CN118202323A - 多频率区触摸感测 - Google Patents

多频率区触摸感测 Download PDF

Info

Publication number
CN118202323A
CN118202323A CN202280073511.9A CN202280073511A CN118202323A CN 118202323 A CN118202323 A CN 118202323A CN 202280073511 A CN202280073511 A CN 202280073511A CN 118202323 A CN118202323 A CN 118202323A
Authority
CN
China
Prior art keywords
transmitter
electrodes
signals
input device
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280073511.9A
Other languages
English (en)
Inventor
沈国重
刘春波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Inc
Original Assignee
Synaptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/564,159 external-priority patent/US11531425B1/en
Application filed by Synaptics Inc filed Critical Synaptics Inc
Publication of CN118202323A publication Critical patent/CN118202323A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

输入设备包括设置在输入设备的感测区中的发射器电极、感测区中的接收器电极和处理***。处理***包括解调器,并且处理***被配置为使用具有独特的频率的多个发射器信号同时驱动发射器电极的至少一个子集。处理***还被配置为在接收器电极上接收结果信号,并且使用多个解调器解调结果信号以生成多个感测信号。解调器中的每个在独特的频率中的不同频率上操作。

Description

多频率区触摸感测
相关申请的交叉引用
本申请根据专利合作条约第8条要求在2021年11月3日提交的美国专利申请序列号17/518,307和在2021年12月28日提交的美国专利申请序列号17/564,159的优先权。
技术领域
所描述的实施例总体上涉及电子设备,并且更具体地涉及触摸传感器。
背景技术
包括触摸传感器设备(例如,触摸板或触摸传感器设备)的输入设备广泛用于各种电子***中。触摸传感器设备通常包括通常由表面界定的感测区,其中触摸传感器设备确定一个或多个输入对象的存在、位置和/或运动。触摸传感器设备可用于为电子***提供接口。例如,触摸传感器设备通常用作较大计算***(诸如集成在笔记本或台式计算机中、或外设于笔记本或台式计算机的不透明触摸板)的输入设备。触摸传感器设备以不同的尺寸存在。触摸传感器设备中的传感器电极的数量可取决于触摸传感器设备的大小。较大触摸传感器设备中的传感器电极的数量可造成挑战,尤其是当期望触摸感测的较高时间分辨率时。
发明内容
通常,在一个方面,一个或多个实施例涉及一种输入设备,包括:设置在输入设备的感测区中的多个发射器电极;感测区中的接收器电极;以及包括多个解调器的处理***,该处理***被配置成:使用具有独特的频率的多个发射器信号同时驱动多个发射器电极的至少一个子集;在接收器电极上接收结果信号;以及使用多个解调器解调结果信号以生成多个感测信号,其中多个解调器中的每个在独特的频率中的不同频率上操作。
通常,在一个方面,一个或多个实施例涉及一种用于输入设备的处理***,该处理***包括多个解调器并且被配置为:使用具有独特的频率的多个发射器信号同时驱动多个发射器电极的至少一个子集,其中多个发射器电极设置在输入设备的感测区中;在感测区中的接收器电极上接收结果信号;以及使用多个解调器解调结果信号以生成多个感测信号,其中多个解调器中的每个在独特的频率中的不同频率上操作。
通常,在一个方面,一个或多个实施例涉及一种用于操作输入设备的方法,所述方法包括:使用具有独特的频率的多个发射器信号同时驱动多个发射器电极的至少一个子集;在接收器电极上接收结果信号,其中所述多个发射器电极和所述接收器电极设置在所述输入设备的感测区中;使用多个解调器解调所述结果信号以生成多个感测信号,其中所述多个解调器中的每个在所述独特的频率中的不同频率上操作;以及使用所述结果信号执行触摸感测。
根据以下描述和所附权利要求,实施例的其他方面将是显而易见的。
附图说明
图1示出了根据一个或多个实施例的输入设备的框图。
图2示出了根据一个或多个实施例的感测配置。
图3示出了根据一个或多个实施例的处理配置。
图4示出了描述根据一个或多个实施例的用于多频率区触摸感测的方法的流程图。
图5示出了根据一个或多个实施例的样本数据。
图6A示出了根据一个或多个实施例的感测配置。
图6B示出了根据一个或多个实施例的感测配置。
图7示出了根据一个或多个实施例的处理配置。
图8示出了根据一个或多个实施例的带间干扰分析的示例。
图9示出了描述根据一个或多个实施例的用于多频率区并行扫描的带间谐波干扰减轻的方法的流程图。
图10示出了描述根据一个或多个实施例的用于多频率区触摸感测的方法的流程图。
具体实施方式
以下详细描述本质上是示例性的并且不旨在限制本发明或本发明的应用和用途。此外,不意图受前述技术领域、背景技术、发明内容、附图说明或以下具体实施方式中呈现的任何明示或暗示的理论的约束。
在整个申请中,序数(例如,第一、第二、第三等)可以用作元件(即,本申请中的任何名词)的形容词。除了四个连续四分之一周期之外,序数的使用不是暗示或创建元件的任何特定排序,也不是将任何元件限制为仅单个元件,除非明确公开,诸如通过使用术语“之前”、“之后”、“单个”和其他这样的术语。相反,序数的使用是为了区分元件。作为示例,第一元件与第二元件不同,并且第一元件可以包含多于一个元件并且在元件的排序中在第二元件之后(或之前)。
关于四个连续四分之一周期的序数的使用表示四个连续四分之一周期内的排序。特别地,第一连续四分之一周期是在第二连续四分之一周期之前的初始四分之一周期。第二连续四分之一周期在第三连续四分之一周期之前,第三连续四分之一周期继而在第四(即,最后)连续四分之一周期之前。
各种实施例提供了促进改进的可用性以及各种其他益处的输入设备和方法。本公开的实施例可以用于甚至对于更大的感测区提供用于触摸感测的高帧速率。本公开的实施例使用具有不同频率的发射器信号同时驱动感测区中的多个感测电极。多个感测电极的同时驱动可以在比相同数量的感测电极的顺序驱动更短的时间间隔内执行。因此,可以在固定时间间隔期间执行更多数量的感测操作。因此,可针对较大感测区执行触摸感测,而不期望或不可接受地减小用于感测的帧速率。类似地,当使用多个感测电极的同时驱动时,可以针对较小的感测区增加帧速率。随后提供详细描述。
图1是根据实施例的示例性输入设备(100)的框图。输入设备(100)可以被配置为向电子***(未示出)提供输入。如本文档中所使用的,术语“电子***”(或“电子设备”)广泛地指代能够电子地处理信息的任何***。电子***的一些非限制性示例包括个人计算机,诸如台式计算机、膝上型计算机、上网本计算机、平板电脑、web浏览器、电子书阅读器和个人数字助理(PDA)。附加示例电子***包括复合输入设备,诸如包括输入设备(100)和单独的操纵杆或按键开关的物理键盘。另外的示例电子***包括***设备,诸如数据输入设备(包括遥控器和鼠标)和数据输出设备(包括显示屏和打印机)。其他示例包括远程终端、信息亭和视频游戏机(例如,视频游戏控制台、便携式游戏设备等)。其他示例包括通信设备(包括蜂窝电话,诸如智能电话)和媒体设备(包括记录器、编辑器和播放器,诸如电视、机顶盒、音乐播放器、数码相框和数码相机)。另外,电子***可以是输入设备的主机或从机。
在图1中,输入设备(100)被示出为触摸传感器设备(例如,“触摸板”或“触摸传感器设备”),其被配置为感测由感测区(120)中的一个或多个输入对象提供的输入。示例输入对象包括触控笔、有源笔(140)和手指(142)。此外,哪些特定输入对象在感测区中可以在一个或多个手势的过程中改变。例如,第一输入对象可以在感测区中以执行第一手势,随后,第一输入对象和第二输入对象可以在上方表面感测区中,并且最后,第三输入对象可以执行第二手势。为了避免不必要地使描述复杂化,使用单数形式的输入对象,并且其指的是所有上述变型。
感测区(120)涵盖输入设备(100)上方、周围、之中和/或附近的任何空间,其中输入设备(100)能够检测用户输入(例如,由一个或多个输入对象提供的用户输入)。特定感测区的尺寸、形状和位置可以随实施例而广泛变化。
输入设备(100)可以利用传感器部件和感测技术的任何组合来检测感测区(120)中的用户输入。输入设备(100)包括用于检测用户输入的一个或多个感测元件。感测元件可以是电容性的。
在输入设备(100)的一些电容性实现方式中,施加电压或电流以创建电场。附近的输入对象引起电场的变化,并且产生电容性耦合的可检测变化,其可以被检测为电压、电流等的变化。
一些电容性实现方式利用电容感测元件的阵列或其他规则或不规则图案来创建电场。在一些电容性实现方式中,单独的感测元件可以欧姆地短接在一起以形成较大的传感器电极。一些电容性实现方式利用电阻片,其可以是均匀电阻的。
一些电容性实现方式利用基于传感器电极与输入对象之间的电容性耦合的变化的“自电容”(或“绝对电容”)感测方法。在各种实施例中,传感器电极附近的输入对象更改传感器电极附近的电场,从而改变所测量的电容性耦合。在一个实现方式中,绝对电容感测方法通过相对于参考电压(例如,***接地)调制传感器电极并且通过检测传感器电极与输入对象之间的电容性耦合来操作。参考电压可以是基本上恒定的电压或变化的电压,并且在各种实施例中,参考电压可以是***接地。使用绝对电容感测方法获取的测量结果可以被称为绝对电容性测量结果。
一些电容性实现方式利用基于传感器电极之间的电容性耦合的变化的“互电容”(或“跨电容”)感测方法。在各种实施例中,传感器电极附近的输入对象更改传感器电极之间的电场,从而改变所测量的电容性耦合。在一个实现方式中,互电容感测方法通过检测一个或多个发射器传感器电极(也称为“发射器电极”或“发射器”)与一个或多个接收器传感器电极(也称为“接收器电极”或“接收器”)之间的电容性耦合来操作。发射器传感器电极可相对于参考电压(例如,***接地)被调制以发射发射器信号。接收器传感器电极可以相对于参考电压保持基本上恒定,以促进对结果信号的接收。参考电压可以是基本上恒定的电压,并且在各种实施例中,参考电压可以是***接地。
在一些实施例中,发射器传感器电极和接收器传感器电极两个都可以被调制。发射器电极可相对于接收器电极被调制以发射发射器信号并且促进对结果信号的接收。结果信号可以包括对应于一个或多个发射器信号和/或一个或多个环境干扰源(例如,其他电磁信号)的(一个或多个)影响。(一个或多个)影响可以是发射器信号、由一个或多个输入对象和/或环境干扰引起的发射器信号的变化、或其他这样的影响。传感器电极可以是专用发射器或接收器,或者可以被配置为既发射又接收。使用互电容感测方法获取的测量结果可以被称为互电容测量结果。
在图1中,处理***(110)被示出为输入设备(100)的部分。处理***(110)被配置为操作输入设备(100)的硬件以检测感测区(120)中的输入。处理***(110)包括一个或多个集成电路(IC)和/或其他电路部件的部分或全部。例如,用于互电容传感器设备的处理***(110)可以包括被配置为利用发射器传感器电极发射信号的发射器电路,和/或被配置为利用接收器传感器电极接收信号的接收器电路。此外,用于绝对电容传感器设备的处理***(110)可以包括被配置为将绝对电容信号驱动到传感器电极上的驱动器电路,和/或被配置为利用那些传感器电极接收信号的接收器电路。在一个或多个实施例中,用于组合式互电容和绝对电容传感器设备的处理***(110)可以包括上述互电容和绝对电容电路的任何组合。处理***(110)还可以包括被配置为接收由不同源(例如,有源笔(140))发出的信号的接收器电路。有源笔(140)的信号可由接收器传感器电极接收,而发射信号不一定由发射器传感器电极发出。
在一些实施例中,处理***(110)还包括电子可读指令,诸如固件代码、软件代码和/或类似物。在一些实施例中,构成处理***(110)的部件位于一起,诸如在输入设备(100)的(一个或多个)感测元件附近。在其他实施例中,处理***(110)的部件在物理上是分离的,其中一个或多个部件靠近输入设备(100)的(一个或多个)感测元件,并且一个或多个部件在其他地方。例如,输入设备(100)可以是耦合到计算设备的***设备,并且处理***(110)可以包括被配置为在计算设备的中央处理单元和与中央处理单元分离的一个或多个IC(可能具有相关联的固件)上运行的软件。作为另一示例,输入设备(100)可以物理地集成在移动设备中,并且处理***(110)可以包括作为移动设备的主处理器的一部分的电路和固件。在一些实施例中,处理***(110)专用于实现输入设备(100)。在其他实施例中,处理***(110)还执行其他功能,诸如操作显示屏(155)、驱动触觉致动器等。
处理***(110)可以被实现为处理处理***(110)的不同功能的模块集合。每个模块可以包括作为处理***(110)的一部分的电路、固件、软件或其组合。在各种实施例中,可以使用模块的不同组合。例如,如图1所示,处理***(110)可以包括确定模块(150)和传感器模块(160)。确定模块(150)可以包括以下功能性:确定至少一个输入对象何时在感测区中、信噪比、输入对象的位置信息、手势、基于手势、手势的组合或其他信息来确定要执行的动作、和/或其他操作。
传感器模块(160)可以包括驱动感测元件发射发射器信号并接收结果信号的功能性。例如,传感器模块(160)可以包括耦合到感测元件的感测电路。传感器模块(160)可以包括例如发射器模块和接收器模块。发射器模块可以包括耦合到感测元件的发射部分的发射器电路。接收器模块可以包括耦合到感测元件的接收部分的接收器电路,并且可以包括接收结果信号的功能性。传感器模块(160)的接收器模块可以使用例如由发射器模块生成的具有感测频率的电容性感测信号从电极图案中的传感器电极接收结果信号。结果信号可以包括期望的信号(诸如由接近电极图案的输入对象引起的有源笔数据或信号分量)或者不期望的信号(诸如噪声或干扰)。如下面将更详细描述的,传感器模块(160)可以对结果信号执行一个或多个解调操作。
尽管图1示出了确定模块(150)和传感器模块(160),但是根据一个或多个实施例,可以存在可替代或附加模块。这样的可替代或附加模块可以对应于与上面讨论的模块中的一个或多个模块不同的模块或子模块。示例可替代或附加模块包括用于操作诸如传感器电极和显示屏(155)之类的硬件的硬件操作模块、用于处理诸如传感器信号和位置信息之类的数据的数据处理模块、用于报告信息的报告模块、以及被配置为识别诸如模式改变手势之类的手势的识别模块、以及用于改变操作模式的模式改变模块。此外,各种模块可以组合在单独的集成电路中。例如,第一模块可以至少部分地包括在第一集成电路内,并且单独的模块可以至少部分地包括在第二集成电路内。此外,单个模块的部分可以跨越多个集成电路。在一些实施例中,处理***作为整体可以执行各种模块的操作。
在一些实施例中,处理***(110)直接通过引起一个或多个动作来响应感测区(120)中的用户输入(或缺少用户输入)。示例动作包括改变操作模式,以及图形用户界面(GUI)动作,诸如光标移动、选择、菜单导航和其他功能。在一些实施例中,处理***(110)向电子***的某个部分(例如,向与处理***(110)分离的电子***的中央处理***,如果这样的分离的中央处理***存在的话)提供关于输入(或缺少输入)的信息。在一些实施例中,电子***的某个部分处理从处理***(110)接收的信息以作用于用户输入,诸如以促进全范围的动作,包括模式改变动作和GUI动作。
在一些实施例中,输入设备(100)包括触摸屏接口,并且感测区(120)与显示屏(155)的工作区的至少一部分重叠。例如,输入设备(100)可以包括覆盖显示屏的基本上透明的传感器电极,并且为相关联的电子***提供触摸屏界面。显示屏可以是能够向用户显示视觉界面的任何类型的动态显示器,并且可以包括任何类型的发光二极管(LED)、有机LED(OLED)、阴极射线管(CRT)、液晶显示器(LCD)、等离子体、电致发光(EL)或其他显示技术。输入设备(100)和显示屏(155)可以共享物理元件。例如,一些实施例可以利用相同的电气部件中的一些用于显示和感测。在各种实施例中,显示设备的一个或多个显示电极可以被配置用于显示更新和输入感测两个。作为另一示例,显示屏(155)可以部分地或全部地由处理***(110)操作。
虽然图1示出了部件的配置,但是在不脱离本公开的范围的情况下,可以使用其他配置。例如,可以组合各种部件以创建单个部件。作为另一示例,由单个部件执行的功能性可以由两个或更多个部件执行。此外,虽然描述了用于触摸感测的配置,但是可以感测诸如力之类的其他变量。
图2示出了根据一个或多个实施例的感测配置(200)。感测配置(200)基于感测区(120)中的传感器电极的布置。发射器(Tx)电极(220)和接收器(Rx)电极(230)可设置在感测区(120)中。在图2的示例中,Tx电极(220)是以列布置的细长矩形结构,而Rx电极(230)是以行布置的细长矩形结构。通常,可以使用任何形状的Tx和Rx电极。
在一个或多个实施例中,Tx电极(220)和Rx电极(230)一起实现互电容或跨电容感测。在Tx(220)和Rx(230)电极的交叉点处,在Tx电极(220)和Rx电极(230)的一部分之间形成局部电容性耦合。该局部电容性耦合的区可以被称为“电容性像素”,或者在本文中也被称为感测元件(225)。跨电容Ct与感测元件(225)相关联。当输入对象(未示出)接近感测元件(225)时,跨电容Ct可以改变一量ΔCt。因此,可以通过监测ΔCt来检测输入对象的存在或不存在。可以通过将发射器信号(222)驱动到Tx电极(220)上并从Rx电极(230)接收结果信号(232)来测量ΔCt。结果信号是发射器信号和由于存在或不存在输入对象导致的ΔCt的函数。可针对多个感测元件获得ΔCt以生成电容性图像,例如,跨越整个感测区(120)。
在一个或多个实施例中,同时驱动多个Tx电极(220)。在图2的示例中,当利用发射器信号TxF1、TxF2和TxF3(222)同时驱动三个Tx电极时,Rx电极Rx1……Rxn(230)中的每个上的结果信号(232)将受到TxF1、TxF2和TxF3的影响。因此,结果信号(232)中的每个可携带关于接近三个感测元件(225)的输入对象的存在或不存在的信息。
如参考图3所描述的,可以执行解调,使得针对三个感测元件中的每个分别获得感测信号(225)。可以针对Rx电极Rx1……Rxn(230)上的结果信号(232)中的每个执行所描述的操作。为了获得完整的电容性图像,然后可以使用相同的TxF1、TxF2和TxF3针对三个Tx电极的另一集合重复该操作。重复可以继续,直到所有Tx电极(220)都被驱动。为了驱动Tx电极(220),Tx电极可以按频率区分组。基于在图2的示例中使用三个频率进行同时驱动,感测配置(200)包括三个频率区(242、244和246)。
三个频率区(242、244、246)中的每个包括相同或接近相同数量的Tx电极。例如,如果感测配置(200)包括60个Tx电极,则频率区(242、244、246)中的每个可以包含20个Tx电极。可以为同时驱动选择来自每个组的一个Tx电极。例如,如图2所示,为同时驱动选择频率区(242、244、246)中的每个中的最左边的Tx电极。接下来,可以为同时驱动选择频率区(242、244、246)中的每个中的紧邻的Tx电极。一旦所有三个频率区(242、244、246)中的所有Tx电极(220)已经被驱动一次,并且对应的结果信号(232)已经在Rx电极(230)上被接收,就可以获得完整的电容性图像。
在一个或多个实施例中,同时驱动多个Tx电极(220)。在图2的示例中,假设频率1区(242)中的多个Tx电极与频率2区(244)中的多个Tx电极一起被同时驱动并且与频率3区(246)中的多个Tx电极一起被同时驱动。可利用具有第一频率的发射器信号驱动频率1区(242)中的同时驱动的Tx电极,可利用具有第二频率的发射器信号驱动频率2区(244)中的同时驱动的Tx电极,并且可利用具有第三频率的发射器信号驱动频率3区(246)中的同时驱动的Tx电极。如果选择发射器信号的频率以满足某些正交原理(下面参考图3讨论),则可以针对不具有干扰或具有最小干扰的不同频率区单独地执行信号处理。为了能够在特定感测元件(225)处定位触摸,可使用发射器信号(222)的突发来执行重复的驱动,如以下示例中所描述的。在该示例中,假设每个频率区(242、244、246)存在20个Tx电极(220),即三个频率区总共有60个Tx电极。对应地,在该示例中,在每个频率区中,每个Rx电极存在与20个Tx电极相交的20个感测元件(225)。为了能够评估20个感测元件(225)中的每个处的触摸的存在或不存在,可以使用20个顺序突发的突发模式(这允许具有20个未知数的方程组的唯一解)来顺序地同时驱动Tx电极20次。虽然在感测区内使用的发射器信号的频率对于整个突发模式可以是相同的,但是发射器信号的相位可以跨后续突发并且跨被驱动的Tx电极在突发模式内变化。通过响应于所有20个TX电极上的20个突发来处理在单个Rx电极上获得的结果信号(232),可以为每个感测元件确定ΔCt。对于所有Rx电极(230)上的所有结果信号(232),可以同时执行相同的操作。还可以在其他频率区中同时执行相同的操作。因此,在具有三个频率区的示例中,总共可以同时驱动60个Tx电极,每个Tx电极具有发射器信号的20个突发的序列。
在图2的示例中,假设不调整其它参数,Tx电极(220)的同时驱动可将获取完整电容性图像所需的时间减少到三分之一。为了说明,假设对于具有60个Tx电极的17”触摸屏的所需的帧速率为240fps,利用发射器信号的突发驱动Tx电极的可用时间将被限制为1/(240x60)=70μs,这可能导致不良的抗噪性。相比之下,当跨三个频率区同时驱动Tx电极的集合时,驱动Tx电极的可用时间将为每突发1/(240x 20)=210μs,这可提供优越的抗噪性而不降低帧速率。当在甚至更高的帧速率(例如,480fps或600fps)下操作较小的触摸屏时,情况可能也是如此。
虽然图2示出了特定的感测配置,并且该示例描述了特定的触摸屏场景,但是本公开的实施例可以与许多不同的配置结合使用。例如,本公开的实施例可以使用不同类型的电极布置,可以同时驱动较少或较多的Tx电极,可以用于较大或较小的感测区等。虽然图2显示了同时驱动三个Tx电极(220)的集合的特定顺序,但在不脱离本公开的情况下,可以使用驱动Tx电极的任何顺序。此外,虽然图2示出了频率区(242、244、246)的特定配置,但是频率区可以被不同地配置。例如,频率区不需要是连续的,相等数量的Tx电极可以随机分配给频率区,等等。
图3示出了根据一个或多个实施例的处理配置(300)。处理配置(300)可以与图2的感测配置(200)结合使用。具体地,在图3所示的示例中,具有三个不同频率的发射器信号被同时发射以驱动Tx电极(220)(例如,如图2所示)。图3示出了在Rx电极(230)之一上获得的结果信号(332)的处理。为了处理多个Rx电极上的多个结果信号,可以多次实现处理配置(300)以并行操作。例如,对于n个Rx电极,图3中所示的部件可以被实现n次。
处理配置(300)包括模拟前端(340)和数字处理块(360)。模拟前端(340)可以包括电荷积分器(342)和模数转换器(ADC)(344)。数字处理块(360)可以包括实现解调器(362)的集合的操作。在所示的示例中,数字实现的解调器(362)的集合解调由模拟前端(340)获得的结果信号(332),以生成感测信号(364)。感测信号(364)可以提供对于三个感测元件(225)处的跨电容的测量,并且因此可以指示存在或不存在输入对象(未示出)。可对感测信号(364)执行附加下游操作以执行触摸感测。随后提供详细描述。
在一个或多个实施例中,用于同时驱动发射器电极(230)的集合的发射器信号(322)具有不同的频率。更具体地,每个同时驱动的发射器电极由具有一个独特的频率的发射器信号(322)驱动。在一个或多个实施例中,用于同时驱动的发射器信号(322)是正交的。在一个或多个实施例中,用于同时驱动的发射器信号(322)选自子载波的正交频分复用(OFDM)频谱,如图3所示。图3示出了具有十一个子载波的OFDM频谱示例。由于子载波的正交性,可以使用任何子载波。例如,可以选择ω0处的子载波和紧接在左侧和右侧的子载波,以获得具有三个不同频率的发射器信号(322)。发射器信号(322)的突发然后可用于同时驱动感测区(120)中的Tx电极(220)。三个频率中的第一个可以用于驱动频率1区(242)中的Tx电极,三个频率中的第二个可以用于驱动频率2区(244)中的Tx电极,并且三个频率中的第三个可以用于驱动频率3区(246)中的Tx电极。虽然在频率区内可以仅使用一个频率,但是频率区内的发射器信号的相位可以在电极之间和/或在发射器信号的后续突发之间变化。在一个实施例中,相位改变了180°以使用发射器信号和反相发射器信号来进行Tx电极的驱动。在不脱离本公开的情况下,可以使用任何其他相位改变。
可以从一个Rx电极(232)获得单个结果信号RxF1,F2,F3(332)以用于进一步处理。结果信号RxF1,F2,F3(332)可包括在与Tx电极相关联的所有感测元件(225)处发射的发射器信号(322)的影响,利用具有三个不同频率和不同相位的发射器信号来驱动所述Tx电极。在图5中提供了示例。结果信号RxF1,F2,F3(332)可进一步包括感测元件(225)处存在或不存在输入对象的影响。
电荷积分器(342)接收结果信号RxF1,F2,F3(332),并且可以在积分时间间隔内对结果信号RxF1,F2,F3(332)进行积分。ADC(344)接收积分之后的结果信号RxF1,F2,F3(332)并执行模数转换。下面提供对ADC的附加讨论。
ADC的输出被提供给数字实现的解调器(362)的集合。在一个或多个实施例中,解调器(362)被配置为生成感测信号(364)。在一个或多个实施例中,解调器(362)包括用于同相(I)解调的解调器和特定于三个发射器信号(322)的独特的频率中的每个的正交(Q)解调。换句话说,可以存在六个解调器(三个I解调器和三个Q解调器),其被配置为执行三个I/Q解调,如图3所示。六个解调器中的每个可以包括乘法器操作和加窗(windowing)操作,以生成感测信号的I和Q分量。乘法器可以将乘法器的输入(即,经积分的、模数转换的结果信号RxF1,F2,F3(332)与解调波形相乘以执行解调。加窗操作可以提供低通滤波,诸如(从乘法器操作获得的)混合器结果的加权平均。解调波形可以基于发射器信号(322)。
具体地,可以向乘法器中的每个提供三个发射器信号(322)中的一个的副本,以引起所提供的发射器信号的频率处的解调。因此,解调器(362)组合地在三个频率中的每个处执行码分多路复用(CDM)解码以分离与三个感测元件(225)相关联的感测信号(364)。即使在存在可能的相移的情况下,与感测元件相关联的感测信号的解调的I分量和Q分量也可以被组合以获得可接受的准确感测信号。
在使用组合的I和Q解调的情况下,经积分的、模数转换的结果信号RxF1,F2,F3(332)与解调波形之间的精确相位对准不需要执行解调。因此,ADC(344)可以是相对低速的,例如,发射器信号频率的速度的三倍到五倍。这可能导致引入相位偏移,然而,通过使用组合的I和Q解调减轻了该相位偏移。低速ADC的使用降低了功耗和成本,而附加的Q解调器与可忽略的附加成本和功耗相关联,因为其是数字实现的。因此,在解调之前使用数字I/Q解调和模数转换的所描述的配置是有成本效率的且节能的。虽然描述了数字I/Q解调,但是在不脱离本公开的情况下可以执行模拟I/Q解调,随后进行模数转换。
在一个实施例中,仅使用I解调器(无Q解调器)来执行解调。为了仅使用I解调器获得合理精确的相位对准,可以使用较快的ADC(344)来减少可能的相位偏移。例如,ADC可以以至少16倍的发射器信号频率的速度进行操作。
