CN1195342A - 乙烯基环氧乙烷选择性加氢制环氧丁烷的方法 - Google Patents

乙烯基环氧乙烷选择性加氢制环氧丁烷的方法 Download PDF

Info

Publication number
CN1195342A
CN1195342A CN96196768A CN96196768A CN1195342A CN 1195342 A CN1195342 A CN 1195342A CN 96196768 A CN96196768 A CN 96196768A CN 96196768 A CN96196768 A CN 96196768A CN 1195342 A CN1195342 A CN 1195342A
Authority
CN
China
Prior art keywords
catalyzer
butylene oxide
hydrogenation
coating
catalytic activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96196768A
Other languages
English (en)
Other versions
CN1093854C (zh
Inventor
C·希格瓦特
K·哈斯
R·费舍尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1195342A publication Critical patent/CN1195342A/zh
Application granted granted Critical
Publication of CN1093854C publication Critical patent/CN1093854C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

公开了一种制备1,2-环氧丁烷的方法,它是通过乙烯基环氧乙烷在这样一种多相催化剂上催化加氢来制备的,即通过将元素周期表第7—11族元素中的一种或多种催化活性元素从气相中沉积到一种惰性的非金属载体上而制备。

Description

乙烯基环氧乙烷选择性加氢制环氧丁烷的方法
本发明涉及一种通过乙烯基环氧乙烷在多相催化剂上催化加氢来制备1,2-环氧丁烷的改进方法。
乙烯基环氧乙烷的多相催化加氢是已知的。
根据US-A2,561,984,乙烯基环氧乙烷在乙醇中,在钯/活性炭催化剂上、在25℃/2巴下加氢,在反应3小时后得到正丁醛作为主要产物。相反,阮内镍作为催化剂、在25℃和2巴下反应1.5小时后主要生成正丁醇。未报导生成环氧丁烷。
Aizikovich等的论文(俄罗斯普通化学杂志28(1958)3076)描述了乙烯基环氧乙烷在甲醇或乙醇中、在铂、钯和阮内镍催化剂上的催化加氢。负载型钯催化剂(1.8%(重量)钯/碳酸钙)在15℃/1巴下主要生成正丁醇。在该文中,加氢中最重要的中间产物是巴豆醇,显然也观测到生成正丁醛。在该文中也没有生成1,2-环氧丁烷的资料数据。
在US-A5,077,418和US-A5,117,013中,报导了乙烯基环氧乙烷溶液在含钯的催化剂上加氢生成正丁醛作为主要产物。例如,乙烯基环氧乙烷与四氢呋喃溶剂一起在钯/活性炭催化剂(5%(重量)钯/活性炭)上、在50-55℃和3.5巴下加氢,反应3小时后得到含有55%正丁醛、仅27%1,2-环氧丁烷和9%正丁醇的加氢产物。
如果加氢在含有钯/氧化铝(5%Pd/Al2O3)的负载型催化剂上进行,那么在25-55℃和3.5巴下反应6小时后、或者在100℃和20.7巴下反应4小时后,仅生成微量的1,2-环氧丁烷。定量转化生成正丁醛作为主要产物,其选择性为87或78%。
此外,还报道了乙烯基环氧乙烷在阮内镍加氢催化剂上、在50℃和3.5巴下加氢,生成58%正丁醇作为主要产物。1,2-环氧丁烷的产率低,为41%。在100℃和20.7巴氢压下,乙烯基环氧乙烷在负载型铂催化剂(1%(重量)Pt/Al2O3)上加氢中,反应4.6小时完全转化后仅得到40%1,2-环氧丁烷,同时还有23%正丁醇、24%各种丁烯醇、5%巴豆醛和3%正丁醛。其他的含铂催化剂甚至得到更低的1,2-环氧丁烷产率。
此外,US-A5,072,418和US-A5,117,013公开了,只有使用含铑催化剂才能得到高的1,2-环氧丁烷产率。各种负载型铑催化剂(5%(重量)铑/活性炭、5%(重量)铑/氧化铝),它们有高的贵金属铑或水合氧化铑(Rh2O3·xH2O)含量,它们在乙烯基环氧乙烷溶液加氢中得到60-93%的1,2-环氧丁烷含量。这一方法的缺点是,按所用的铑量计,该法的空时产率低。例如,在US-A5,117,013的实施例2中,空时产率仅为119公斤1,2-环氧丁烷/公斤铑*小时。
在Neftelkhimiya 33(1993)131中描述了乙烯基环氧乙烷在含镍、钯和铜的催化剂上加氢。使用阮内镍或镍/硅藻土催化剂,加氢主要按环氧化物环开环进行,从而主要生成1-丁烯醇和正丁醇。环氧丁烷的产率低。例如,使用阮内镍催化剂、甲醇作溶剂,在40℃/60巴氢压下,反应20分钟后转化率为94%,得到的反应产物按已反应的乙烯基环氧乙烷计,含有89%丁烯醇、8%正丁醇和仅2%1,2-环氧丁烷。乙烯基环氧乙烷在甲醇中、在20℃/60巴氢压下,使用新制备的阮内镍(20%(重量))加氢,在反应3分钟后转化率为94%,除生成79%正丁醇和6%丁烯醇外,仅得到9%环氧丁烷。在甲醇中、在20℃/60巴氢压下、在同异丙醇、烟酸、吡啶和吗啉预处理的阮内镍催化剂上的加氢实验,在89%转化率下,得到了使用含镍的催化剂可得到的最高环氧丁烷选择性,即37%。同时,生成丁烯醇和正丁醇的选择性分别为56%和9%。
使用含钯的催化剂时,与使用含镍催化剂的实验相比,在乙烯基环氧乙烷加氢中得到更高的环氧丁烷选择性。例如,不使用溶剂、在15℃/60巴氢压下、反应13分钟后转化率61%下,按已反应的乙烯基环氧乙烷计,钯/活性炭催化剂得到81%的环氧丁烷。另一方面,在相同的反应条件下,但使用甲醇作为溶剂,在86%的转化率下,得到选择性仅为53%的环氧丁烷,还生成13%丁醇和18%丁烯醇。这一方法的缺点在于,只有在相当低的乙烯基环氧乙烷转化率下,才能达到高的生成1,2-环氧丁烷的选择性。因为乙烯基环氧乙烷和1,2-环氧丁烷很难用蒸馏的方法彼此分离,因此这一方法不具有工业意义。基于聚合物的钯催化剂在转化率68%下得到最大的环氧丁烷选择性为60%,并生成丁烯醇和正丁醇,其选择性分别为18%和4%。
使用含铜的催化剂时,观测到较低的加氢活性和加氢产物的树脂化,从而使这一方法在工业上是不实用的。在反应温度60-100℃、60巴氢压和30%(重量)催化剂下,在反应3小时后,乙烯基环氧乙烯的转化率达50%,环氧丁烷的选择性达70%。
德国专利申请书P4422046.4涉及用浸渍法生产的催化剂,它们用于乙烯基环氧乙烷选择性加氢制1,2-环氧丁烷。尽管在申请书中公开说有高的选择性,但也生成相当大量的丁醛作为副产物。
德国专利申请书P4407 486.7公开了乙烯基环氧乙烷在通过催化活性元素在金属箔或金属织网载体上蒸汽沉积法制得的催化剂上加氢。这些催化剂使乙烯基环氧乙烷高选择性转化成所需产物成为可能,但所用的载体是相当贵的。
本发明的一个目的是,找到一种由乙烯基环氧乙烷制备1,2-环氧丁烷的经济方法,在该方法中,1,2-环氧丁烷以高的产率和选择性制得。另一目的是,找到用于这一目的的催化剂,与现有技术的催化剂相比,新的催化剂需要少量的贵金属作为催化剂组分。最后,要找到这样一种方法,其中可使用由廉价载体材料生产的催化剂。
我们已发现,这些目的可通过一种乙烯基环氧乙烷在这样一种多相催化剂上催化加氢制备1,2-环氧丁烷的方法来达到,其特征在于,所用的催化剂通过使元素周期表第7-11族中的一种或多种催化活性元素从气相中沉积到惰性的非金属载体上来制备。
本发明的方法令人吃惊地使得乙烯基环氧乙烷的双键按反应方程式(1)选择性加氢成为可能,而在加氢过程中,敏感的环氧化物环没有任何明显程度地氢解开环,也不显著出现其他二次反应,如乙烯基环氧乙烷异构化生成巴豆醛,后者随后加氢生成巴豆醇和丁醇。
本发明使用的催化剂可用物理蒸汽沉积法(PVD)和/或化学蒸汽沉积法(CVD)、将元素周期表7-11族元素中的一种或多种元素沉积到载体上来制备;这些元素以前也称为第I、VII和VIII副族,特别是铜、铼、钌、钴、镍、钯或铂,或者这些元素的混合物。特别优选的是含有钯、钴、镍作为活性元素的催化剂,还有含有铜和镍作为活性元素的催化剂。
PVD和CVD法例如在R.F.Bhunshah等,“膜和涂层的沉积法工艺”,Noyes出版社,1982中描述。适合的PVD法例如是阴极雾化(溅射)或电弧涂层,优选阴极雾化。已知的CVD法有热CVD法和等离子体CVD法。
在蒸发中,将涂料、即元素周期表中一种或多种第7-11族元素按已知的方式送入适合的蒸汽源中,如电加热的汽化器皿或电子束汽化器中。然后在减压、通常为10-7-10-3毫巴下,将通常为金属或合金的涂料加热,使一部分涂料汽化并在基材上沉积出一层涂料,即根据本发明,沉积在惰性的非金属载体上。可通过蒸汽源的温度来控制蒸发在载体上一层涂层的厚度范围。
在阴极雾化中,涂料作为目标物以固体形式涂到等离子体体系的阴极,并在减压(优选5×10-4至1×10-1毫巴)下,在工艺气体气氛中,通过施加等离子体进行雾化,并沉积在待涂覆的载体上。工艺气体通常为稀有气体如氩气。
在电弧涂覆中,用电弧从涂料源中除去涂料,使涂料在工艺气体气氛中高度离子化。通常使要涂覆的载体有负偏移,在涂覆过程中产生强烈的离子轰击。
在本发明的涂层CVD中,将含有至少一种有足够高挥发性的元素周期表第7-11族元素的有机金属化合物原料的气体混合物送入涂覆室中,并通过加热(热CVD法)或在等离子体作用下(等离子体CVD法)进行分解,在载体上形成所需的涂层。所用的气体混合物还可含有惰性气体如He、Ne、Ar、Kr或Xe以及其他反应性气体。在10-4至10+3毫巴压力范围内进行沉积。适合的原料化合物例如是催化活性元素的羰基化合物、乙酰基丙酮化物和环戊二烯基化合物。
对于用优选的阴极雾化法制备本发明的涂层来说,各种方法变通方案如磁控管溅射、DC或RF溅射、偏移溅射或反应性溅射及其组合也是适用的。在磁控管溅射中,将要雾化的目标物放在外磁场中,外磁场使等离子体集中在目标物的这一区域,从而提高了在雾化区域的作用。在DC或RF溅射的情况下,通过DC或RF场来激励雾化等离子体。在偏移溅射中,通常将负偏移加到要涂覆的基材上,导致在涂覆过程中用离子强烈轰击基材。
正如下面描述的,通过涂覆参数、工艺气体压力、雾化功率、溅射方式、基材温度和涂覆时间等来调节涂层厚度、涂层的化学组成和微观结构。
适当的溅射功率和涂覆时间的选择能方便地从几个原子层到约10微米来选择溅射层的厚度。对于本发明来说,涂层厚度为1-1000纳米是优选的。
多组分活性涂层可通过适宜的多组分目标物的雾化来制得。适合的目标物或为用已知的方法、用熔体法或粉末治金法生产的均匀合金目标物,或为通过较小的不同化学组成小片连接起来或通过将小的圆片状材料粘合成不均匀目标物而制成的不均匀镶嵌目标物。另一方面,可通过同时雾化两种或两种以上不同组成的目标物(同时溅射)来生产金属合金。
使用所述的沉积方法,也可设想通过所提及的工艺参数生产出有层次变化的薄涂层或多涂层,其组成按一定的方式随涂层厚度的增加不断变化。
活性涂层的微观结构(如相分布、结晶形状和大小、结晶取向、孔隙率)同样可用所述的工艺参数在宽范围内控制。例如,在4×10-3至8×10-3毫巴压力范围内,在涂层厚度为20至500纳米下,金属目标物的磁控管雾化得到相当致密和无孔的涂层;而在10-2毫巴以上,得到有高孔隙率的柱状形态涂层。对于厚度小于约50纳米的涂层来说,视载体的粗糙程度而定,通常有岛状涂层生成。除了溅射压力和载体外,在涂覆过程中的基材温度和离子轰击影响涂层的微观结构。对于本发明来说,在Pd活性涂层(20纳米)的情况下,优选的溅射压力例如为1至10×10-2毫巴。
为了在涂层上得到均匀的载体,在涂覆步骤中,用适合的机械设备或流动机械设备使载体材料保持在运动中是必要的。对于这一目的来说,适合的机械设备例如是周期性运动的笼、鼓、盘或槽,要涂覆的载体在其中随意运动。另一方面,可以设想,可用流化床方法使要涂覆的载体保持随意运动(参见DE-A 43 40 480)。
在本发明方法的催化剂中适用的载体例如是玻璃、石英玻璃、陶瓷、二氧化钛、二氧化锆、氧化铝、硅酸铝、硼酸盐、冻石、硅酸镁、二氧化硅、硅酸盐、碳如石墨的成型物以及所述材料的混合物。优选冻石、二氧化硅和氧化铝。载体可为多孔的或无孔的。适合的成型物是挤条物、小丸、车轮型物、星状物、整体物、小球、碎片或环状物。特别优选小球、小丸和挤条物。成型物的选择基本上不受本发明使用的催化剂的生产方法的限制,但是受所需催化剂按什么方式使用的限制,例如用作悬浮床催化剂和用作固定床催化剂。例如,小球的大小可为100微米至2毫米,挤条物可为1-5毫米粗,碎片的大小可为0.1至10毫米。
借助所述的催化活性元素的沉积方法,也可能将助催化剂同时或顺序涂到载体上。适合的助催化剂主要是元素周期表第4族元素(以前称为第IV副族),特别是锆。
如此生产的催化剂可直接用于本发明的方法,但它们优选在用于本发明的方法以前通常用氢气或含氢气体在50-300℃、优选80-250℃下还原。还原通常一直进行到不再生成水为止。这一反应可除去在沉积过程中或通过催化活性元素与空气反应生成的氧化物或吸附物层。氢气可用惰性气体如CO2、氩气或氮气稀释。
为了进行本发明的方法,在本发明使用的催化剂存在下、在0-200、优选10-130、更优选20-100、特别优选25-60℃下、在1-300、优选1-100、特别优选1-50巴下,乙烯基环氧乙烷或在反应条件下为惰性溶剂中的乙烯基环氧乙烷溶液进行加氢。
本发明的方法可在没有溶剂的条件下进行,或优选在反应条件下是惰性的溶剂存在下进行。这样的溶剂例如可为醚类,如四氢呋喃、二噁烷、甲基叔丁基醚、二正丁基醚、二甲氧基乙烷或二异丙基醚;醇类,如甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇或叔丁醇、C2-C4二元醇;烃类,如石油醚、苯、甲苯或二甲苯;N-烷基内酰胺,如N-甲基吡咯烷酮或N-辛基吡咯烷酮。
本发明的方法既可连续进行,也可间歇进行。在连续法中,例如使用管式反应器是有利的,催化剂作为固定床排列在反应器中,反应混合物以向上流方式或向下流方式通过反应器。在间歇法中,可使用简单的搅拌反应器,或优选使用环管反应器。
可用常规的方法,如蒸馏法分离1,2-环氧丁烷来进行反应混合物的处理。
用作原料的乙烯基环氧乙烷例如可用US-A 4,897,498的方法,通过1,3-丁二烯在银催化剂上部分氧化来制备。
1,2-环氧丁烷例如用作燃料添加剂或用作氯化烃类的稳定剂。
实施例1
用阴极雾化法制备催化剂
a)本发明催化剂的制备
所用的阴极雾化装置为Alcatel SCM 850溅射装置。将各种球形载体(如表1)放在网孔约1毫米的圆形钢网(直径150毫米)上,并送入阴极雾化装置。对应于表1的目标物相距70毫米,并将装置抽空。然后送入氩气使压力升到相应于表1的压力。给目标物施加适当的电势,使涂层沉积在载体上。在这一步骤进行过程中,通过钢网的机械搅拌使载体无规则运动,以便确保涂层均匀。结果列入表1。表1
催化剂 载体材料  球大小 目标物   功率[瓦] 溅射压力[毫巴]  涂层厚度[纳米]
  1 冻石   2mm  Pd   250(RF) 5×10-2     20
  2 冻石   2mm  Pd   250(RF) 1×10-2     20
  3 冻石   2mm  Pd   250(RF) 5×10-3     1
  4 冻石   2mm  Pd   250(RF) 5×10-3     10
  5 冻石   2mm  Pd   500(RF) 5×10-3     100
  6 冻石   2mm  Pd   500(RF) 5×10-3     1000
  7 SiO2   1.5-3.5mm  Pd   250(RF) 5×10-3     20
  8 Al2O3   1.4-2.8mm  Pd   250(RF) 5×10-3     20
  9 玻璃   2mm  Pd   500(RF) 5×10-2     1000
  10 冻石   2mm  Ni30Cu70 *   250(DC) 5×10-2     10
  11 冻石   2mm  Ni20Cu80 *   250(DC) 5×10-2     20
  12 冻石   2mm  Ni30Cu70 *   250(DC) 5×10-2     100
  13 冻石   2mm  Ni   1000(RF) 5×10-2     5
  14 冻石   2mm  Co   250(DC) 5×10-2     10
  15 冻石   2mm  Cu   500(DC) 5×10-2     10
  16 冻石   2mm  Re   500(DC) 5×10-2     10
  17 冻石   2mm  Ru   500(DC) 5×10-2     100
RF=交流电势;DC=直流电势;*镶嵌目标物
b)含Pd/Zr-和Pt/Zr催化剂的制备
用阴极雾化法由无定形合金制备表2所示的催化剂,一种目标物(Pd1Zr2)用于制备第18和19号催化剂,而两种目标物(Pt,Zr)用于制备第20号催化剂。
第18和19号催化剂随后进一步用氢/二氧化碳混合物(14升/小时H2、4升/小时CO2)在280℃下处理24小时。
第20号催化剂用蒸汽/氮气混合物(40升/小时N2,3克/升H2O)在320℃下进一步处理24小时。
表2
催化剂 载体材料 小球大小  目标物1   功率1(瓦)    目标物2    功率2(瓦)    溅射压力(毫巴)  涂层厚度(纳米)
  18 冻石 2mm  Pd1Zr2  500(RF)      -     -    2.5×10-2    1000
  19 玻璃 2mm  Pd1Zr2  500(RF)      -     -    5×10-2    300
  20 冻石 2mm  Pt  350(RF)      Zr   100(DC)    5×10-3    1000
实施例2
在容量50毫升的高压釜中,将含有2.5克乙烯基环氧乙烷和22.5克四氢呋喃的待加氢溶液与未用氢预先活化的0.5克第1号催化剂混合,并在25℃和40巴下,在搅拌下用氢气加氢8小时。在100%转化率下,得到91.7%(摩尔)1,2-环氧丁烷、1.0%(摩尔)正丁醛和2.6%(摩尔)正丁醇。
实施例3-22
用类似实施例2中描述的方法,将于22.5克四氢呋喃中的2.5克乙烯基环氧乙烷在40巴下用氢气在第2-20号催化剂上加氢。表3列出反应条件和加氢产物的组成。%(摩尔)数字基于已反应的乙烯基环氧乙烷计。如果催化剂在使用以前活化,它在250℃下、在氢气气氛中进行。表3
 实施例                  催化剂     温度[℃] 反应时间[小时] VO转化率[%]             反应产物组成[%(摩尔)]
   序号     量[g]   活化的      BO     n-BA    n-BuOH
    3     2     1     +     25     8     100     88.0     1.4     3.3
    4     3     1     -     50     8     73     66.0     1.9     11.4
    5     4     1     -     50     4     100     82.4     1.6     4.0
    6     5     1     -     50     6     100     79.4     2.3     8.3
    7     6     1     -     50     4     100     81.3     2.2     3.8
    8     7     1     +     20     6     100     82.2     3.2     4.7
    9     8     0.5     -     50     2     100     79.2     2.6     4.2
    10     9     1     +     50     2     100     82.1     2.1     3.0
    11     10     1     +     50     6     100     87.8     2.7     8.1
    12     10     1     +     25     8     100     88.5     1.5     5.3
    13     11     1     +     50     6     100     86.0     2.5     8.5
    14     12     1     +     50     8     100     82.4     2.0     6.2
    15     13     2     +     20     8     100     86.0     1.8     6.0
    16     14     2     +     20     6     100     83.2     2.3     8.0
    17     15     1     +     50     8     68     89.1     1.1     2.2
表3(续)
实施例                催化剂     温度[℃] 反应时间[小时] VO转化率[%]             反应产物组成[%(摩尔)]
   序号   量[g]   活化的     BO     n-BA    n-BuOH
  18     16    2     +     50     8     66     86.4     1.5     4.3
  19     17    1     +     50     8     41     91.0     0.1     2.1
  20     18    1     +     50     4     100     81.2     2.5     4.7
  21     19    1     +     50     6     100     83.1     2.0     3.7
  22     20    2     +     50     8     100     80.4     2.7     6.9
act.=活化的VO=乙烯基环氧乙烷,BO=1,2-环氧丁烷,n-BA=正丁醛,n-BuOH=正丁醇

Claims (7)

1.一种在多相催化剂上通过乙烯基环氧乙烷催化加氢来制备1,2-环氧丁烷的方法,其中使用这样一种催化剂,它通过使元素周期表第7-11族中一种或多种催化活性元素从气相中沉积到惰性的非金属载体上的方法来制备。
2.根据权利要求1方法,其特征在于,所用的催化活性元素是钯、钴、镍或者一种铜和镍的混合物。
3.根据权利要求1或2的方法,其特征在于,所用的惰性载体是冻石、二氧化硅或氧化铝。
4.根据权利要求1-3的方法,其特征在于,催化活性元素通过阴极雾化法带入气相。
5.根据权利要求1-4的方法,其特征在于,使用其催化活性元素的层厚为1-1000纳米的催化剂。
6.根据权利要求1-5的方法,其特征在于,催化剂在使用以前,在50-300℃下用氢气处理。
7.根据权利要求1-6的方法,其特征在于,除了催化活性元素外,而且还有选自元素周期表第4族的助催化剂从气相中沉积在载体上。
CN96196768A 1995-09-05 1996-08-29 乙烯基环氧乙烷选择性加氢制环氧丁烷的方法 Expired - Fee Related CN1093854C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19532645A DE19532645A1 (de) 1995-09-05 1995-09-05 Verfahren zur selektiven Hydrierung von Vinyloxiran zu Butylenoxid
DE19532645.8 1995-09-05

Publications (2)

Publication Number Publication Date
CN1195342A true CN1195342A (zh) 1998-10-07
CN1093854C CN1093854C (zh) 2002-11-06

Family

ID=7771243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96196768A Expired - Fee Related CN1093854C (zh) 1995-09-05 1996-08-29 乙烯基环氧乙烷选择性加氢制环氧丁烷的方法

Country Status (8)

Country Link
US (1) US5948921A (zh)
EP (1) EP0848711B1 (zh)
JP (1) JPH11512106A (zh)
KR (1) KR100406221B1 (zh)
CN (1) CN1093854C (zh)
DE (2) DE19532645A1 (zh)
ES (1) ES2153979T3 (zh)
WO (1) WO1997009321A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376326C (zh) * 2006-03-30 2008-03-26 上海工程技术大学 负载型纳米铜镍催化剂制备方法及用于醇胺氧化脱氢反应
CN108283943A (zh) * 2017-01-10 2018-07-17 中国石油化工股份有限公司 氧化铝载体及其制备方法、乙烯环氧化反应用银催化剂及乙烯环氧化制备环氧乙烷的方法
CN115216270A (zh) * 2022-09-01 2022-10-21 国网湖南省电力有限公司 一种新型常温固化硅橡胶密封胶及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19602710A1 (de) * 1996-01-26 1997-07-31 Basf Ag Verfahren zur selektiven Hydrierung von Vinyloxiran zu 1,2-Butylenoxid an Heterogenkatalysatoren
US6180559B1 (en) 1999-03-02 2001-01-30 Eastman Chemical Company Supported catalysts and catalyst support materials and process for the manufacture of 1,2-epoxybutane
JP2013241361A (ja) * 2012-05-21 2013-12-05 Tokuyama Corp 5−ベンジル−2,4−チアゾリジンジオン誘導体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2561984A (en) * 1949-04-25 1951-07-24 Phillips Petroleum Co Production of primary alcohols and aldehydes
EP0172280B1 (en) * 1983-03-14 1988-03-09 E.I. Du Pont De Nemours And Company Catalyst composition
US5117013A (en) * 1990-05-03 1992-05-26 Eastman Kodak Company Process for the selective hydrogenation γ, δ-epoxyalkenes to epoxyalkanes
US5077418A (en) * 1990-05-03 1991-12-31 Eastman Kodak Company Process for the selective hydrogenation γ,δ-epoxyalkenes to epoxyalkanes
DE4221011A1 (de) * 1992-06-26 1994-01-05 Basf Ag Schalenkatalysatoren
ES2095118T3 (es) * 1993-11-27 1997-02-01 Basf Ag Procedimiento para el recubrimiento o el tratamiento superficial de particulas de producto solido mediante una capa fluidificada de plasma.
DE4407486A1 (de) * 1994-03-07 1995-09-14 Basf Ag Verfahren zur Herstellung von 1,2-Butylenoxid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376326C (zh) * 2006-03-30 2008-03-26 上海工程技术大学 负载型纳米铜镍催化剂制备方法及用于醇胺氧化脱氢反应
CN108283943A (zh) * 2017-01-10 2018-07-17 中国石油化工股份有限公司 氧化铝载体及其制备方法、乙烯环氧化反应用银催化剂及乙烯环氧化制备环氧乙烷的方法
CN115216270A (zh) * 2022-09-01 2022-10-21 国网湖南省电力有限公司 一种新型常温固化硅橡胶密封胶及其应用

Also Published As

Publication number Publication date
CN1093854C (zh) 2002-11-06
EP0848711B1 (de) 2001-01-24
WO1997009321A1 (de) 1997-03-13
KR100406221B1 (ko) 2004-01-24
DE59606394D1 (de) 2001-03-01
KR19990044396A (ko) 1999-06-25
DE19532645A1 (de) 1997-03-06
ES2153979T3 (es) 2001-03-16
US5948921A (en) 1999-09-07
JPH11512106A (ja) 1999-10-19
EP0848711A1 (de) 1998-06-24

Similar Documents

Publication Publication Date Title
US5559065A (en) Coated catalysts
CN1066427C (zh) 在固定床钯催化剂上进行炔的部分加氢制备链烯烃
CN1093854C (zh) 乙烯基环氧乙烷选择性加氢制环氧丁烷的方法
CN110013854A (zh) 一种负载型镍系催化剂的制备及在c5/c9石油树脂催化加氢中的应用
Ly et al. In situ preparation of bimetallic ReOx-Pd/TiO2 catalysts for selective aqueous-phase hydrogenation of succinic acid to 1, 4-butanediol
US20060073275A1 (en) Process and apparatus for producing single-walled carbon nanotube
WO2002076610A1 (en) Catalyst for producing both end-hydroxyl group-terminated diols, process for producing the catalyst, process for producing the diols by using the catalyst, and both end-hydroxyl group-terminated diols obtained by the process
Sulman Effects of ultrasound on catalytic processes
US6998366B2 (en) Thin layer catalysts based on Raney alloys, and method for the production thereof
US7026269B2 (en) Metallic hydrogenation catalysts, production and use thereof
US6002027A (en) Preparation of 1,2-butylene oxide
CN115155574A (zh) 一种含单原子钯的催化剂及其制备方法和应用
US6464954B2 (en) Method for hydrogenating an anthraquinone compound
KR100419594B1 (ko) 디히드로푸란의테트라히드로푸란으로의수소화방법
JP4582992B2 (ja) 脂環式アミン化合物の製造方法
CN115138365B (zh) 加氢催化剂及其制备方法和应用
CN117486802B (zh) 制备咪唑乙醇的方法
CN110841705B (zh) 一种多孔材料负载高分散纳米铜催化剂及其制备方法与应用
CN1132685C (zh) 纳米镍加氢催化剂及其制备方法
CN118416883A (zh) 一种介孔α-Al2O3负载Pd纳米催化剂的制备方法及其催化3-羟基丙醛加氢
JPH08141396A (ja) カルボン酸類の水素化触媒及び該触媒を用いたカルボン酸類の水素化方法
CN115646487A (zh) 一种高活性Ru-M/α-Al2O3催化剂及其制备方法与应用
CN118217984A (zh) 一种表面修饰的CoCu催化剂及其制备方法和应用
CA2235042A1 (en) Hydrogenation of dihydrofurans to give tetrahydrofurans

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee