mixed furnace charge, and putting the mixed furnace charge into a storage bin for later use;
② arc striking and slag regulating, namely putting 30 percent of the total amount of the ferrosilicon into the furnace, transmitting power for arc striking, putting the mixed furnace burden after the arc light is stabilized, and putting the magnesia into the furnace burden after the furnace burden forms a molten pool to regulate the slag type, thereby effectively preventing the furnace bottom from rising;
③ reducing the lean slag, namely, raising the temperature in the furnace to melt the furnace charge, adding the rest ferrosilicon, stirring the ferrosilicon sufficiently with strong force, and carrying out the following reduction reaction:
through the reduction reaction, vanadium is reduced out and enters molten iron to form vanadium-containing ferroalloy, and the lean slag is sampled and analyzed to reduce until the content of vanadium in the slag is lower than 0.5%;
④ discharging slag and iron, namely obtaining the high-silicon low-vanadium iron product.
The high-silicon low-vanadium iron product is produced by smelting high-vanadium iron slag as a raw material by the process method, and comprises the following main components in percentage by weight:
25-50 Si, 15-35V, less than or equal to 2.08 Al, less than or equal to 1C, less than or equal to 0.034P, less than or equal to 0.007S and the balance of Fe.
Example two:
a high-silicon low-vanadium iron product smelted by high-vanadium iron slag and a production process thereof are disclosed, wherein the raw materials are proportioned (by weight):
main furnace charge: 100 parts of high-vanadium iron slag reducing agent: 25 portions of silicon iron
Main fusing agent: 40 parts of lime as an auxiliary flux: 8 portions of magnesia
The furnace type is adopted as follows: the transformer for the furnace with tilting electric arc furnace and 1800-2500 kVA power, the furnace lining and the furnace repairing material are knotted by the body furnace burden, namely, the high vanadium iron furnace slag is levigated, brine is used as a binder to manufacture the furnace lining brick and the material for repairing the furnace lining, the cost of the furnace lining material can be reduced, and the use of the brine can be avoidedAl is produced by high-temperature washing of aluminium (or silicon) lining2O3(or SiO)2) The entering slag influences the reduction effect and increases the slag quantity, thereby improving the recovery rate of vanadium.
The production process is carried out according to the following steps in sequence:
① preparing materials, namely crushing the high-vanadium iron slag, controlling the granularity to be 20-30 mm, uniformly mixing the high-vanadium iron slag and the lime according to the weight ratio of 1: 0.4 to prepare a mixed furnace charge, and putting the mixed furnace charge into a storage bin for later use;
② arc striking and slag regulating, namely putting 30 percent of the total amount of the ferrosilicon into the furnace, transmitting power for arc striking, putting the mixed furnace burden after the arc light is stabilized, and putting the magnesia into the furnace burden after the furnace burden forms a molten pool to regulate the slag type, thereby effectively preventing the furnace bottom from rising;
③ reducing the lean slag, namely, raising the temperature in the furnace to melt the furnace charge, adding the rest ferrosilicon, stirring the ferrosilicon sufficiently with strong force, and carrying out the following reduction reaction:
through the reduction reaction, vanadiumis reduced out and enters molten iron to form vanadium-containing ferroalloy, and the lean slag is sampled and analyzed to reduce until the content of vanadium in the slag is lower than 0.5%;
④ discharging slag and iron, namely obtaining the high-silicon low-vanadium iron product.
The high-silicon low-vanadium iron product is produced by smelting high-vanadium iron slag as a raw material by the process method, and comprises the following main components in percentage by weight:
25-50 Si, 15-35V, less than or equal to 2.08 Al, less than or equal to 1C, less than or equal to 0.034P, less than or equal to 0.007S and the balance of Fe.
EXAMPLE III
A high-silicon low-vanadium iron product smelted by high-vanadium iron slag and a production process thereof are disclosed, wherein the raw materials are proportioned (by weight):
main furnace charge: 100 parts of high-vanadium iron slag reducing agent: 20 parts of ferrosilicon
Main fusing agent: 35 parts of lime as an auxiliary flux: 6 portions of magnesia
The furnace type is adopted as follows: the transformer for the furnace with tilting electric arc furnace and 1800-2500 kVA power, the furnace lining and the furnace repairing material are knotted by the body furnace burden, namely, the high-vanadium iron furnace slag is levigated, brine is used as a binder to manufacture the furnace lining brick and the material for repairing the furnace lining, the material cost of the furnace lining can be reduced, and the aluminum (or siliceous) furnace lining can be prevented from being washed at high temperature to cause Al to be generated2O3(or SiO)2) The entering slag influences the reduction effect and increases the slag quantity, thereby improving the recovery rate of vanadium.
The production process is carried out according to the following steps in sequence:
① preparing materials, namely crushing the high-vanadium iron slag, controlling the granularity to be 20-30 mm, uniformly mixing the high-vanadium iron slag and the lime according to the weight ratio of 1: 0.35 to prepare a mixed furnace charge, and putting the mixed furnace charge into a storage bin for later use;
② arc striking and slag regulating, namely putting 30 percent of the total amount of the ferrosilicon into the furnace, transmitting power for arc striking, putting the mixed furnace burden after the arc light is stabilized, and putting the magnesia into the furnace burden after the furnace burden forms a molten pool to regulate the slag type, thereby effectively preventing the furnace bottom from rising;
③ reducing the lean slag, namely, raising the temperature in the furnace to melt the furnace charge, adding the rest ferrosilicon, stirring the ferrosilicon sufficiently with strong force, and carrying out the following reduction reaction:
through the reduction reaction, vanadium is reduced out and enters molten iron to form vanadium-containing ferroalloy, and the lean slag is sampled and analyzed to reduce until the content of vanadium in the slag is lower than 0.5%;
④ discharging slag and iron, namely obtaining the high-silicon low-vanadium iron product.
The high-silicon low-vanadium iron product is produced by smelting high-vanadium iron slag as a raw material by the process method, and comprises the following main components in percentage by weight:
25-50 Si, 15-35V, less than or equal to 2.08 Al, less than or equal to 1C, less than or equal to 0.034P, less than or equal to 0.007S and the balance of Fe.

Claims (2)

1. A process for smelting high-silicon low-vanadium iron by using high-vanadium iron slag is characterized in that the raw materials are proportioned as follows (by weight):
100 parts of high-vanadium iron slag
15-25 parts of ferrosilicon
30-40 parts of lime
5-8 parts of magnesia
Adopts a tilting electric arc furnace, the furnace lining and the fettling material are tied by the furnace burden of the main body,
the method comprises the following steps of:
① preparing materials, namely crushing the high-vanadium iron slag until the granularity is 20-30 mm, uniformly mixing the high-vanadium iron slag and lime according to the weight ratio of 1: 0.3-0.4 to prepare mixed furnace burden, and putting the mixed furnace burden into a storage bin for later use;
② arc striking and slag regulating, namely putting 25-35% of the total amount of ferrosilicon into a furnace, transmitting power for arc striking, putting mixed furnace charge after arc light is stabilized, and putting magnesia into the furnace charge to regulate slag mold after the furnace charge forms a molten pool;
③ reducing the lean slag by adding the rest ferrosilicon, fully stirring to carry out reduction reaction until the content of vanadium in the slag is less than 0.5%;
④ discharging slag and iron, namely obtaining the high-silicon low-vanadium iron product.
2. A high-silicon low-vanadium iron product smelted by the method of claim 1, characterized in that it comprises the following main components (in weight percent): 25-50 Si, 15-35V, less than or equal to 2.08 Al, less than or equal to 1C, less than or equal to 0.034P, less than or equal to 0.007S and the balance of Fe.
CN98111860A 1998-02-18 1998-02-18 High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material Expired - Fee Related CN1094985C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98111860A CN1094985C (en) 1998-02-18 1998-02-18 High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98111860A CN1094985C (en) 1998-02-18 1998-02-18 High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material

Publications (2)

Publication Number Publication Date
CN1197846A true CN1197846A (en) 1998-11-04
CN1094985C CN1094985C (en) 2002-11-27

Family

ID=5221745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98111860A Expired - Fee Related CN1094985C (en) 1998-02-18 1998-02-18 High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material

Country Status (1)

Country Link
CN (1) CN1094985C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107773A (en) * 2021-12-02 2022-03-01 承德锦科科技股份有限公司 50 ferrovanadium-silicon and preparation method thereof
WO2022211640A1 (en) * 2021-03-30 2022-10-06 Elkem Asa Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028437C (en) * 1991-03-11 1995-05-17 焦作矿务局王封铁合金厂 Formula for producing silica-alumina iron by use of ore-heating method and production process thereof
CN1016361B (en) * 1991-04-24 1992-04-22 冶金工业部钢铁研究总院 Barium titanium silicon iron composition intermediate alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211640A1 (en) * 2021-03-30 2022-10-06 Elkem Asa Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
CN114107773A (en) * 2021-12-02 2022-03-01 承德锦科科技股份有限公司 50 ferrovanadium-silicon and preparation method thereof

Also Published As

Publication number Publication date
CN1094985C (en) 2002-11-27

Similar Documents

Publication Publication Date Title
CN104726715B (en) Recycling method for vanadium-chromium waste residues
CN101067182A (en) V2O5 direct alloying steelmaking technology
CN1974828A (en) Ferrochromium alloy with very low titanium content and high carbon content and its production process
CN1888102A (en) Direct Al-Si-Fe alloy smelting process in ore smelting furnace
CN1827792A (en) Fluorine-free pro-molten refining slag and preparation method thereof
CN1821429A (en) Method for producing aluminium enriched slag for extracting aluminium oxide and silicon-iron alloy
CN1603439A (en) Production process for dry method extraction of nickel
CN106939368B (en) A kind of ladle carburant and preparation method thereof
CN1584089A (en) Mangan-alloy production
CN1540000A (en) Pre fusion typed refining purifying agent and prducing technique
CN1094985C (en) High-silicon low-vanadium iron smelting technology using high-vanadium iron slag as material
CN1919739A (en) Method of producing electric melting magnesium aluminum spinel
CN1927508A (en) Aluminium-carbon stopper for continuous casting
CN1927770A (en) Method of preparing fireproof raw material from wasted aluminium ash
CN1267652A (en) Draining sand
CN111826498A (en) Additive for increasing strength of deformed steel bar and preparation method and application thereof
CN1147599C (en) Smelt-reduction process for preparing Al-Si-Fe alloy from Al dregs
CN1081164C (en) Production technique for smelting crystalline silicon with complete quartz sand
CN1030532C (en) Iron and steel smelting process by using aluminium slag
CN1292083C (en) Method for producing high titanium iron
CN1061802A (en) Lanthanum base rare earth (magnesium) ferro-silicon and smelting technology thereof
CN1288258C (en) Method for preparing silumin and Al-Si-Mn-Fe-Ti alloy by using high-aluminum fly ash
CN1876869A (en) Low-carbon aluminium manganese silicon alloy and preparation method thereof
CN1074048C (en) Composite Si-B-Al-Ca-Fe deoxidant and its preparing process
CN1183481A (en) Low-silicon Ti-iron and its preparing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021127

Termination date: 20100218