虽然图3示出了特定的处理配置,但是在不脱离本公开的情况下,可以使用其他配置。例如,虽然图3示出了使用具有三个独特的频率的发射器信号同时驱动三个Tx电极,但是可以同时驱动任何数量的Tx电极。此外,虽然图3示出了用于处理从三个Rx电极获得的单个结果信号的处理配置,但是如所示的模拟和数字处理部件可以被复制以处理附加的结果信号。
图4示出了根据一个或多个实施例的流程图。图4中的步骤中的一个或多个可以由上面参考图1、图2和图3讨论的部件执行。虽然顺序地呈现和描述了该流程图中的各个步骤,但是普通技术人员将理解,框中的至少一些可以以不同的顺序执行,可以组合或省略,并且框中的一些可以并行执行。可以进一步执行附加步骤。因此,本公开的范围不应被认为限于图4中所示的步骤的特定布置。
图4的流程图描绘了根据一个或多个实施例的用于多频率区触摸感测的方法(400)。
在步骤402中,使用具有独特的频率的多个发射器信号同时驱动Tx电极的集合。可以同时驱动任何数量的Tx电极。参考图2和图3提供了附加细节。
在步骤404中,在Rx电极上获得结果信号。步骤404可以与步骤402并行执行。此外,步骤404可以同时针对多个Rx电极执行。在Rx电极上接收的结果信号受到耦合到Rx电极上的多个发射器信号的影响。耦合在其中Rx电极在空间上紧邻Tx电极的地方(例如,在其中Tx电极与Rx电极相交的感测元件处)发生。结果信号也受到接近感测元件的输入对象的存在或不存在的影响,因为电容性耦合受到输入对象的存在或不存在的影响。
在步骤406中,解调结果信号以生成感测信号的集合。可针对使用具有特定频率的发射器信号驱动的一个或多个Tx电极中的每个获得一个感测信号。如果执行了I解调和Q解调两个,则可以处理感测信号的结果I和Q分量以确定感测信号的幅度和/或相位。参考图2和图3提供了附加细节。可以在解调之前执行附加步骤。例如,如上所述,结果信号可以被积分和/或模数转换。可通过求解发射器信号的多个突发上的感测信号来获得对于感测特定于特定感测元件的信号的解。例如,当20个突发用于包括20个感测元件的配置时,可以获得唯一的解。如果针对多个Rx电极执行步骤404,则还可以多次执行步骤406以解调与多个Rx电极相关联的结果信号中的每个。
可以重复所描述的步骤。例如,可以在驱动从频率区中的Tx电极中选择的Tx电极的不同集合的同时重复步骤402-406,如先前参考图2和图3所描述的。在针对感测区中的所有Tx电极执行步骤402-406之后,具有用于电容性图像的感测元件的完整集合的感测信号的电容性图像可以是可用的。
在步骤408中,可以使用感测信号执行触摸感测。触摸感测可以涉及对照先前确定的基线值来评估感测信号。如果感测信号偏离基线值至少一定量,则输入对象可以被认为存在于对应于感测信号的感测元件附近。可针对与电容性图像的感测元件相关联的一些或所有感测信号执行步骤408。
可以例如周期性地重复步骤402-408以随着时间执行触摸感测。
图5示出了根据一个或多个实施例的样本数据(500)。该示例是针对使用具有三个独特的频率的三个发射器信号同时驱动的三个Tx电极。这三个频率是100kHz、109.9kHz和119.8kHz。从OFDM频谱中选择三个频率(例如,如图3所示)。
Rx电极处的结果信号在时域中示出(502)。结果信号也在频域中示出(504)。三个发射器信号的贡献是清楚可识别的,尽管(使用应用于单个发射器信号突发的FFT获得的)频谱的分辨率不足以区分三个Tx频率。噪声信号在50kHz处的贡献是进一步可见的。
本公开的实施例具有各种优点。使用具有不同频率的同时发射的发射器信号使得能够在不损害抗噪性的情况下使用相对高的帧速率在较大的感测区上进行触摸感测。具体地,本公开的实施例允许以高的帧速率驱动大量Tx电极(其对于较大的触摸屏可能是必需的)而不缩短发射的发射器信号的突发,因为可以在不同频率下同时驱动多个发射器电极。使用如所提出的突发长度,实现了高程度的抗噪性。此外,本公开的实施例允许添加其他突发(例如,用于噪声测量、绝对电容感测等)而不显著改变定时。例如,在每帧需要20个突发的示例中,完成具有附加突发的帧所需的时间将增加5%。本公开的实施例是有成本效率的且节能的,例如,因为可以使用相对慢的ADC,并且因为可以使用标准DSP来数字地执行许多解调操作。本公开的实施例还允许使用基于包括许多谐波的波形的发射器信号。例如,可以使用梯形波形,其与使用正弦波形相比可以具有多个优点,诸如使用晶体管堆叠相对容易生成较高的电压,以及使用较低的传输功率来操作的能力(因为对于1V方波,基极波形的幅度是1.27V)。
在一个或多个实施例中,非正弦发射器信号用于同时驱动感测电极。非正弦发射器信号的使用具有各种优点,但可导致较高次谐波的发射。一个或多个实施例减轻可能由于较高次谐波的存在而产生的干扰。随后提供详细描述。
图6A示出了根据一个或多个实施例的感测配置(600)。感测配置(600)基于感测区(120)中的传感器电极的布置。发射器(Tx)电极(620)和接收器(Rx)电极(630)可设置在感测区(120)中。在图6A的示例中,Tx电极(620)是以列布置的细长矩形结构,而Rx电极(630)是以行布置的细长矩形结构。通常,可以使用任何形状的Tx和Rx电极。
在一个或多个实施例中,Tx电极(620)和Rx电极(630)一起实现互电容或跨电容感测。在Tx(620)和Rx(630)电极的交叉点处,在Tx电极(620)和Rx电极(630)的一部分之间形成局部电容性耦合。该局部电容性耦合的区可以被称为“电容性像素”,或者在本文中也被称为感测元件(625)。跨电容Ct与感测元件(625)相关联。当输入对象(未示出)接近感测元件(625)时,跨电容Ct可以改变一量ΔCt。因此,可以通过监测ΔCt来检测输入对象的存在或不存在。可以通过将发射器信号(622)驱动到Tx电极(620)上并从Rx电极(630)接收结果信号(632)来测量ΔCt。结果信号是发射器信号和由于存在或不存在输入对象导致的ΔCt的函数。可针对多个感测元件获得ΔCt以生成电容性图像,例如跨越整个感测区(120)。
在一个或多个实施例中,同时驱动多个Tx电极(620)。在图6A的示例中,当利用发射器信号TxF1、TxF2和TxF3(622)同时驱动三个Tx电极时,Rx电极Rx1……Rxn(630)中的每个上的结果信号(632)将受到TxF1、TxF2和TxF3的影响。因此,结果信号(632)中的每个可携带关于接近三个感测元件(625)的输入对象的存在或不存在的信息。
如参考图7所描述的,可以执行解调,使得针对三个感测元件中的每个分别获得感测信号(625)。可以针对Rx电极Rx1……Rxn(630)上的结果信号(632)中的每个执行所描述的操作。为了获得完整的电容性图像,然后可以使用相同的TxF1、TxF2和TxF3针对三个Tx电极的另一集合重复该操作。重复可以继续,直到所有Tx电极(620)都被驱动。为了驱动Tx电极(620),Tx电极可以按频率区分组。基于在图6A的示例中使用三个频率进行同时驱动,感测配置(600)包括三个频率区(642、644和646)。
三个频率区(642、644、646)中的每个包括相同或接近相同数量的Tx电极。例如,如果感测配置(600)包括60个Tx电极,则频率区(642、644、646)中的每个可以包含20个Tx电极。可以为同时驱动选择来自每个组的一个Tx电极。例如,如图6A所示,为同时驱动选择频率区(642、644、646)中的每个中最左边的Tx电极。接下来,可以为同时驱动选择频率区(642、644、646)中的每个中的紧邻Tx电极。一旦所有三个频率区(642、644、646)中的所有Tx电极(620)已经被驱动一次,并且对应的结果信号(632)已经在Rx电极(630)上被接收,就可以获得完整的电容性图像。
在一个或多个实施例中,同时驱动多个Tx电极(620)。在图6A的示例中,假设频率1区(642)中的多个Tx电极与频率2区(644)中的多个Tx电极一起被同时驱动并且与频率3区(646)中的多个Tx电极一起被同时驱动。可利用具有第一频率的发射器信号驱动频率1区(642)中的同时驱动的Tx电极,可利用具有第二频率的发射器信号驱动频率2区(644)中的同时驱动的Tx电极,并且可利用具有第三频率的发射器信号驱动频率3区(646)中的同时驱动的Tx电极。如果选择发射器信号的频率以满足某些正交原理(下面参考图7所讨论的),则可以针对不具有干扰或具有最小干扰的不同频率区单独地执行信号处理。为了能够在特定感测元件(625)处定位触摸,可使用发射器信号(622)的突发执行重复的驱动,如以下示例中所描述。在该示例中,假设每个频率区(642、644、646)存在20个Tx电极(620),即三个频率区总共有60个Tx电极。对应地,在该示例中,在每个频率区中,每个Rx电极存在与20个Tx电极相交的20个感测元件(625)。为了能够评估20个感测元件(625)中的每个处的触摸的存在或不存在,可以使用20个顺序突发的突发模式(这允许具有20个未知数的方程组的唯一解)来顺序地同时驱动Tx电极20次。虽然在感测区内使用的发射器信号的频率对于整个突发模式可以是相同的,但是发射器信号的相位可以跨后续突发并且跨被驱动的Tx电极在突发模式内变化。通过响应于所有20个TX电极上的20个突发来处理在单个Rx电极上获得的结果信号(632),可以为每个感测元件确定ΔCt。对于所有Rx电极(630)上的所有结果信号(632),可以同时执行相同的操作。还可以在其他频率区中同时执行相同的操作。因此,在具有三个频率区的示例中,总共可以同时驱动60个Tx电极,每个Tx电极具有发射器信号的20个突发的序列。
在图6A的示例中,假设不调整其它参数,Tx电极(620)的同时驱动可将获取完整电容性图像所需的时间减少到三分之一。为了说明,假设对于具有60个Tx电极的17”触摸屏的所需的帧速率为240fps,利用发射器信号的突发驱动Tx电极的可用时间将被限制为1/(240x60)=70μs,这可能导致不良的抗噪性。相比之下,当跨三个频率区同时驱动Tx电极的集合时,驱动Tx电极的可用时间将为每突发1/(240x 20)=210μs,这可提供优越的抗噪性而不降低帧速率。当在甚至更高的帧速率(例如,480fps或600fps)下操作较小的触摸屏时,情况可能也是如此。
图6B示出了根据一个或多个实施例的感测配置(650)。包括Tx电极(620)和Rx电极(630)的布置的感测配置的物理配置可以如参考图6A所描述的那样。
在一个或多个实施例中,同时驱动多个Tx电极(620)。在图6B的示例中,利用发射器信号TxF1……TxFn同时驱动n个Tx电极(652)。n个Tx电极可以包括感测区(120)中的所有Tx电极的子集或感测区中的所有Tx电极。因此,Rx电极Rx1……Rxn(630)中的每个上的结果信号(662)将受到TxF1……TxFn的影响。因此,结果信号(662)中的每个可携带关于接近感测元件(655)的输入对象的存在或不存在的信息。为了确保可以针对n个感测元件(655)中的每个执行触摸定位,可以选择TxF1……TxFn(652)以彼此正交。可以针对Rx电极Rx1……Rxn(630)上的结果信号(662)中的每个执行所描述的操作。
如先前参考图6A所描述,在图6B的示例中,Tx电极(620)的同时驱动可减少获取完整电容性图像所需的时间。减小程度可取决于各种因素,例如,多少Tx电极被同时驱动、用于驱动Tx电极的突发模式等。
虽然图6A和图6B示出了特定的感测配置,并且该示例描述了特定的触摸屏场景,但是本公开的实施例可以与许多不同的配置结合使用。例如,本公开的实施例可以使用不同类型的电极布置,可以同时驱动较少或较多的Tx电极,可以用于较大或较小的感测区等。
图7示出了根据一个或多个实施例的处理配置(700)。处理配置(700)可以与图6A的感测配置(600)结合使用。可以结合图6B的感测配置(650)使用经修改的处理配置(具有附加的解调器)。具体地,在图7所示的示例中,具有三个不同频率的发射器信号(722)被同时发射以驱动Tx电极(620)(例如,如图6A所示)。下面讨论发射器信号(722)的性质。图7示出了在Rx电极(630)之一上获得的结果信号(732)的处理。为了处理多个Rx电极上的多个结果信号,可以多次实现处理配置(700)以并行操作。例如,对于n个Rx电极,图7中所示的部件可以被实现n次。
处理配置(700)包括模拟前端(740)和数字处理块(760)。模拟前端(740)可以包括电荷积分器(742)和模数转换器(ADC)(744)。数字处理块(760)可以包括实现解调器(762)的集合的操作。在所示的示例中,数字实现的解调器(762)的集合解调由模拟前端(740)获得的结果信号(732),以生成感测信号(764)。感测信号(764)可以提供对于三个感测元件(625)处的跨电容的测量,并且因此可以指示存在或不存在输入对象(未示出)。可对感测信号(764)执行附加下游操作以执行触摸感测。随后提供详细描述。
同时驱动的发射器电极中的每个由具有一个独特的频率(例如,使用具有独特的基频的梯形或正方形波形)的非正弦发射器信号(722)驱动。在一个或多个实施例中,用于同时驱动的非正弦发射器信号(722)是正交的。参考图6A,非正弦发射器信号的突发可以用于同时驱动感测区(120)中的Tx电极(620)。三个频率中的第一个可以用于驱动频率1区(642)中的Tx电极,三个频率中的第二个可以用于驱动频率2区(644)中的Tx电极,并且三个频率中的第三个可以用于驱动频率3区(646)中的Tx电极。虽然在频率区内可以仅使用一个频率,但是频率区内的非正弦发射器信号的相位可以在电极之间和/或在非正弦发射器信号的后续突发之间变化。在一个实施例中,相位改变了180°以使用非正弦发射器信号和反相非正弦发射器信号来进行Tx电极的驱动。在不脱离本公开的情况下,可以使用任何其他相位改变。
可以从一个Rx电极(632)获得单个结果信号RxF1,F2,F3(732)以用于进一步处理。结果信号RxF1,F2,F3(732)可包括在与Tx电极相关联的所有感测元件(625)处发射的非正弦发射器信号(722)的影响,利用具有三个不同基频和不同相位的非正弦发射器信号来驱动所述Tx电极。结果信号RxF1,F2,F3(732)可进一步包括感测元件(625)处存在或不存在输入对象的影响。
电荷积分器(742)接收结果信号RxF1,F2,F3(732),并且可以在积分时间间隔内对结果信号RxF1,F2,F3(732)进行积分。ADC(744)接收积分之后的结果信号RxF1,F2,F3(732)并执行模数转换。
ADC的输出被提供给数字实现的解调器(762)的集合。在一个或多个实施例中,解调器(762)被配置为生成感测信号(764)。在一个或多个实施例中,解调器(762)包括用于同相(I)解调的解调器和特定于三个非正弦发射器信号(722)的独特的频率中的每个的正交(Q)解调。换句话说,可以存在六个解调器(三个I解调器和三个Q解调器),其被配置为执行三个I/Q解调,如图7所示。六个解调器中的每个可以包括乘法器操作和加窗操作,以生成感测信号的I和Q分量。乘法器可以将乘法器的输入(即,经积分的、模数转换的结果信号RxF1,F2,F3(732)与解调波形相乘以执行解调。加窗操作可以提供低通滤波,诸如(从乘法器操作获得的)混合器结果的加权平均。如下面进一步讨论的,加窗操作可在对应非正弦发射器信号的基频处传递信号,同时在其它(正交)非正弦发射器信号的基频处强烈衰减。解调波形可以基于非正弦发射器信号(722)。例如,解调波形可以是对应的非正弦发射器信号的基频处的正弦波形。
因此,每个解调器在对应的非正弦发射器信号的基频处执行解调。解调器(762)组合地在三个基频中的每个处执行码分多路复用(CDM)解码以分离与三个感测元件(625)相关联的感测信号(764)。即使在存在可能的相移的情况下,与感测元件相关联的感测信号的解调的I分量和Q分量也可以被组合以获得可接受的准确感测信号。
在使用组合的I和Q解调的情况下,经积分的、模数转换的结果信号RxF1,F2,F3(732)与解调波形之间的精确相位对准不需要执行解调。因此,ADC(744)可以是相对低速的,例如,非正弦发射器信号频率的基频的速度的三倍到五倍。这可能导致引入相位偏移,然而,通过使用组合的I和Q解调减轻了相位偏移。低速ADC的使用降低了功耗和成本,而附加的Q解调器与可忽略的附加成本和功耗相关联,因为其是数字实现的。因此,在解调之前使用数字I/Q解调和模数转换的所描述的配置是有成本效率的且节能的。虽然描述了数字I/Q解调,但是在不脱离本公开的情况下可以执行模拟I/Q解调,随后进行模数转换。
在一个实施例中,仅使用I解调器(无Q解调器)来执行解调。为了仅使用I解调器获得合理精确的相位对准,可以使用较快的ADC(744)来减少可能的相位偏移。例如,ADC可以以至少16倍的非正弦发射器信号频率的基频的速度进行操作。
如前所述,一个或多个实施例采用非正弦发射器信号(722)。在图7的示例中,可以使用具有梯形波形的单个非正弦发射器信号。在不脱离本公开的情况下,可以使用任何其他非正弦波形,例如方波。与正弦波形相比,非正弦波形可以具有各种优点。例如,使用基本电路元件合成非正弦波形可能相对容易。产生幅度高于***电压的非正弦波形可能进一步相对容易。例如,可以使用3V***电压来实现9V幅度。此外,非正弦波形可以在基频处具有比具有相同标称幅度的正弦波形高的信号能量。在图7中,在时域(左)和频域(右)中示出用作非正弦发射器信号(722)的梯形波形。梯形波形具有100kHz的基频和1V的幅度。如频谱显示的那样,基频处的幅度为1.254V(1.97dB)。因此,在基频处,对于非正弦发射器信号的相同电压,与正弦波相比,梯形波形具有较高的信号能量,从而提供各种潜在优点,诸如使用较低发射器信号电压、在使用相同电压时获得较高信噪比等的能力等。然而,如图7所示,诸如梯形波形之类的非正弦波形也包括不同于基频的谐波。在图7中所示的梯形波形的情况下,存在3次(700kHz)谐波、5次(500kHz)谐波等。在图7中所示的频谱中,三次谐波的基频幅度比基频低10.6dB,五次谐波的基频幅度比基频低17.4dB等。前10次谐波的总谐波失真为-9.6dB。
由于存在较高的谐波,在一个或多个实施例中,在ADC(744)处发生混叠。混叠的影响可能不利于感测信号(764)的准确性。随后基于以下场景描述该影响。假设非正弦发射器信号(722)的三个基频是100kHz、109.9kHz和119.8kHz。200μs的突发长度的基频被间隔开9.9kHz,这在使用汉宁窗执行解调(下文讨论)时导致正交性(或接近正交性)。其他频率间隔可以用于其他类型的窗口、其他突发长度等。此外,假设ADC(744)的ADC采样频率Fs被设置为500kHz。在Fs=500kHz时,奈奎斯特频率是250kHz。因此,针对所有三个非正弦发射器信号的较高次谐波发生混叠(722)。作为混叠的结果,在一个或多个实施例中,较高次谐波在较低频率处表现为ADC(744)的输出处的混叠伪影。
可以使用移位和折叠操作的组合来确定较低频率(混叠伪影在该较低频率处出现)。如果作为混叠的结果的较高次谐波在非正弦发射器信号的基频之一处或附近表现为混叠伪影,则可能导致错误的感测信号。在以上示例中,在119.8kHz处的非正弦发射器信号的5次谐波为5x 119.8kHz=599kHz。使用移位和折叠操作来执行混叠分析,当使用500kHzADC采样频率时,5次谐波在99kHz处表现为混叠伪影。因为99kHz接近非正弦发射器信号之一的100kHz基频,所以针对在100kHz处执行的解调而获得的感测信号不准确。
在一个或多个实施例中,选择ADC采样频率Fs以减少由在基频附近表现为混叠伪影的较高次谐波引起的误差。更具体地,调整Fs,使得没有混叠伪影紧密接近任何基频。可以通过***地更改Fs同时监测带间干扰(即,在基频附近的混叠伪影的存在)来选择期望的Fs。期望的Fs可以是在其处带间干扰最小的Fs。随后参考图8中所示的示例提供对带间干扰的描述。
虽然图7示出了特定的处理配置,但是在不脱离本公开的情况下,可以使用其他配置。例如,虽然图7示出了使用具有三个独特的基频的非正弦发射器信号来同时驱动三个Tx电极,但是可以利用任何数量的非正弦发射器信号同时驱动任何数量的Tx电极。此外,虽然图7示出了用于处理从三个Rx电极获得的单个结果信号的处理配置,但是如所示的模拟和数字处理部件可以被复制以处理附加的结果信号。
图8示出了根据一个或多个实施例的带间干扰分析的示例。在该示例中,在500kHz+/-10%的范围内调整Fs,以识别具有可接受的低带间干扰的Fs。被分析的频率范围被限制(在该示例中为+/-10%)以降低由外部噪声(源自与输入设备不同的源的噪声)引起的干扰的可能性。外部噪声可源自各种部件,诸如电源、显示设备等。外部噪声可以集中在特定频率,并且可以选择初始Fs(500kHz),使得不太可能受到外部噪声的干扰。因此,在有限范围内的Fs的变化降低了选择其中外部噪声引起显著干扰的频率的可能性。
如图8示出在带间干扰曲线图(802)中,带间干扰被确定为Fs在从450kHz至550kHz的频率范围内被调整。带间干扰是指示由以第一频率驱动一个或多个Tx电极同时以第二频率数字解调(在A/D转换以及可能的混叠之后)引起的干扰的量。参考先前介绍的针对非正弦发射器信号使用100kHz、109.9kHz和119.8kHz的示例,以下带间干扰可能由于混叠而发生:
(i)以100kHz驱动并以109.9kHz解调;
(ii)以100kHz驱动并以119.8kHz解调;
(iii)以109.9kHz驱动并以100kHz解调;
(iv)以109.9kHz驱动并以119.8kHz解调;
(v)以119.8kHz驱动并以100kHz解调;以及
(vi)以119.8kHz驱动并以109.9kHz解调。
可以跨频率范围获得这六个情况中的每个的带间干扰。因此,可针对六个情况中的每个获得曲线图(802)。每个曲线图可包括在其处的带间干扰不可接受的高的频率,并且还可包括在其处的带间干扰可接受的低或非常低的频率。如曲线图(802)所示,在给定特定场景的情况下,对于较低的Fs,带间干扰特别高,而对于较高的Fs,带间干扰较低至非常低。
带间干扰概述(804)概括了最差频率(Fs=449kHz)和最佳频率(Fs=520kHz)的结果。当在F2(109.9kHz)处发射非正弦发射器信号同时在F3(119.8kHz)处执行解调时,发现最差情况的干扰为21.491%。该带间干扰在曲线图(802)(最左峰)中显著可见。相比之下,对于最佳频率,所有干扰保持低于0.02%。在曲线图(802)(放大的频率范围)中可以看出几乎完全不存在干扰。
可以执行优化以选择在其处所有六个情况的干扰都可接受的Fs。下面讨论对于确定Fs的方法。虽然图8中的示例是针对三个非正弦发射器信号,但可针对任何数量的非正弦发射器信号执行类似分析。
图9和图10示出了根据一个或多个实施例的流程图。图9和图10中的步骤中的一个或多个可以由上面参考图1、图6A、图6B和图7讨论的部件执行。虽然顺序地呈现和描述了这些流程图中的各个步骤,但是普通技术人员将理解,步骤中的至少一些可以以不同的顺序执行,可以组合或省略,并且步骤中的一些可以并行执行。可以进一步执行附加步骤。因此,本公开的范围不应被认为限于图9和图10中所示的步骤的特定布置。
图9的流程图描绘了根据一个或多个实施例的用于多频率区并行扫描的带间谐波干扰减轻的方法(700)。
在步骤902中,执行噪声测量。噪声可在现实操作条件下测量,例如,在诸如显示器、电源等可能的噪声源存在的情况下测量。噪声测量可用于区分有噪声的频率区与噪声较小或无噪声的频率区。可以执行光谱分析以进行区分。
在步骤904中,选择非正弦发射器信号,使得避免或至少减少在步骤902中识别的噪声的干扰。换句话说,对于非正弦发射器信号,可以选择其中存在相对小的噪声的频率区。例如,假设基于步骤902的执行在50kHz处检测到噪声。为了避免检测到的噪声,可以将非正弦发射器信号的基频置于大约100kHz的区中。可以选择基频的频率间隔、突发长度、非正弦发射器信号的形状等,使得满足某些正交性要求和定时要求,如先前所讨论的。可以针对任意数量的同时发射的非正弦发射器信号执行步骤904。虽然流程图将噪声的测量和非正弦发射器信号的选择示出为单独的步骤,但是这些步骤可以组合。例如,可以利用选择的非正弦发射器信号的集合来执行测量。如果基于测量发现存在太多噪声,则可以选择不同的非正弦发射器信号的集合。切换到不同的非正弦发射器信号的集合可以继续,直到识别出噪声被确定为可接受的集合为止。
在步骤906中,选择模数转换器(ADC)的采样频率Fs。在一个或多个实施例中,选择Fs以使得与非正弦发射器信号的较高次谐波相关联的混叠伪影位于与非正弦发射器信号的基频不同的频率处。换句话说,调整Fs以减小基频处的混叠伪影的幅度,以减少或消除带间谐波干扰。参考图7提供了附加细节。可以从默认采样频率开始执行Fs的选择。可以在围绕默认采样频率的有限范围内执行优化。可以执行优化以最小化非正弦发射器信号的基频处的混叠伪影。可以使用任何标准来指定在基频处的可接受的混叠水平。例如,1/1000的带间谐波干扰可以被设置为阈值。可针对非正弦发射器信号的单个集合或不同频率范围中的非正弦发射器信号的多个集合执行步骤906。使用非正弦发射器信号的多个集合可使得输入设备能够在不同频率范围内操作,例如,取决于噪声环境。步骤906的操作可以通过测量实际输入设备上的带间谐波干扰或通过仿真来执行。如果使用仿真,则可以通过仿真模型来近似输入设备的不同部件。例如,感测元件和模拟前端的特性可以由一阶(单极)仿真模型近似,该一阶(单极)仿真模型具有分别近似实际的感测元件和实际的模拟前端的特性的时间常数。
可以在输入设备的设置或制造期间执行步骤902-906的操作,以将用于非正弦发射器信号的频率的一个或多个集合和匹配的采样频率Fs编程到输入设备中。可替换地,可以在输入设备的操作期间执行步骤902-906。
在步骤908中,可以执行触摸感测。下面参考图10提供了描述。
图10的流程图描绘了根据一个或多个实施例的用于多频率区触摸感测的方法(1000)。
在步骤1002中,使用具有独特基频的多个非正弦发射器信号同时驱动Tx电极的集合。可以同时驱动任何数量的Tx电极。参考图6A、图6B和图7提供附加的细节。
在步骤1004中,在Rx电极上获得结果信号。步骤1004可以与步骤1002并行执行。此外,步骤1004可以针对多个Rx电极同时执行。在Rx电极上接收的结果信号受到耦合到Rx电极上的多个非正弦发射器信号的影响。耦合在其中Rx电极紧邻Tx电极的地方(例如,在其中Tx电极与Rx电极相交的感测元件处)发生。结果信号也受到接近感测元件的输入对象的存在或不存在的影响,因为电容性耦合受到输入对象的存在或不存在的影响。
在步骤1006中,使用以在步骤906中确定的采样频率Fs操作的模数转换器对结果信号进行模数转换。
在步骤1008中,在模数转换之后,结果信号被解调以生成感测信号的集合。可针对使用具有特定频率的非正弦发射器信号驱动的一个或多个Tx电极中的每个获得一个感测信号。如果执行了I解调和Q解调两个,则可以处理感测信号的结果I和Q分量以确定感测信号的幅度和/或相位。参考图6A、图6B和图7提供了附加的细节。可以通过求解非正弦发射器信号的多个突发上的感测信号来获得用于感测特定于特定感测元件的信号的解。例如,当20个突发用于包括20个感测元件的配置时,可以获得唯一的解。如果针对多个Rx电极执行步骤1004,则还可以多次执行步骤1008以解调与多个Rx电极相关联的结果信号中的每个。
可以重复所描述的步骤。例如,可以在驱动从频率区中的Tx电极中选择的Tx电极的不同集合的同时重复步骤602-606,如先前参考图6A、图6B和图7所描述的。在针对感测区中的所有Tx电极执行步骤602-608之后,具有用于电容性图像的感测元件的完整集合的感测信号的电容性图像可以是可用的。
在步骤1010中,可以使用感测信号执行触摸感测。触摸感测可以涉及对照先前确定的基线值来评估感测信号。如果感测信号偏离基线值至少一定量,则输入对象可被认为存在于对应于感测信号的感测元件附近。可针对与电容性图像的感测元件相关联的一些或所有感测信号执行步骤1010。
可以例如周期性地重复步骤1002-1010以随着时间执行触摸感测。
本公开的实施例具有各种优点。使用具有不同频率的同时发射的发射器信号使得能够以高帧速率驱动大量Tx电极(其对于较大触摸屏可能是必要的)而不缩短发射的发射器信号的突发。本公开的实施例使用非正弦波形。非正弦波形具有相对容易生成的优点,即使幅度高于***电压。此外,非正弦波形在基频处具有比正弦波形高的电压幅度。在基频处产生的较高信号能量提供各种优点,诸如使用较低发射器信号电压、在使用相同电压时获得较高信噪比的能力等。
虽然已经关于有限数量的实施例描述了本发明,但是受益于本公开的本领域技术人员将理解,可以设计出不脱离如本文所公开的本发明的范围的其他实施例。因此,本发明的范围应仅由所附权利要求限制。

Claims (15)

1.一种输入设备,包括:
发射器电极,其设置在所述输入设备的感测区中的多个单独的频率区中,其中所述多个单独的频率区中的每个包括多个发射器电极;
所述感测区中的接收器电极;以及
包括多个解调器的处理***,所述处理***被配置为:
使用具有独特的频率的多个发射器信号在所述多个单独的频率区中的每个中同时驱动所述多个发射器电极中的至少两个;
在所述接收器电极上接收结果信号;以及
使用所述多个解调器解调所述结果信号以生成多个感测信号,
其中所述多个解调器中的每个在所述独特的频率中的不同频率上操作,以及
其中所述多个单独的频率区中的每个特定于所述独特的频率中的一个。
2.根据权利要求1所述的输入设备,
其中使用所述具有独特的频率的多个发射器信号在所述多个单独的频率区中的每个中同时驱动所述多个发射器电极中的至少两个包括:
在特定于所述频率区的所述独特的频率中的一个中同时驱动所述多个发射器电极中的至少两个。
3.根据权利要求1所述的输入设备,
其中使用所述具有独特的频率的多个发射器信号在所述多个单独的频率区中的每个中同时驱动所述多个发射器电极中的至少两个包括:
以所述独特的频率中的第一频率在所述多个单独的频率区中的第一频率区中同时驱动所述多个发射器电极中的至少两个,同时以所述独特的频率中的第二频率在所述多个单独的频率区中的第二频率区中同时驱动所述多个发射器电极中的至少两个。
4.根据权利要求1所述的输入设备,其中所述多个发射器信号中的所述发射器信号彼此正交。
5.根据权利要求1所述的输入设备,其中所述多个发射器信号是从正交频分复用OFDM频谱中选择的。
6.根据权利要求1所述的输入设备,其中所述多个解调器中的每个包括同相I解调器和正交Q解调器。
7.根据权利要求1所述的输入设备,其中所述多个解调器中的每个被数字地实现。
8.根据权利要求1所述的输入设备,还包括:
在解调所述结果信号之前对所述结果信号进行操作的模数转换器ADC。
9.一种用于输入设备的处理***,
所述处理***包括多个解调器,并且所述处理***被配置为:
使用具有独特的频率的多个发射器信号同时驱动设置在所述输入设备的感测区中的多个单独的频率区中的多个发射器电极中的每个中的至少两个,其中所述多个单独的频率区中的每个包括多个发射器电极;
在所述感测区中的接收器电极上接收结果信号;以及
使用所述多个解调器解调所述结果信号以生成多个感测信号,
其中所述多个解调器中的每个在所述独特的频率中的不同频率上操作,以及
其中所述多个单独的频率区中的每个特定于所述独特的频率中的一个。
10.根据权利要求9所述的处理***,
其中使用所述具有独特的频率的多个发射器信号在所述单独的频率区中的每个中同时驱动所述多个发射器电极中的每个中的至少两个包括:
以特定于所述频率区的所述独特的频率中的一个频率在所述多个单独的频率区中的每个中同时驱动所述多个发射器电极中的每个中的至少两个。
11.根据权利要求9所述的处理***,
其中使用所述具有独特的频率的多个发射器信号在所述单独的频率区中的每个中同时驱动所述多个发射器电极中的每个中的至少两个包括:
以所述独特的频率中的第一频率在所述多个单独的频率区中的第一频率区中同时驱动所述多个发射器电极中的至少两个,同时以所述独特的频率中的第二频率在所述多个单独的频率区中的第二频率区中同时驱动所述多个发射器电极中的至少两个。
12.根据权利要求9所述的处理***,其中所述多个发射器信号中的所述发射器信号彼此正交。
13.根据权利要求9所述的处理***,其中所述多个发射器信号是从正交频分复用OFDM频谱中选择的。
14.一种用于操作输入设备的方法,所述方法包括:
使用具有独特的频率的多个发射器信号同时驱动设置在所述输入设备的感测区中的多个单独的频率区中的多个发射器电极中的每个中的至少两个,其中所述多个单独的频率区中的每个包括多个发射器电极;
在接收器电极上接收结果信号,
其中所述接收器电极设置在所述输入设备的所述感测区中;
使用多个解调器解调所述结果信号以生成多个感测信号,
其中所述多个解调器中的每个在所述独特的频率中的不同频率上操作;以及
其中所述多个单独的频率区中的每个特定于所述独特的频率中的一个;以及
使用所述结果信号执行触摸感测。
15.一种用于操作输入设备的方法,所述方法包括:
获得具有独特的基频的多个非正弦发射器信号;以及
选择模数转换器ADC的采样频率,使得:
与所述非正弦发射器信号的较高次谐波相关联的多个混叠伪影位于与所述基频不同的频率处。
CN202280073511.9A 2021-11-03 2022-09-09 多频率区触摸感测 Pending CN118202323A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/518,307 2021-11-03
US17/564,159 2021-12-28
US17/564,159 US11531425B1 (en) 2021-11-03 2021-12-28 Inter-band harmonics interference mitigation for multi-frequency-region parallel scan
PCT/US2022/043140 WO2023080952A1 (en) 2021-11-03 2022-09-09 Multi-frequency-region touch sensing

Publications (1)

Publication Number Publication Date
CN118202323A true CN118202323A (zh) 2024-06-14

Family

ID=91408834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280073511.9A Pending CN118202323A (zh) 2021-11-03 2022-09-09 多频率区触摸感测

Country Status (1)

Country Link
CN (1) CN118202323A (zh)

Similar Documents

Publication Publication Date Title
US9569032B2 (en) Capacitive touch sensor having code-divided and time-divided transmit waveforms
US10126889B2 (en) Techniques for locally improving signal to noise in a capacitive touch sensor
US9645690B1 (en) Method and apparatus to improve noise immunity of a touch sense array
US9612693B2 (en) Capacitive touch sensor having correlation with a receiver
US20130207926A1 (en) Stylus to host synchronization
CN113900538A (zh) 减少由接近输入设备的感测信号引起的显示伪像
US11531425B1 (en) Inter-band harmonics interference mitigation for multi-frequency-region parallel scan
US11550434B2 (en) Short-term noise suppression
US11531439B1 (en) Multi-frequency-region touch sensing
CN118202323A (zh) 多频率区触摸感测
KR20240096666A (ko) 다중 주파수 영역 터치 감지
US11972076B2 (en) Multi-frequency single-burst driving scheme for presence detection
US11481074B1 (en) Method and system for quadrature proximity sensing
US11934612B1 (en) Multi-frequency simultaneous absolute capacitance touch sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication