CN117797317A - 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用 - Google Patents

一种肽微球-壳聚糖复合材料的制备方法及其产品和应用 Download PDF

Info

Publication number
CN117797317A
CN117797317A CN202410224322.8A CN202410224322A CN117797317A CN 117797317 A CN117797317 A CN 117797317A CN 202410224322 A CN202410224322 A CN 202410224322A CN 117797317 A CN117797317 A CN 117797317A
Authority
CN
China
Prior art keywords
microsphere
peptide
tvh
chitosan
peptide microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410224322.8A
Other languages
English (en)
Inventor
韩思理
王罗瑶
王京
张凌琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202410224322.8A priority Critical patent/CN117797317A/zh
Publication of CN117797317A publication Critical patent/CN117797317A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Dental Preparations (AREA)

Abstract

本发明涉及了修复牙髓损伤材料的制备领域,具体提供了一种肽微球‑壳聚糖复合材料的制备方法及其产品和应用,在制备过程中,首先利用TVH‑19多肽与PBS缓冲液混合,通过针对性调整原料浓度和组装条件,构建出自组装成的肽微球结构;然后以钙离子为交联剂,将羧甲基壳聚糖交联形成网状结构,然后将肽微球结构复合在网状结构上。在具有持续性抗菌能力,且能快速作用于牙髓深部发挥保髓效应,用于牙髓保存治疗时,在深龋窝洞中将肽微球‑壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,是一种新型多维度保髓材料,具有优秀的牙髓修复功能,效果明显,便于推广应用。

Description

一种肽微球-壳聚糖复合材料的制备方法及其产品和应用
技术领域
本发明涉及了修复牙髓损伤材料的制备领域,具体涉及了一种肽微球-壳聚糖复合材料的制备方法及其产品和应用。
背景技术
龋病导致的感染性牙髓组织损伤是成年人天然牙丧失的主要原因之一。牙髓,俗称牙神经,是牙齿的营养来源,也是牙齿生命的主要基础。在临床上,一旦发生龋源性、外伤性或机械性露髓,医生通常会建议患者进行根管治疗,即清理掉被污染的牙髓,清洗消毒后在牙髓腔内填充适合的牙科材料,达到消除炎症的目的。这种方法又被称为“杀神经”。
最近研究中,龋病的防控与诊疗作为天然牙保存的重要环节,其治疗理念已逐渐从对感染硬组织的完全甚至扩大清除,实现去除感染源、阻断龋病进展(彻底去腐)转变为对感染硬组织的有限清除(选择性去龋)。选择性去龋能够保留更多的牙体组织,但是深龋窝洞形成了硬组织脱矿、细菌感染和牙髓炎症存在的复杂微环境,使活髓保存面临挑战。
在深龋的临床治疗中,盖髓材料需满足多种条件包括有效抑菌,促进脱矿牙本质再矿化,诱导牙髓细胞形成第三期牙本质,以及促矿化向分化,并调节牙髓炎症状态,以促进牙髓的存活。
因此需要研发具备长效抗菌并维持牙髓生物功能,对天然牙软硬组织发挥高效、多面保护作用的新型材料。
发明内容
本发明的目的在于:针对现有技术修复牙髓损伤材料存在难以有效促进脱矿硬组织再矿化,缺乏持续性抗菌能力,且无法快速作用于牙髓深部发挥保髓效应的问题,本发明提供一种肽微球-壳聚糖复合材料的制备方法,该方法制备的肽微球-壳聚糖复合材料能够pH响应性抗菌、抗炎、缓释药物修复牙髓损伤,取得了意想不到的技术效果,便于推广应用。
为了实现上述目的,本发明采用的技术方案为:
一种肽微球-壳聚糖复合材料的制备方法,包括以下步骤:
步骤1、将TVH-19多肽水溶液加入PBS缓冲液中,混合均匀,然后静置1h以上,得到自组装肽微球溶液;
步骤2、将钙盐与羧甲基壳聚糖水溶液进行混合;
步骤3、将步骤1得到的自组装肽微球溶液与所述步骤2得到的混合溶液混合,然后在60℃以上进行搅拌,搅拌40min以上,得到肽微球-壳聚糖复合材料,
其中,所述TVH-19多肽水溶液的浓度为0.8~1 mg/mL,所述自组装肽微球溶液的浓度为390~410μg/mg,所述羧甲基壳聚糖水溶液的浓度为 0.8~1.2 mg/mL。
本发明提供一种肽微球-壳聚糖复合材料的制备方法,首先利用TVH-19多肽与PBS缓冲液混合,通过针对性调整原料浓度和组装条件,构建出自组织成的肽微球结构;然后以钙离子为交联剂,将羧甲基壳聚糖交联形成网状结构,然后将肽微球结构复合在网状结构上。具体的,所制备的肽微球-壳聚糖复合材料,羧甲基壳聚糖通过静电结合作用作为肽微球的载体,能够有效保护多肽活性,在深龋病理环境下,TVH-19作为一种阳离子抗菌肽能够从肽微球中持续解离,具有持续性抗菌能力,且解离后的TVH-19其能够穿过牙本质小管能快速作用于牙髓深部发挥保髓效应,用于牙髓保存治疗时,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,同时TVH-19肽微球作为一种聚电解质大分子能够有效促进脱矿硬组织再矿化,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,是一种新型多维度保髓材料,具有优秀的牙髓修复功能,效果明显,便于推广应用。
进一步的,所述步骤1中,所述步骤1中,TVH-19多肽水溶液的浓度为0.9~1mg/mL,自组装肽微球溶液的浓度为400~410μg/mg。
进一步的,所述步骤1中,所述PBS缓冲液的pH为7.2~7.4;所述PBS缓冲液与所述TVH-19多肽水溶液的体积比为22~28:1。
进一步的,所述步骤1中,静置1~3h。
进一步的,所述步骤2中,所述钙盐为氯化钙,氯化钙与羧甲基壳聚糖的质量比为1:2~2.5。
进一步的,所述步骤3中,自组装肽微球溶液与所述步骤2得到的混合溶液混合体积比为1:0.8~1.2,在60℃~80℃条件下,搅拌40min~120min。
本发明的又一目的是为了保护上述制备方法制备的产品。
一种上述的肽微球-壳聚糖复合材料的制备方法制备的肽微球-壳聚糖复合材料产品。
进一步的,所述复合材料包括由TVH-19多肽自组装形成的球形结构,所述球形结构间隔分布于羧甲基壳聚糖形成的网膜结构上。
进一步的,所述球形结构的粒径为1微米~2微米。
本发明的又一目的是为了保护上述肽微球-壳聚糖复合材料的应用。
如上述的肽微球-壳聚糖复合材料产品在制备修复牙髓损伤材料中的应用。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明提供一种肽微球-壳聚糖复合材料的制备方法,首先利用TVH-19多肽与PBS缓冲液混合,通过针对性调整原料浓度和组装条件,构建出自组织成的肽微球结构;然后以钙离子为交联剂,将羧甲基壳聚糖交联形成网状结构,然后将肽微球结构复合在网状结构上。所制备的肽微球-壳聚糖复合材料,羧甲基壳聚糖通过静电结合作用作为肽微球的载体,能够有效保护多肽活性,在深龋病理环境下,TVH-19作为一种阳离子抗菌肽能够从肽微球中持续解离,具有持续性抗菌能力,且解离后的TVH-19其能够穿过牙本质小管能快速作用于牙髓深部发挥保髓效应,用于牙髓保存治疗时,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,同时TVH-19肽微球作为一种聚电解质大分子能够有效促进脱矿硬组织再矿化,用于牙髓保存治疗时,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,是一种新型多维度保髓材料,具有优秀的牙髓修复功能,效果明显,便于推广应用。
附图说明
图1为实施例1中TVH-19自组装肽微球-壳聚糖复合体的构建筛选与表征图;其中图1中的A为材料合成及pH响应释放的模式图;图1中的B为筛选TVH-19和CMCS复合的比例杀菌动力学实验结果图;图1中的C为扫描电镜结果图;图1中的D为傅里叶红外光谱结果图。
图2为实施例1中TVH-19自组装肽微球-壳聚糖复合体对变异链球菌的pH响应抗菌作用表征图;图2中的A是Spot Assay检测不同pH值下的T@C复合体的抗菌效果图,图2中的B是结晶紫评估对生物膜形成的影响图;图2中的C是MTT检测生物膜的代谢活力图。
图3 为实施例1中TVH-19自组装肽微球-壳聚糖复合体对人牙髓细胞的作用表征图;其中,图3中的A为 CCK8细胞活性试剂盒检测结果图;图3中的B为茜素红染色定量结果显示图。
图4为实施例1中T@C 复合体大鼠深龋间接盖髓模型构建及动物实验处理表征图。
图 5为实施例1中TVH-19自组装肽微球-壳聚糖复合体的体内生物安全性评估表征图;图5中的A是血常规结果图;图5中的B是肝肾功结果图;图5中的C是内脏 H&E 染色图片。
图6为实施例1中TVH-19自组装肽微球-壳聚糖复合体体内促牙髓牙本质复合体修复结果表征图;图6中的A是Micro-CT结果图,图6中的B是H&E染色结果图,图6中的C是Masson染色结果图。
图7为对比例中不同浓度TVH-19在不同磷酸盐的浓度的PBS中的自组装现象图。
图8为对比例中TVH-19组装肽微球溶液进行扫描电镜观察图。
图9为对比例中利用丁达尔效应观察PH对TVH-19在PBS中自组织的影响图。
图10为对比例中壳聚糖对hDPCs毒性检测图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
1. TVH-19自组装肽微球-壳聚糖复合体的构建与表征
基于TVH-19多肽的自组装及入胞作用机制,我们构建了TVH-19自组装肽微球-壳聚糖复合体,以提高应用浓度的同时更好发挥其作用。
制备肽微球-壳聚糖复合材料
步骤1、将浓度为0.9 mg/mL的TVH-19多肽水溶液加入pH为7.3的PBS缓冲液中,混合均匀,然后静置2 h,得到浓度为400 μg/mg的自组装肽微球溶液;所述PBS缓冲液与所述TVH-19多肽水溶液的体积比为25:1;
步骤2、将氯化钙与浓度为1.0 mg/mL的羧甲基壳聚糖水溶液进行混合;氯化钙与羧甲基壳聚糖的质量比为 1:2.22;
步骤3、将步骤1得到的自组装肽微球溶液与所述步骤2得到的混合溶液混合,混合体积比为1:1,然后在70 ℃条件下,搅拌60 min,得到肽微球-壳聚糖复合材料;
羧甲基壳聚糖(CMCS),形成TVH-19自组装肽微球-壳聚糖复合体(T@C)。
对制备的复合材料进行性能表征,具体如图1所示。
根据TVH-19的pH依赖组装性,其在pH降低时,TVH-19自组装肽微球组装程度降低,释放更多单体发挥其作用(图1 中的A)。
我们通过对变异链球菌的杀菌动力学实验对TVH-19和CMCS复合的比例进行了筛选,TVH-19浓度分别为400μg/mL、200μg/mL、100μg/mL;CMCS浓度分别为1mg/mL、0.5mg/mL、0.25 mg/mL,形成三组复合体(T400C1、T200C0.5、T100C0.25),结果显示仅T400C1组的抗菌作用随着pH改变具有相应的响应性,随着pH的降低,T400C1组的抗菌作用逐渐增强。从而确定TVH-19和CMCS复合的终浓度为TVH-19 400μg/mL、CMCS 1mg/mL(图 1 中的B)。
对复合体进行扫描电镜观察(SEM),结果显示TVH-19在PBS溶液(pH 7.2)中发生组装聚集为肽微球, CMCS交联后形成网膜状,T@C组可见CMCS包裹TVH-19肽微球后,形成类似膜状结构,其中颗粒状结构直径变小(图 1中的 C)。通过傅里叶红外光谱研究了TVH-19、CMCS 之间的分子相互作用,结果表明,如图1中的D,TVH-19和CMCS通过TVH-19的氨基和CMCS的羧基之间的静电相互作用形成复合体。
2. TVH-19自组装肽微球-壳聚糖复合体对变异链球菌的pH响应抗菌作用
TVH-19可以在酸性龋坏微环境中分解以实现抗菌功能,并在pH升高时重新组装以防止对组织生物活性的可能风险,我们研究了在TVH-19自组装肽微球-壳聚糖复合体的pH响应抗菌效果,测试结果如图2所示。
通过Spot Assay检测不同pH值下的T@C复合体的抗菌效果,结果显示在pH5.5条件下T@C复合体和TVH-19处理后对观察到的变异链球菌菌落少于在 pH 7.2 下处理的细菌菌落(图 2 中的A)。结晶紫评估对生物膜形成的影响:pH5.5时,复合体组和TVH-19组可显著抑制生物膜的形成;pH7.4时,复合体组一定程度上可以抑制变链生物膜的形成,TVH-19组仍可显著抑制(图2中的B)。MTT检测生物膜的代谢活力:复合体组和TVH-19组在中性环境和酸性环在两个pH环境下均显著抑制生物膜的代谢活力(图2中的C)。该结果证明了TVH-19自组装肽微球-壳聚糖复合体的酸激活抗菌和抗菌膜效果。总结T@C复合体酸激活抗菌特性的机制: 酸性pH促进T@C中肽微球释放并分解,TVH-19单体浓度增加,而增加的阳离子性可通过静电吸引增强其与细菌细胞膜的附着,同时附着的TVH-19可对细菌膜的干扰更大有效并导致膜渗透增加, 随后表现出对响应酸化微环境的细菌和生物膜杀灭作用。
3. 自组装肽微球-壳聚糖复合体体外促hDPCs矿化效果评价
我们检测了含自组装肽微球、羧甲基壳聚糖、T@C复合体的浸提液细胞培养基分别对人牙髓细胞的细胞毒性,在培养1天、3天、5天使用CCK8细胞活性试剂盒后,测量在450nm出的吸光度值;在含有10 mmoL/Lβ-甘油磷酸钠、50μg/mL抗坏血酸和50nmoL/L***的正常细胞培养液中进行诱导分化实验。分为4组:1)培养基作空白对照组,2)T@C复合材料组,3)TVH-19肽微球组,4)羧甲基壳聚糖组。12孔板中的人牙髓细胞以5×104个/孔的密度铺板,细胞贴壁后,用不同组的浸提液替换细胞培养物。形成的矿化结节在4%多聚甲醛中固定15分钟后,用1%茜素染色15分钟,然后用双蒸水洗去多余的染料。用倒置光学显微镜观察橘红色的钙结节。对于钙化结节的定量分析,使用10%十六烷基氯化吡啶溶解茜素红。每孔加入1毫升10%CPC,摇动30min,测量560 nm处测量吸光度。
具体如图3所示,其中CCK8细胞活性试剂盒检测结果显示TVH-19自组装肽微球-壳聚糖复合体对牙髓细胞无明显细胞毒性(图3中的A);茜素红染色定量结果显示复合体组21天可见明显矿化结节,定量分析结果显示T@C复合体组高于其他各组,表明T@C复合体在体外可促人牙髓细胞矿化(图3中的B)。
4. 自组装肽微球-壳聚糖复合体动物模型及生物安全性检测
基于大鼠磨牙既适合于评估盖髓剂的局部毒性,且适用于评价间接盖髓后的组织再生,本实验成功构建了 SD 大鼠间接盖髓模型,结果证实 T@C 复合体以间接盖髓形式应用对大鼠体重、血常规、血液生化及肝肾功能无明显损害,具有良好的生物安全性。
SD大鼠间接盖髓模型构建:8周龄SD大鼠取仰卧位,暴露上颌第一磨牙,术区消毒;便携式快机+微创球钻磨至近髓透红,生理盐水小棉球清洁窝洞;小棉球干燥,置入实验组/对照组材料,垂直加压器充填密实;玻璃离子封洞并涂布凡士林。于术后1月取样(图4)。
5. TVH-19自组装肽微球-壳聚糖复合体的体内生物安全性评估
在大鼠实验处理4周后取样时,采取大鼠的静脉血送血常规、血液生化检查(肝肾功),同时取心、肝、脾、肺、肾放入4%多聚甲醛固定1天后,做组织石蜡切片及HE染色观察。
具体如图5所示,其中,血常规结果显示各实验组与对照组之间在血常规各指标上均无统计学差异(图5中的A);肝肾功结果显示各实验组与对照组在碱性磷酸酶 (ALP)、谷丙转氨酶(ALT)、谷草转氨酶(AST) 、肌酐 (CREA)、 血尿素(UREA)、 尿酸(UA)均处于正常水平,各组之间无统计学差异(图5中的B)。内脏 H&E 染色图片显示与未行实验处理的大鼠的心肝脾肺肾组织结构相比,实验处理后的各组,心肝脾肺肾组织结构均正常,与空白对照组无明显差异,证明各组材料处理对大鼠无明显内脏毒性(图5中的C)。
6. 自组装肽微球-壳聚糖复合体实验动物体内促牙髓牙本质复合体修复效果检测
为了检测自组装肽微球-壳聚糖复合体实验动物体内促牙髓牙本质复合体修复效果,我们将大鼠上颌骨取出后,用4%多聚甲醛固定后,解剖上颌骨,进行Micro-CT扫描以观察上和第一磨牙间接盖髓点下方的修复性牙本质形成情况。然后,用12%乙二胺四乙酸二钠脱钙8周,脱水,石蜡包埋,连续切成5μm切片。然后取出切片,复水,进行HE染色和Masson染色以观察牙髓腔内炎症细胞浸润情况及修复性牙本质形成情况。
具体测试结果如图6所示,Micro-CT结果(图6中的A)显示除明胶空白对照组外,其他各组充填材料下方可观察到新生硬组织高密度影,其中 MTA 和 TC的效果最为明显。MTA 组:牙本质层增厚;TVH-19组:髓腔中出现了弥漫性的矿化结节;C 组:少部分的新生硬组织;TC复合体组:再生的致密牙本质样层,形成钙化桥样结构。H&E染色结果(图6中的B)显示明胶空白对照组为无定形染色,见大量炎症细胞及牙髓坏死组织。TVH-19 组可见一定厚度的第三期牙本质层。壳聚糖C组,在原发性牙本质层上诱导了部分的第三期牙本质形成,但毛细血管扩张充血和炎症细胞浸润明显。MTA 组和TC复合体组见增厚的第三期牙本质层,髓腔内可见散在的矿化结节,有少量炎症细胞浸润,伴有轻微毛细血管扩张充血。Masson染色结果(图6中的C)显示未处理对照组和明胶空白对照组:髓腔内未见蓝色的第三期牙本质;TVH-19 组、壳聚糖C组可见一定厚度的第三期牙本质层;MTA 组和TC复合体组见增厚的第三期牙本质层,髓腔内可见散在的矿化结节。
实施例2
制备肽微球-壳聚糖复合材料
步骤1、将浓度为0.8 mg/mL的TVH-19多肽水溶液加入pH为7.2的PBS缓冲液中,混合均匀,然后静置1h,得到浓度为390 μg/mg的自组装肽微球溶液;所述PBS缓冲液与所述TVH-19多肽水溶液的体积比为22:1;
步骤2、将氯化钙与浓度为 0.8 mg/mL的羧甲基壳聚糖水溶液进行混合;氯化钙与羧甲基壳聚糖的质量比为 1:2;
步骤3、将步骤1得到的自组装肽微球溶液与所述步骤2得到的混合溶液混合,混合体积比为1:0.8,然后在60℃条件下,搅拌40min,得到肽微球-壳聚糖复合材料。
实施例3
制备肽微球-壳聚糖复合材料
步骤1、将浓度为1 mg/mL的TVH-19多肽水溶液加入pH为7.4的PBS缓冲液中,混合均匀,然后静置3h,得到浓度为410 μg/mg的自组装肽微球溶液;所述PBS缓冲液与所述TVH-19多肽水溶液的体积比为28:1;
步骤2、将氯化钙与浓度为 1.2 mg/mL的羧甲基壳聚糖水溶液进行混合;氯化钙与羧甲基壳聚糖的质量比为 1:2.5;
步骤3、将步骤1得到的自组装肽微球溶液与所述步骤2得到的混合溶液混合,混合体积比为1:1.2,然后在80 ℃条件下,搅拌120 min,得到肽微球-壳聚糖复合材料;
将实施例2和实施例3制备的复合材料进行实施例1中1-6相同的表征,研究证明实施例2和实施例3制备的复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,具有优秀的牙髓修复功能,效果明显。
对比例
为了成功构建肽微球,我们检测了多肽在不同条件下的组装形态,筛选了最佳浓度及组装条件。
(1)不同浓度TVH-19在不同磷酸盐的浓度的PBS中的自组装
具体如图7所示,利用丁达尔效应观察TVH-19在PBS中组装,发现当磷酸盐浓度≥1mM时,TVH-19≥50μg/mL即可发生自组装,且相同磷酸盐浓度下,TVH-19浓度越高形成自组装体约多。
具体如图8所示,TVH-19在PBS中自组装SEM中的观察,对TVH-19组装肽微球溶液进行扫描电镜观察,可见微球样结构,综上我们将复合体磷酸盐浓度设为2mM。
(2)不同pH对TVH-19在PBS中自组装的影响
利用丁达尔效应观察PH对TVH-19在PBS中自组织的影响,具体如图9所示。
研究发现,当pH小于7时,TVH-19 100ug/ml在PBS中自组装不明显,当pH大于7时,TVH-19 100ug/ml在PBS明显自组装,酸性环境会抑制TVH-19自组装形成微球。结合深龋病理环境,我们将后续实验pH设定为5.5和7.4。
(3)通过CCK-8实验检测浓度为2000μg/mL、1000μg/mL、500μg/mL、250μg/mL、125μg/mL、62.5μg/mL的羧甲基壳聚糖(CMCS)、壳聚糖(CS)、三甲基壳聚糖(TMC)分别对人牙髓细胞(hDPCs)细胞毒性,具体如图10所示,结果显示羧甲基壳聚糖在1000μg/mL对hDPCs无明显细胞毒性。最终选择了细胞毒性最低的羧甲基壳聚糖,同时实验用羧甲基壳聚糖等电点为3.5,在pH为5.5和7.4时带负电,遂采用钙离子为交联剂。
本申请制备的肽微球-壳聚糖复合材料,羧甲基壳聚糖通过静电结合作用作为肽微球的载体,能够有效保护多肽活性,在深龋病理环境下,TVH-19作为一种阳离子抗菌肽能够从肽微球中持续解离,具有持续性抗菌能力,且解离后的TVH-19其能够穿过牙本质小管能快速作用于牙髓深部发挥保髓效应,用于牙髓保存治疗时,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,同时TVH-19肽微球作为一种聚电解质大分子能够有效促进脱矿硬组织再矿化,用于牙髓保存治疗时,在深龋窝洞中将肽微球-壳聚糖复合材料覆盖在接近牙髓的牙本质表面,能够有效保存牙髓活力,是一种新型多维度保髓材料,具有优秀的牙髓修复功能,效果明显,便于推广应用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种肽微球-壳聚糖复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、将TVH-19多肽水溶液加入PBS缓冲液中,混合均匀,然后静置1h以上,得到自组装肽微球溶液;
步骤2、将钙盐与羧甲基壳聚糖水溶液进行混合;
步骤3、将步骤1得到的自组装肽微球溶液与所述步骤2得到的混合溶液混合,然后在60℃以上进行搅拌,搅拌40min以上,得到肽微球-壳聚糖复合材料;
其中,所述TVH-19多肽水溶液的浓度为0.8~1 mg/mL,所述自组装肽微球溶液的浓度为390~410μg/mg,所述羧甲基壳聚糖水溶液的浓度为 0.8~1.2 mg/mL。
2.根据权利要求1所述的肽微球-壳聚糖复合材料的制备方法,其特征在于,所述步骤1中,TVH-19多肽水溶液的浓度为0.9~1mg/mL,自组装肽微球溶液的浓度为400~410μg/mg。
3.根据权利要求2所述的肽微球-壳聚糖复合材料的制备方法,其特征在于,所述步骤1中,PBS缓冲液的pH为7.2~7.4;PBS缓冲液与所述TVH-19多肽水溶液的体积比为22~28:1。
4.根据权利要求3所述的肽微球-壳聚糖复合材料的制备方法,其特征在于,所述步骤1中,静置1~3h。
5.根据权利要求1所述的肽微球-壳聚糖复合材料的制备方法,其特征在于,所述步骤2中,所述钙盐为氯化钙,氯化钙与羧甲基壳聚糖的质量比为 1:2~2.5。
6.根据权利要求1所述的肽微球-壳聚糖复合材料的制备方法,其特征在于,所述步骤3中,自组装肽微球溶液与所述步骤2得到的混合溶液混合体积比为1:0.8~1.2,在60℃~80℃条件下,搅拌40min~120min。
7.一种如权利要求1-6任意一项所述的肽微球-壳聚糖复合材料的制备方法制备的肽微球-壳聚糖复合材料产品。
8.根据权利要求7所述的肽微球-壳聚糖复合材料产品,其特征在于,所述复合材料包括由TVH-19多肽自组装形成的球形结构,所述球形结构间隔分布于羧甲基壳聚糖形成的网膜结构上。
9.根据权利要求8所述的肽微球-壳聚糖复合材料产品,其特征在于,所述球形结构的粒径为1微米~2微米。
10.如权利要求7-9任意一项所述的肽微球-壳聚糖复合材料产品在制备修复牙髓损伤材料中的应用。
CN202410224322.8A 2024-02-29 2024-02-29 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用 Pending CN117797317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410224322.8A CN117797317A (zh) 2024-02-29 2024-02-29 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410224322.8A CN117797317A (zh) 2024-02-29 2024-02-29 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
CN117797317A true CN117797317A (zh) 2024-04-02

Family

ID=90434906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410224322.8A Pending CN117797317A (zh) 2024-02-29 2024-02-29 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN117797317A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754772A (zh) * 2007-05-21 2010-06-23 奥尔德生物制药公司 针对il-6的抗体及其用途
CN105125414A (zh) * 2015-09-28 2015-12-09 周建洲 一种牙髓盖髓保髓糊剂及利用其进行补牙的方法和应用
CN105228557A (zh) * 2013-03-21 2016-01-06 纽约市哥伦比亚大学理事会 用于牙组织再生的组合物和方法
CN105749326A (zh) * 2016-02-25 2016-07-13 东华大学 一种多肽抗菌自组装复合材料及其制备方法
CN115105638A (zh) * 2022-08-12 2022-09-27 中国医科大学附属口腔医院 一种促牙髓-牙本质复合体再生支架及其制备方法与应用
WO2023081648A1 (en) * 2021-11-02 2023-05-11 Voyager Therapeutics, Inc. Aav capsid variants and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754772A (zh) * 2007-05-21 2010-06-23 奥尔德生物制药公司 针对il-6的抗体及其用途
CN105228557A (zh) * 2013-03-21 2016-01-06 纽约市哥伦比亚大学理事会 用于牙组织再生的组合物和方法
CN105125414A (zh) * 2015-09-28 2015-12-09 周建洲 一种牙髓盖髓保髓糊剂及利用其进行补牙的方法和应用
CN105749326A (zh) * 2016-02-25 2016-07-13 东华大学 一种多肽抗菌自组装复合材料及其制备方法
WO2023081648A1 (en) * 2021-11-02 2023-05-11 Voyager Therapeutics, Inc. Aav capsid variants and uses thereof
CN115105638A (zh) * 2022-08-12 2022-09-27 中国医科大学附属口腔医院 一种促牙髓-牙本质复合体再生支架及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王罗瑶: "TVH-19自组装肽微球-壳聚糖复合体对牙髓-牙本质复合体损伤修复的作用研究", 第十六次全国牙体牙髓病学学术大会论文汇编, 15 November 2023 (2023-11-15), pages 163 - 164 *

Similar Documents

Publication Publication Date Title
Zhu et al. Continuous self‐oxygenated double‐layered hydrogel under natural light for real‐time infection monitoring, enhanced photodynamic therapy, and hypoxia relief in refractory diabetic wounds healing
US20210220520A1 (en) Preparation method of biomedical titanium implant with function of eliminating surface biomembrane
US11737955B2 (en) Multi-functional micro and nanoparticles for use in root canal therapies
Afrasiabi et al. Anti-biofilm and anti-metabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs
Toledano-Osorio et al. Polymeric nanoparticles protect the resin-dentin bonded interface from cariogenic biofilm degradation
Yu et al. Epigallocatechin-3-gallate/nanohydroxyapatite platform delivery approach to adhesive-dentin interface stability
Özer et al. Comparison of antibacterial activity of two dentin bonding systems using agar well technique and tooth cavity model
Li et al. Enhancing resin-dentin bond durability using a novel mussel-inspired monomer
Klein‐Júnior et al. Development and evaluation of calcium hydroxide‐coated, pericardium‐based biomembranes for direct pulp capping
Li et al. Multifunctional magnesium organic framework-based photothermal and pH dual-responsive mouthguard for caries prevention and tooth self-healing promotion
Kitagawa et al. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects
Zhang et al. Modification of collagen with proanthocyanidins by mimicking the bridging role of glycosaminoglycans for dentine remineralization
Chan et al. Reactions: Antibacterial and bioactive dental restorative materials: Do they really work
CN110078794A (zh) 一种抗菌肽及其应用
WO2005089699A1 (ja) 象牙質形成履髄剤
CN106581060A (zh) 一种加强型牙龈修复和口腔护理的组合物及其应用
CN117797317A (zh) 一种肽微球-壳聚糖复合材料的制备方法及其产品和应用
Kotb et al. Dentin topographic features following chemomechanical caries removal in primary teeth
Daood et al. PLGA nanoparticles loaded with quaternary ammonium silane and riboflavin for potential applications in adhesive dentistry
Tang et al. Crosslinking Improve Demineralized Dentin Performance and Synergistically Promote Biomimetic Mineralization by CaP_PILP
Palaniraj et al. Aprotinin–Conjugated biocompatible porous nanocomposite for dentine remineralization and biofilm degradation
Li et al. Enhancing the Stability of the Resin–Dentin Bonding Interface with Ag+-and Zn2+-Exchanged Zeolite A
JPH06256132A (ja) 覆髄剤
Huang et al. Novel dental resin infiltrant containing smart monomer dodecylmethylaminoethyl methacrylate
Hussein et al. Is Incorporation of Aloe Vera Encapsulated By Chitosan Nano Spheres To Compomer A Valid Antibacterial Approach? An InVitro Study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination