CN1178277C - 立式器件中背面欧姆触点的低温形成方法 - Google Patents

立式器件中背面欧姆触点的低温形成方法 Download PDF

Info

Publication number
CN1178277C
CN1178277C CNB998120219A CN99812021A CN1178277C CN 1178277 C CN1178277 C CN 1178277C CN B998120219 A CNB998120219 A CN B998120219A CN 99812021 A CN99812021 A CN 99812021A CN 1178277 C CN1178277 C CN 1178277C
Authority
CN
China
Prior art keywords
semiconductor device
carrier concentration
silicon carbide
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB998120219A
Other languages
English (en)
Other versions
CN1323446A (zh
Inventor
С��ά��B��˹����
小戴维·B·斯拉特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Research Inc filed Critical Cree Research Inc
Publication of CN1323446A publication Critical patent/CN1323446A/zh
Application granted granted Critical
Publication of CN1178277C publication Critical patent/CN1178277C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明包括一种形成用于具有多个外延层(14a-c)的半导体器件(10)中的金属-半导体欧姆触点(18)的方法,其中欧姆触点(18)优选在淀积外延层(14a-c)之后形成。本发明还包括具有多个外延层及欧姆触点的半导体器件。

Description

立式器件中背面欧姆触点的低温形成方法
技术领域
本发明涉及一种用于半导体材料的欧姆触点。具体地,本发明涉及一种形成用于包含多种半导体材料的器件中的欧姆触点的方法。
背景技术
在微电子领域中,电路通过顺序连接半导体器件而制成。一般而言,半导体器件借助于特定电路中的电流运行,并用于控制该电流以完成具体的任务。为了将半导体器件相互连接,必须为半导体器件制作适当的触点。由于具有高导电率和其它的化学特性,金属是制作此类器件中触点的最有效且最方便的材料。
这些金属触点应该是对器件的操作或载流金属的干涉最小,或者优选地,根本就不干涉。而且,金属触点必须与由该金属触点制作的或该金属触点相连的半导体材料在物理上和化学上兼容。具有这些所需特性的触点类型为众所周知的“欧姆触点”。
欧姆触点通常定义为具有与半导体的体电阻或扩散电阻相比可忽略不计的触点电阻的金属-半导体触点,见Sze,Physics ofSemiconductor Devices,第二版,1981,第304页。在该文中进一步叙述,适当的欧姆触点不会显著改变与此欧姆触点相连的器件的性能,此欧姆触点能提供任何所需的电流,并且其电压降与器件有源区的电压降相比相当小。
欧姆触点及其制造方法在本领域中是众所周知的。例如,Glass等人的美国专利5409859和5323022(“Glass专利”)论述一种由铂和p型碳化硅形成的欧姆触点结构以及制作此欧姆结构的方法。在L. Spieb等人的“用于欧姆触点的p型SiC的铝注入”,Diamond and RelatedMaterials,第6卷,第1414-1419页(1997)、J.Chen等人的“n型β-SiC上的Re、Pt和Ta膜的接触电阻初步结论”,材料科学与工程,B29,第185~189页(1995)、和WO 98/37584中也讨论了欧姆触点和SiC。尽管欧姆触点及其制造方法是众所周知的,但是已知的生产欧姆触点尤其是采用碳化硅基片生产欧姆触点的方法即使正确应用也是难以实施的。
与形成欧姆触点相关的问题非常多而且是逐渐增多的。因空穴浓度或电子浓度较低引起的半导体的受限导电率会妨碍或甚至阻止欧姆触点的形成。同样,半导体内较差的空穴流动性或电子流动性会妨碍或甚至阻止欧姆触点的形成。正如在Glass专利中论述的,触点金属和半导体之间的功函数差会产生最终形成具有修正的(非欧姆)电流与施加电压关系的触点的势垒。即使两种相同的紧密触点的半导体材料之间有非常不同的电子-空穴浓度,也存在势垒(内部势能),从而形成整流触点而非欧姆触点。在Glass专利中,通过在p型SiC基片和触点金属之间***含有不同p型搀杂物的SiC层而涉及到这些问题。
在形成用于新一代镓铟基半导体器件的欧姆触点时遇到更困难的问题。在半导体和金属之间形成欧姆触点需要半导体和触点金属在其界面上正确熔合。众所周知,在淀积有欧姆触点金属的半导体界面上有选择性地增加空穴/电子浓度是一种使用于形成欧姆触点的触点工艺增强的有效方式。此工艺一般通过离子注入而实现,离子注入被认为是一种在硅和碳化硅中进行有选择性搀杂的技术。然而,在碳化硅的情况下,离子注入通常在高温(一般大于600℃)下进行,以便使对碳化硅晶格造成的损害最小。经常要求在硅过压中且在超过1600℃的退火温度下“激活”所注入的离子以达到所需的高载流子浓度。用于此离子注入技术的设备是专业的且昂贵的设备。
在高温离子注入和后续退火之后,触点金属在经过注入的基片的表面上淀积并且在超过900℃的温度下退火。此种在含有氮化镓或氮化铟镓的半导体器件上形成触点的方法是行不通的,因为这些化合物在高温下分解。
一个解决此问题的理论答案是,在生长完成半导体器件所必需的易损外延层(如氮化镓层)之前在基片上形成欧姆触点。然而,此种途径是不合乎需要的,因为它把不需要的杂质即触点金属***到外延生长***中。通过干扰晶格生长、搀杂、反应速度或所有这些因素,杂质金属会影响外延生长。另外,金属杂质能使外延层的光学和电气特性变差。
相似地,许多半导体器件,例如金属-氧化物-半导体场效应晶体管(“MOSFET”),需要半导体氧化物(如二氧化硅)层。与传统离子注入技术和注入物或触点金属的退火工艺相关的高温在氧化物层上产生高应力,此应力能损害氧化物层、半导体-氧化物界面以及器件本身。作为替代方案,在产生氧化物层之前形成欧姆触点是不切实际的,因为用于形成氧化物层的氧化环境对欧姆触点有不利影响。
因此,需要一种经济实用的方法,以形成用于与半导体器件相连的欧姆触点而不会有上述制造问题。还需要一种包含欧姆触点的且成本较低的半导体器件。
发明内容
本发明的一个目的是提供一种包含欧姆触点的半导体器件。
本发明的另一目的是提供一种包含氮化硅和欧姆触点的半导体器件。
本发明的再一目的是提供一种包含低制造成本欧姆触点的半导体器件。
本发明的又一目的是提供一种形成包含欧姆触点的半导体器件的方法。
为实现这些目的,本发明提供一种形成用于半导体器件中碳化硅的欧姆触点的方法,其中包括以下步骤:在室温下把经选择的搀杂物材料注入到碳化硅基片的表面中,其中以多于一种的10~60keV的注入能量来注入掺杂物,由此在基片内形成在被注入的表面上搀杂物材料浓度增加的区域,随着远离该被注入的表面,该基片内的载流子浓度减小;在800~1300℃的温度下对注入后的碳化硅基片进行第一退火;在碳化硅基片的与注入表面相反的表面上生长至少一个由非碳化硅的化合物构成的外延层,该化合物的分解温度低于碳化硅基片的分解温度;在碳化硅基片的注入表面上淀积一层金属;以及随后对所述金属和注入后的碳化硅基片在一定温度下进行第二退火,该第二退火的温度低于形成外延层的化合物发生显著降质时的温度但高到足以在经过注入的碳化硅和淀积金属之间形成欧姆触点。
为实现这些目的,本发明还提供一种半导体器件,具有至少一个在其上形成欧姆触点的导电的区域,该半导体器件包括:具有第一表面、第二表面、第一导电类型以及初始载流子浓度的半导体基片;在所述半导体基片的所述第一表面上的至少一个外延层,构成该外延层的材料的分解温度低于半导体基片的分解温度;在所述半导体基片中的载流子浓度比所述初始载流子浓度大的区域,该区域从所述第二表面在所述半导体基片内延伸,延伸的深度小于该所述半导体基片的总厚度;以及在所述半导体基片的所述第二表面上淀积的一层金属,其在所述金属和所述载流子浓度更大的区域的界面形成欧姆触点。
以下结合示出典型实施例的附图,对本发明进行详细描述,据此更易于明白本发明前述的和其它的目的、好处和特点及其实现方式。
附图说明
图1是根据本发明的半导体器件的横截面示意图。
图2是在根据本发明的方法中所应用的掺杂物注入的横截面示意图。
具体实施方式
本发明是一种包含欧姆触点的半导体器件以及一种形成欧姆触点的方法。
对于熟悉宽带隙半导体如碳化硅以及由此形成的半导体器件的专业人员而言,易于理解本发明对于利用n型或p型碳化硅(“SiC”)制作欧姆触点及半导体器件是最有效的。因此,为便于解释,以下对本发明及实例的描述将基于使用SiC的本发明实施例进行。然而,本领域专业人员易于认识到,本发明也可方便地使用其它的半导体材料,如硅、氮化镓、氮化铝镓和氮化铟镓。此处所使用的氮化铝镓和氮化铟镓包含其中铝和镓或铟和镓的摩尔百分数等于1的化合物。
在本发明的一个主要方面,本发明是包括半导体基片的半导体器件,该基片具有初始浓度的搀杂物以及初始导电类型。半导体基片可为n型或p型。本器件还包括至少一个位于半导体基片一个表面附近的外延层。
所述半导体器件的特征在于,半导体基片通过载流子浓度增加区域而确定,该区域从基片的与外延层相反的表面一直延伸到与外延层相邻的表面。金属层在基片的载流子浓度增加区域上淀积,从而在金属和基片的界面上形成欧姆触点。
现在参照图1,描述根据本发明的半导体器件10的示意图。器件10包括半导体基片12,为便于解释,基片12可认为是SiC。然而应该理解,诸如硅的其它半导体材料可用作本发明实践中的基片。SiC基片12可为p型或n型。
与SiC基片12相邻的是完成半导体器件所必需的辅助元件14。例如,参照图1,半导体器件可以是光发射二极管(“LED”),该LED具有p型和n型半导体材料的顺序外延层14a、14b和14c。在优选实施例中,本发明是立式半导体器件,例如为包括几个位于半导体基片附近的外延层的LED、金属-氧化物-半导体场效应晶体管(“MOSFET”)、激光器或肖特基整流器。在后面将论述到,根据本发明的器件尤其适用于包含具有低熔点或低分解温度的材料的立式半导体器件。此种材料包含氮化镓、氮化铟镓和氮化铝镓。
所述器件的特征还在于,在半导体基片的背面上具有载流子浓度增加区域16。换句话说,在SiC的情况下,在半导体基片的与外延层相反的表面附近的载流子浓度高于基片其它部分中的载流子浓度。
载流子浓度增加区域16的边界用虚线表示,使用虚线表明当基片12突然变化时此处载流子浓度没有明显的界限。载流子浓度随着到基片背面距离的增加而减小,直到载流子浓度等于初始载流子浓度。正如以下将讨论的,通过使用一般与p型和n型半导体材料相关的搀杂物的室温离子注入技术,形成载流子浓度增加区域。
如图1所示,所述器件的优选实施例包括搀杂有氮的n型SiC基片。应该理解,根据本发明,也可与各种p型SiC一同使用由其它n型搀杂物形成的n型SiC。SiC基片12优选从低浓度到高浓度地进行搀杂并且初始载流子浓度在大约1×1015-1×1019cm-3之间。术语“低浓度”和“高浓度”是不精确的,并且故意采用它是为了表明初始载流子浓度可以有很大的变化。尽管初始载流子浓度可有很大变化,但试验表明对基片进行从最初为中等浓度的到高浓度的搀杂能提供最佳的结果。通过在与外延层14相反的表面上离子注入经选择的搀杂物材料(如氮),产生其载流子浓度比基片12其它部分更高的区域16。优选地,在基片背面上产生载流子浓度增加区域16的离子注入在这样一种程度上进行,使得该区域16具有约1×1018-1×1020cm-3的载流子浓度并总是比初始载流子浓度高。
本领域专业人员可认识到,上述载流子浓度增加区域也可在基片生长过程中形成。然而,与所需搀杂物的可变送料速度相关的困难和其它一般与晶体生长方法相关的困难使得此种方法不切实际。
用于形成载流子浓度增加区域16的优选n型搀杂物是氮、砷和磷。用于形成载流子浓度增加区域16的优选p型搀杂物是铝、硼和镓。
尽管申请者不希望受具体理论的约束,但证据表明载流子浓度增加区域16允许产生具有欧姆特性的金属触点。在优选实施例中,在SiC基片的载流子浓度增加区域16表面上淀积具有适用于整个半导体器件的熔点、蒸汽压力及物理和化学性质的、经选择的触点金属18,从而在金属和基片之间形成界面20。优选的金属包括镍、钯、铂、铝和钛,其中最优选镍。然后包括金属和基片的器件在一定温度下进行退火,该温度远低于避免对器件尤其是任何外延层造成损害时的温度但高于在金属和基片的界面上足以形成欧姆触点时的温度。
而且,尽管申请者不希望受任何具体理论的约束,但似乎产生载流子浓度增加区域以用作触点金属的受体(receptor)是有用的。因而,在另一实施例中,本发明包括形成用于上述半导体器件中的欧姆触点的方法。
在更宽的意义上,本发明是一种形成用于半导体器件中的金属-半导体触点的方法。本方法包括向具有第一导电类型的半导体基片中注入经选择的搀杂物材料,其中被注入的搀杂物提供与基片相同的导电类型。为便于论述,假定半导体基片是SiC基片并且搀杂物材料淀积到SiC基片的表面中。然而,对于本领域专业人员,容易认识到本发明可方便地应用其它半导体材料。在注入经选择的搀杂物材料之后进行退火步骤。在此退火步骤中,经过注入的SiC基片在一定温度下退火足够长的时间,激活被注入的搀杂物原子以有效地增加SiC基片中被注入的搀杂物原子的载流子浓度。触点金属然后在SiC基片的注入表面上淀积。接着对淀积的触点金属和SiC基片的注入表面进行退火。此第二退火温度低于任何在基片上形成的外延层经历显著降质时的温度并高于在经过注入的SiC基片和淀积金属之间足以形成欧姆触点时的温度。
在优选实施例中,半导体基片可包括具有低浓度、中等浓度或高浓度的初始搀杂物的n型或p型基片。例如,在n型SiC基片的情况下,SiC基片可具有从约1×1015cm-3(低浓度搀杂)到1×1019cm-3(高浓度搀杂)之间的初始搀杂物浓度。术语“低浓度”、“中等浓度”或“高浓度”是不精确的,并且用于表示在基片材料中的初始搀杂物浓度是可变化的。试验表明经过中等浓度到高浓度的搀杂的基片可达到本发明的最佳效果。
然后,半导体材料被注入经选择的搀杂物材料中,并被退火。优选地,搀杂物注入在室温下进行而且后续的退火在800℃-1300℃之间的温度下进行。通常与基片导电类型相关的搀杂物可用作在注入步骤中使用的搀杂物。例如,当最初搀杂有氮的n型SiC用作基片时,氮可用作注入的搀杂物。同样,当最初搀杂有铝的p型SiC用作基片时,铝可用作注入的搀杂物。其它可能的n型搀杂物是砷和磷。而硼和镓可用作替代的p型搀杂物。
对于本领域专业人员,容易认识到搀杂物材料的注入可在高温下完成。事实上,在SiC情况下,为了减小对SiC晶格结构造成的损害,高温注入一般是优选的。然而在SiC情况下,高温离子注入限制本发明的工业应用。在注入过程中能加热SiC基片的离子注入设备是非常规的、昂贵的且用于研究开发目的,而不能进行低成本的、大批量的应用。再者,当SiC基片加热到高温时,它们加热和冷却的速度应必须以不产生碎片为准,从而减慢生产工艺。
因此,室温注入是在本发明中使用的优选注入方法。已经发现,在搀杂物的室温离子注入之后,在能达到1300℃并能容纳100多个基片晶片的简单通风炉中进行的退火步骤可获得满意的结果并大大增加产量。
优选进行搀杂物的室温注入,以便在半导体基片的注入表面附近产生载流子浓度增加区域。图2为根据本发明的注入工艺的示意图。在此实例中,具有约1×1018cm-3初始搀杂物浓度的n型SiC基片22,以1×1013cm-2或更大的剂量在10-60keV能量下用原子氮或双原子氮24进行注入。在某些情况下,多于一种的注入能量可用于产生变化更缓的载流子浓度分布。注入工艺在SiC基片的注入表面附近产生深度约1000埃的区域26,区域26具有约1×1019-1×1020cm-3的全部化学搀杂物浓度并且注入的搀杂物浓度随着到注入表面距离的增加而减小。载流子浓度增加区域26外侧的搀杂物浓度基本保持与初始搀杂物浓度相同。载流子浓度增加区域26的边界用虚线表示,表明在区域26和基片其它部分之间的载流子浓度变化是缓慢而不明显的。本领域专业人员知道,可以方便地改变注入能量或剂量以达到所需的浓度和深度。
如上所述,必需对经过注入的基片进行退火。要求退火是因为一些被注入的搀杂物离子在刚完成注入时不是“活性”的。术语“活性”用于描述被注入的离子对注入基片的总载流子浓度产生影响的有效性。
在注入过程中,SiC基片的晶格一般会受到搀杂物离子的冲击。这些离子撞坏它们所在处的晶格。此种冲击不会使搀杂物离子完好地***到现有晶格中。许多搀杂物离子的初始定位防止该离子成为晶格中的“活性”成分,该成分本身亦被冲击而损坏。对经过注入的SiC基片进行退火(即加热)可提供一种机制,通过该机制,被注入的离子和基片的晶格以更有序的方式重新排列并恢复在搀杂物注入过程中发生的损坏。
注入工艺如下所述,为便于解释仅使用整数。如果100个氮离子注入到具有初始浓度为x个氮原子的n型SiC基片中,刚完成注入时基片就仅具有与含有“x+10”个氮离子的基片相关的特性。然而,如果接着对基片退火并允许被注入的离子在晶格中定位,基片具有与包括“x+90”个氮离子的基片相关的特性。
试验表明,在大约1000℃-1300℃的温度之间对经过室温注入的SiC基片退火约2小时或更短的时间会得到满意的结果。为实现对注入的剂量更完全的激活,可容易地调整退火温度和时间。
包括上述经过注入的基片的半导体器件具有至少一个外延层。可使用任何本领域专业人员已知的方法生长外延层。在本发明的一个优选实施例中,在对基片进行搀杂物注入之前淀积外延层。然而,所需外延层或后续制作的器件可由不能承受对经过注入的基片高温退火的材料(如氮化镓或氧化硅)制成,或者所需外延层或后续制作的器件可包括此种材料。在此情形中,外延层可在搀杂物注入之后形成。
在半导体基片被注入且建立经充分退火的搀杂物浓度增加区域以及在基片上形成任何外延层之后,经选择的用于形成欧姆触点的金属作用到基片的载流子浓度增加区域表面。该金属可以是一般用于形成电触点的任何金属,这些金属具有适当的高熔点和蒸汽压力并且不与基片材料发生不利的相互作用。优选的金属包括镍、钯、铂、钛和铝,其中最优选镍。
优选地,触点金属淀积在基片表面上,形成300埃左右厚的层。在淀积后进行第二次退火。然而,该退火不是高温和长时间的退火。该退火的温度优选小于大约1000℃并最优选小于大约800℃,该退火时间优选不长于20分钟并最优选不长于5分钟。这些温度和时间周期是足够低的以避免损害基片上的任何外延层。对半导体基片上的触点金属进行的退火在金属和基片的界面上产生欧姆触点。
在本发明更具体的实施例中,通过使用n型SiC基片以50keV能量和3×1014cm-2剂量的原子氮进行第一次注入随后以25keV和5×1014cm-2进行第二次注入,而产生根据本发明的金属半导体。在注入之后,在炉内在氩气气氛中在1300℃温度下进行激活退火60-90分钟。接着,在注入表面上淀积触点金属镍,厚度为2500埃。然后在氩气中在800℃温度下进行触点退火2分钟。所得到的欧姆触点具有满意的欧姆性能。
本领域专业人员应认识到,也可以在外延生长时在原位置进行触点退火。
本发明为以下器件提供实质性的好处,这些器件为:诸如光检测器、光发射二极管(LED)、激光器的立式器件;诸如金属-氧化物-半导体场效应晶体管(MOSFET)、绝缘门双极晶体管(IGBT)、pn结和Schottky整流器的电源器件;以及诸如SIT(静电感应晶体管)的微波器件。在检测器、LED和激光器的情况下,外延生长的氮化镓和氮化铟镓层不在会严重损害这些层的温度下进行退火。在氮化铟镓的情况下,随着合金中铟成分的增加,在高温下停留的时间变得更危险。降低背面触点退火温度,也降低在SiC基片上生长的变形异质外延膜中铟或镓成分热解或分解的潜在可能性。
在电源器件的情况下,在基片上生长SiC的同质外延膜并且热生长或热再生长(再氧化或退火),氧化物在器件性能中起到整体的作用并且更低的退火温度是有好处的。背面金属触点不能经历氧化环境,该氧化环境用来生长SiC-二氧化硅界面,因此,背面欧姆触点必须在二氧化硅生长(再氧化或再生长)之后进行淀积和退火。不幸地是,在现有技术中,后续用来形成基片背面的触点的、不低于850℃的退火温度(更典型地为900-1050℃)会因热膨胀速度不匹配而在SiC-二氧化硅界面产生缺陷。这对于MOSFET和IGBT而言尤其不利。
SiC技术处于其初期阶段,许多提议的器件和材料结构还需要检验或开发。对于此工艺的进一步开发可导致退火温度甚至更低,最终导致在金属和半导体之间淀积形成欧姆触点(即不需退火)。
为使读者能不用过多的试验就可实现本发明,已结合一定的优选实施例详细描述本发明。然而,本领域技术人员容易认识到,只要不脱离本发明的范围和精神,可在一定程度上对本发明的许多成分和参数作出改变或变更。而且,题目或标题等用于加深读者对本文的理解,不应视为对本发明范围的限制。只有以下权利要求与其合理的延伸和等效物才确定本发明的知识产权。

Claims (20)

1.一种形成用于半导体器件中碳化硅的欧姆触点的方法,其中包括以下步骤:
在室温下把经选择的搀杂物材料注入到碳化硅基片的表面中,其中以多于一种的10~60keV的注入能量来注入掺杂物,由此在基片内形成在被注入的表面上搀杂物材料浓度增加的区域,随着远离该被注入的表面,该基片内的载流子浓度减小;
在800~1300℃的温度下对注入后的碳化硅基片进行第一退火;
在碳化硅基片的与注入表面相反的表面上生长至少一个由非碳化硅的化合物构成的外延层,该化合物的分解温度低于碳化硅基片的分解温度;
在碳化硅基片的注入表面上淀积一层金属;以及随后
对所述金属和注入后的碳化硅基片在一定温度下进行第二退火,该第二退火的温度低于形成外延层的化合物发生显著降质时的温度但高到足以在经过注入的碳化硅和淀积金属之间形成欧姆触点。
2.如权利要求1所述的方法,其中,在碳化硅基片上生长外延层的步骤在对经过注入的碳化硅基片进行第一退火之前实施。
3.如权利要求1所述的方法,其中,在碳化硅基片上生长外延层的步骤在对经过注入的碳化硅基片进行第一退火之后实施。
4.如权利要求1所述的方法,其中,经选择的搀杂物材料从包括氮、铝、砷、磷、硼和镓的组中选择。
5.如权利要求1所述的方法,其中,对经过注入的碳化硅基片进行的第一退火在1000-1300℃之间的温度下实施。
6.如权利要求1所述的方法,其中,所述金属从包括镍、钯、铂、铝和钛的组中选择。
7.如权利要求1所述的方法,其中,对碳化硅基片和所述淀积金属进行的退火步骤在低于800℃的温度下实施且不长于20分钟。
8.一种半导体器件,具有至少一个在其上形成欧姆触点的导电的区域,该半导体器件包括:
具有第一表面、第二表面、第一导电类型以及初始载流子浓度的半导体基片;
在所述半导体基片的所述第一表面上的至少一个外延层,构成该外延层的材料的分解温度低于半导体基片的分解温度;
在所述半导体基片中的载流子浓度比所述初始载流子浓度大的区域,该区域从所述第二表面在所述半导体基片内延伸,延伸的深度小于该所述半导体基片的总厚度;以及
在所述半导体基片的所述第二表面上淀积的一层金属,其在所述金属和所述载流子浓度更大的区域的界面形成欧姆触点。
9.如权利要求8所述的半导体器件,其中,所述半导体基片为碳化硅。
10.如权利要求8所述的半导体器件,其中,注入的搀杂物材料从包括氮、铝、砷、磷、硼和镓的组中选择。
11.如权利要求9所述的半导体器件,其中,碳化硅中的所述初始载流子浓度在1×1015-1×1019cm-3之间。
12.如权利要求11所述的半导体器件,其中,载流子浓度更大的区域中的载流子浓度在1×1018-1×1020cm-3之间,且大于碳化硅中的所述初始载流子浓度。
13.如权利要求8所述的半导体器件,其中,所述外延层从包括氮化镓、氮化铝镓、氮化铟镓、以及硅氧化物、镓氧化物、铝氧化物和铟氧化物的组中选择。
14.如权利要求9所述的半导体器件,其中,所述金属从包括镍、钯、铂、铝和钛的组中选择。
15.如权利要求9所述的半导体器件,其中:
所述具有更大载流子浓度的区域的特征在于注入的搀杂物浓度从所述第二表面到所述第一表面逐渐减小;以及
所述形成欧姆触点的金属层是所述碳化硅的半导体基片的所述第二表面上的镍层。
16.如权利要求15所述的半导体器件,其中,注入的搀杂物材料从包括氮、铝、砷、磷、硼和镓的组中选择。
17.如权利要求15所述的半导体器件,其中,碳化硅中的所述初始载流子浓度在1×1015-1×1019cm-3之间。
18.如权利要求17所述的半导体器件,其中,载流子浓度更大的区域中的载流子浓度在1×1018-1×1020cm-3之间,且大于碳化硅中的初始载流子浓度。
19.如权利要求15所述的半导体器件,其中,所述外延层从包括氮化镓、氮化铝镓、氮化铟镓、以及硅氧化物、镓氧化物、铝氧化物和铟氧化物的组中选择。
20.如权利要求15所述的半导体器件,其中,半导体器件是立式器件。
CNB998120219A 1998-09-16 1999-09-16 立式器件中背面欧姆触点的低温形成方法 Expired - Lifetime CN1178277C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10054698P 1998-09-16 1998-09-16
US60/100,546 1998-09-16

Publications (2)

Publication Number Publication Date
CN1323446A CN1323446A (zh) 2001-11-21
CN1178277C true CN1178277C (zh) 2004-12-01

Family

ID=22280313

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998120219A Expired - Lifetime CN1178277C (zh) 1998-09-16 1999-09-16 立式器件中背面欧姆触点的低温形成方法

Country Status (9)

Country Link
EP (1) EP1125320A1 (zh)
JP (2) JP4785249B2 (zh)
KR (1) KR100694681B1 (zh)
CN (1) CN1178277C (zh)
AU (1) AU6391699A (zh)
CA (1) CA2343416A1 (zh)
MX (1) MXPA01002751A (zh)
TW (1) TW449932B (zh)
WO (1) WO2000016382A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884644B1 (en) 1998-09-16 2005-04-26 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US6803243B2 (en) 2001-03-15 2004-10-12 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US6909119B2 (en) 2001-03-15 2005-06-21 Cree, Inc. Low temperature formation of backside ohmic contacts for vertical devices
US7138291B2 (en) 2003-01-30 2006-11-21 Cree, Inc. Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
US7262434B2 (en) 2002-03-28 2007-08-28 Rohm Co., Ltd. Semiconductor device with a silicon carbide substrate and ohmic metal layer
US7473929B2 (en) 2003-07-02 2009-01-06 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2006086361A (ja) * 2004-09-16 2006-03-30 Stanley Electric Co Ltd 半導体発光素子及びその製造方法
WO2007032214A1 (ja) * 2005-09-14 2007-03-22 The Kansai Electric Power Co., Inc. 炭化珪素半導体素子の製造方法
US20100237385A1 (en) * 2008-06-26 2010-09-23 Sanken Electric Co., Ltd. Semiconductor device and method of fabricating the same
KR101220407B1 (ko) 2010-12-14 2013-01-21 (재)한국나노기술원 반도체 발광 소자
JP5811829B2 (ja) 2011-12-22 2015-11-11 住友電気工業株式会社 半導体装置の製造方法
JP5742712B2 (ja) 2011-12-29 2015-07-01 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP6253133B2 (ja) * 2012-04-27 2017-12-27 富士電機株式会社 炭化珪素半導体装置の製造方法
EP2905806B1 (en) 2013-10-08 2016-08-24 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing a silicon carbide semiconductor device.
JP7135443B2 (ja) * 2018-05-29 2022-09-13 富士電機株式会社 炭化ケイ素半導体装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323022A (en) * 1992-09-10 1994-06-21 North Carolina State University Platinum ohmic contact to p-type silicon carbide
JP3303530B2 (ja) * 1994-06-23 2002-07-22 富士電機株式会社 炭化けい素半導体素子の製造方法
JPH08139053A (ja) * 1994-11-04 1996-05-31 New Japan Radio Co Ltd SiCへの電極の形成方法
JP3333896B2 (ja) * 1995-09-13 2002-10-15 富士電機株式会社 炭化珪素半導体装置の製造方法
WO1998037584A1 (en) * 1997-02-20 1998-08-27 The Board Of Trustees Of The University Of Illinois Solid state power-control device using group iii nitrides

Also Published As

Publication number Publication date
CN1323446A (zh) 2001-11-21
TW449932B (en) 2001-08-11
KR20010079759A (ko) 2001-08-22
EP1125320A1 (en) 2001-08-22
WO2000016382A1 (en) 2000-03-23
CA2343416A1 (en) 2000-03-23
KR100694681B1 (ko) 2007-03-13
AU6391699A (en) 2000-04-03
JP2011151428A (ja) 2011-08-04
MXPA01002751A (es) 2002-04-08
JP2002525849A (ja) 2002-08-13
JP4785249B2 (ja) 2011-10-05

Similar Documents

Publication Publication Date Title
CN1579008B (zh) 用于垂直器件的背部欧姆触点的低温形成方法
CN1178277C (zh) 立式器件中背面欧姆触点的低温形成方法
CN1230913C (zh) 制造肖特基半导体元件的方法
CN105874607B (zh) 半导体装置以及半导体装置的制造方法
US5654208A (en) Method for producing a semiconductor device having a semiconductor layer of SiC comprising a masking step
JP5411422B2 (ja) バイポーラ型半導体装置、その製造方法およびツェナー電圧の制御方法
US6884644B1 (en) Low temperature formation of backside ohmic contacts for vertical devices
US10541306B2 (en) Using a carbon vacancy reduction material to increase average carrier lifetime in a silicon carbide semiconductor device
CN102903633A (zh) 用于制备阳极短路的场阑绝缘栅双极晶体管的方法
US6909119B2 (en) Low temperature formation of backside ohmic contacts for vertical devices
US4920062A (en) Manufacturing method for vertically conductive semiconductor devices
JP2024055914A (ja) 炭化珪素半導体装置の製造方法および炭化珪素エピタキシャル基板の製造方法
KR101875287B1 (ko) 반도체 디바이스를 형성하는 방법
JP4852786B2 (ja) Iii族窒化物半導体の製造方法及びiii族窒化物半導体素子
JP2015149346A (ja) 半導体装置の製造方法および半導体装置
JP4000927B2 (ja) 半導体装置およびその製造方法
CN106469646A (zh) 一种碳化硅器件用离子注入来形成高掺杂的制造方法
TWI281710B (en) Low temperature formation of backside ohmic contacts for vertical devices
CN113451399A (zh) 绝缘栅双极型晶体管及其制备方法
JPH08288502A (ja) 半導体素子の製造方法
JPH06334186A (ja) 半導体装置の製造方法
JPH08288501A (ja) 炭化珪素半導体のp−n接合形成方法および炭化珪素半導体素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20041201