CN117796812A - Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot - Google Patents

Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot Download PDF

Info

Publication number
CN117796812A
CN117796812A CN202311681585.3A CN202311681585A CN117796812A CN 117796812 A CN117796812 A CN 117796812A CN 202311681585 A CN202311681585 A CN 202311681585A CN 117796812 A CN117796812 A CN 117796812A
Authority
CN
China
Prior art keywords
patient
leg
rod
force
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311681585.3A
Other languages
Chinese (zh)
Other versions
CN117796812B (en
Inventor
陈晨
李子健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Easton Nanjing Medical Technology Co ltd
Original Assignee
Easton Nanjing Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Easton Nanjing Medical Technology Co ltd filed Critical Easton Nanjing Medical Technology Co ltd
Priority to CN202311681585.3A priority Critical patent/CN117796812B/en
Publication of CN117796812A publication Critical patent/CN117796812A/en
Application granted granted Critical
Publication of CN117796812B publication Critical patent/CN117796812B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rehabilitation Therapy (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Geometry (AREA)
  • Physiology (AREA)
  • Rehabilitation Tools (AREA)

Abstract

The application discloses a weight reduction auxiliary method and medium for a bedside lower limb rehabilitation robot, wherein the method comprises the following steps: step 1, establishing a patient leg two-connecting-rod model; step 2, under the condition that the legs of the patient straighten, guiding the legs of the patient to move by any section of track, and recording the position information of the tail ends of the legs of the patient in the process; step 3, identifying the leg length and hip joint coordinates of the patient based on the leg two-connecting-rod model; step 4, converting the position information of the tail end of the leg of the patient into knee joint and hip joint angles of the patient through an inverse kinematics model based on the leg length and hip joint coordinates of the patient identified in the step 3; and 5, calculating the gravity of the leg at the current position based on the connecting rod statics model. According to the method and the device, the leg gravity of the patient is identified by solving the force required by leg holding, so that the detection value of the force sensor on the bedside lower limb rehabilitation robot is compensated, the force of the patient is more accurate, and the muscle force recovery condition of the patient is accurately estimated.

Description

Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot
Technical Field
The application relates to the technical field of medical robots, in particular to a weight reduction auxiliary method and medium for a bedside lower limb rehabilitation robot.
Background
With the acceleration of the aging trend of society, patients suffering from lower limb dysfunction caused by cerebral apoplexy and other diseases are increasing.
The utility model patent with the publication number of CN217828331U discloses a multi-degree-of-freedom full-range lower limb rehabilitation robot, and the rehabilitation training of the joints of the lower limbs of a patient can be realized in a 3D space range by relatively fixing the legs of the patient and the tail end of equipment. However, the patient's muscle strength recovery condition cannot be accurately estimated due to the great change of the end load caused by the individual variability of the patient and the angle change of the hip and knee joints in the prone position.
The utility model patent with the publication number of CN108056898A discloses a virtual scene interactive rehabilitation training robot based on a lower limb connecting rod model and force sense information and a control method thereof, which can realize the acquisition of compensation models corresponding to patients with different body types, however, the following defects exist in the patents: additional Kinect equipment is required to detect patient leg position.
Disclosure of Invention
The application provides a weight reduction auxiliary method and medium for a bedside lower limb rehabilitation robot, which have the advantages that the weight of the leg of a patient is identified by solving the force required by the leg holding, so as to compensate the detection value of a force sensor on the bedside lower limb rehabilitation robot, thereby obtaining more accurate output of the patient and realizing accurate assessment of the muscle strength recovery condition of the patient.
The technical scheme of the application is as follows:
in one aspect, the present application provides a weight-loss assisting method for a bedside lower limb rehabilitation robot, comprising the steps of:
step 1, establishing a patient leg two-connecting-rod model;
step 2, under the condition that the legs of the patient straighten, guiding the legs of the patient to move by any section of track, and recording the position information of the tail ends of the legs of the patient in the process;
step 3, identifying the leg length and hip joint coordinates of the patient based on the leg two-connecting-rod model;
step 4, converting the position information of the tail end of the leg of the patient into knee joint and hip joint angles of the patient through an inverse kinematics model based on the leg length and hip joint coordinates of the patient identified in the step 3;
step 5, calculating the gravity of the leg at the current position based on a connecting rod statics model;
further, the patient leg two-link model established in the step 1 comprises the following parameters: patient hip joint position O p,lc Patient knee joint position K p,lc Patient ankle position E p,lc Patient hip joint angle beta 2 Patient knee joint angle beta 3 Thigh length L of patient 1 Patient calf length L 2 Thigh center of gravity relative to hip joint position k 1 L 1 The position k of the center of gravity of the lower leg relative to the knee joint 2 L 2 The thigh and the shank are subjected to the gravity G 1 、G 2 Vertical and horizontal forces required for leg retention
Further, in step 2, position information of the leg end of the patient is acquired through a plurality of acquisition points provided at the end of the robot.
The robot tail end and the patient limb tail end have better position overlap ratio, the position coordinates of the patient limb tail end can be obtained by the acquisition points arranged at the robot tail end, the acquisition points are not required to be arranged on the body of the patient, and the acquisition accuracy is favorably provided by the plurality of acquisition points.
Further, in step 3, the leg of the patient is straightened during the identification process, the hip joint position remains unchanged, and the ankle joint position overlaps with the end position of the robot, so that the end position of the robot during the movement process can be regarded as the movement of the ankle joint of the patient on the spherical surface; in the spatial coordinate system, the spherical equation is as follows:
(x-x 0 ) 2 +(y-y 0 ) 2 +(z-z 0 ) 2 =R 2 (2)
wherein (x) 0 ,y 0 ,z 0 ) Is the spherical center coordinate P 0 (x, y, z) is the end position coordinate P, R is the sphere radius;
respectively connected with sampling points P 1 And P i Form line segment P 1 P i (a i ,b i ,c i ) Wherein P is 1 1 st robot end position information for sampling, P i The method comprises the steps of sampling the position information of the tail end of an ith robot, wherein the range of i is 2-n, and n is the number of sampling points;
let the midpoint of the line segment be P m,1i (x i ,y i ,z i ) The sagging equation for the line segment is as follows:
a i *(x-x i )+b i *(y-y i )+c i *(z-z i )=0 (2)
simultaneous plane equations:
converting it into a matrix form:
solving the overdetermined linear equation system by using a least square method to obtain the spherical center coordinate P 0 After solving the coordinates of the sphere center, calculating the distance between each sampling point and the sphere center, taking the average value, and obtaining the radius length, namely the total length L of the legs total
Wherein,for the end position coordinate P to the sphere center coordinateP 0 Is a length of (2);
the thigh and calf length L of the patient can be obtained according to the preset thigh and calf ratio mu 1 And L is equal to 2
The legs straighten in the identification process, so that the accuracy of the identification result is better.
Further, in step 4, the end position information in the robot world coordinate system obtained by the acquisition point is converted into the patient coordinate system, and then the knee joint angle beta is converted according to the end position information in the patient coordinate system and the thigh and calf lengths 3 Angle beta of hip joint 2
In the step 5, in the leg two-link model of the patient, the thigh and the calf of the patient are respectively a first rod and a second rod; if the first bar bears part of the weight of the second bar, i.e.
N 2 ·sinβ 2 Not less than 0 or
In this case, the first rod acts as a support for the second rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along the direction of the first rod, and the force balance equation is as follows:
and (3) carrying out stress analysis on the whole: the moment balance equation is as follows:
wherein:
d 1 =k 1 *L 1 *cosβ 2 ,k 1 the weight ratio of the center of gravity of the thigh to the thigh is preset;
d 2 =L 1 *cosβ 2 +k 2 *L 2 *cosβ 3 ,k 2 the weight ratio of the center of gravity of the lower leg to the lower leg is preset;
d 3 =E p,lc (1)-O p,lc (1)
d 4 =E p,lc (3)-O p,lc (3)
the gravity direction expression after simplification is as follows:
the second bar taking part of the weight of the first bar, i.e
N 2 ·sinβ 2 <0 or
In this case, the second rod acts as a support for the first rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along its direction, and the force balance equation is as follows:
the gravity direction expression after simplification is as follows:
the resulting force is appliedOutput as a compensation force.
The resulting force is appliedAs compensation force output, the leg gravity of the patient contained in the detection data of the robot sensor is corrected, so that more accurate patient force data is obtained, and accurate assessment of the muscle force recovery condition of the patient is facilitated.
Further, the method further comprises the steps of:
determining a gravity correction coefficient: recording force data F acquired by a force sensor when a patient uses a robot for the first time Sensor The correction coefficients are:
the corrected compensation force is:
the force sensor acquisition force of the robot is recorded when the patient uses the robot for the first time, and the correction coefficient is designed, so that the robot has unique correction coefficient aiming at different patients, and the influence caused by different parameters such as height and weight of different patients is overcome.
In another aspect, a robot controller includes a processor and a memory storing a computer program that when invoked by the processor performs a method as described above.
In another aspect, a computer readable medium stores a computer program which, when invoked by a computer, performs a method as described above.
In summary, the beneficial effects of the present application are:
1. the leg gravity of the patient is identified by solving the force required by leg holding, so as to compensate the detection value of the force sensor on the bedside lower limb rehabilitation robot, thereby obtaining more accurate patient output and realizing accurate assessment of the patient muscle strength recovery condition;
2. the condition that the muscle strength recovery condition of a patient cannot be accurately estimated due to the large change of the end load caused by the angle change of the hip and knee joints under the individual variability and the prone position of the patient is avoided;
3. the two-link model is used for mapping the tail end position with the knee and hip joint angle in the process of the rehabilitation exercise of the lower limb of the patient, so that the transparency of the assessment process of the tail end traction rehabilitation robot is provided.
Drawings
FIG. 1 is a schematic flow chart of a weight-reducing auxiliary method of a bedside lower limb rehabilitation robot provided by the utility model;
FIG. 2 is a schematic diagram of the operating state of a typical bedside lower limb rehabilitation robot;
FIG. 3 is a schematic diagram of the present utility model;
FIG. 4 is a leg two-bar model in the prone position of the patient in the present application;
FIG. 5 is a schematic illustration of a two-bar model statics analysis in the present application;
FIG. 6 is a graph of end position versus knee and hip joint angle during rehabilitation of lower extremities;
figure 7 is a graph of the position of the extremities versus force applied during rehabilitation of the lower extremities.
Detailed Description
The following detailed description of specific embodiments of the present application refers to the accompanying drawings.
Examples: the embodiment of the application provides a weight-reduction auxiliary method for a bedside lower limb rehabilitation robot, and referring to fig. 1, the method comprises the following steps:
step 1, establishing a patient leg two-connecting-rod model;
step 2, under the condition that the legs of the patient straighten, guiding the legs of the patient to move by any section of track, and recording the position information of the tail ends of the legs of the patient in the process;
step 3, identifying the leg length and hip joint coordinates of the patient based on the leg two-connecting-rod model;
step 4, converting the position information of the tail end of the leg of the patient into knee joint and hip joint angles of the patient through an inverse kinematics model based on the leg length and hip joint coordinates of the patient identified in the step 3;
step 5, calculating the gravity of the leg at the current position based on a connecting rod statics model;
and 6, correcting the gravity coefficient of the leg based on the reading of the force sensor.
The embodiment of the application is illustrated by taking a typical bedside lower limb rehabilitation robot as an example, and the working state of the bedside lower limb rehabilitation robot is shown in fig. 2.
As shown in fig. 3, the force sensor on the robot collects force F Sensor The utility model comprises the leg gravity G of the patient and the force F of the patient, and the theoretical leg gravity G is obtained by calculation of a leg two-link model cal The interference item of the leg gravity G of the patient can be counteracted, the output F of the patient is obtained, and the muscle strength recovery condition of the patient is accurately estimated.
As shown in fig. 4, the patient leg two-bar model established in step 1 includes the following parameters: patient hip joint position O p,lc Patient knee joint position K p,lc Patient ankle position E p,lc Patient hip joint angle beta 2 (default counterclockwise positive), patient knee angle β 3 (positive counter-clockwise by default) patient thigh (between hip and knee) length L 1 Length L of patient's lower leg (between knee and ankle joint) 2 Thigh center of gravity relative to hip joint position k 1 L 1 The position k of the center of gravity of the lower leg relative to the knee joint 2 L 2 The thigh and the shank are subjected to the gravity G 1 、G 2 Vertical and horizontal forces required for leg retention
In step 2, position information of the leg end of the patient is acquired through a plurality of acquisition points provided at the robot end.
In the step 3, the legs of the patient straighten in the identification process, the positions of the hip joints are kept unchanged, and the positions of the ankle joints are overlapped with the positions of the tail ends of the robots, so that the positions of the tail ends of the robots in the movement process can be regarded as the movement of the ankle joints of the patient on the spherical surface; in the spatial coordinate system, the spherical equation is as follows:
(x-x 0 ) 2 +(y-y 0 ) 2 +(z-z 0 ) 2 =R 2 (3)
wherein (x) 0 ,y 0 ,z 0 ) Is the spherical center coordinate P 0 (x, y, z) is the end position coordinate P, R is the sphere radius;
respectively connected with sampling points P 1 And P i Form line segment P 1 P i (a i ,b i ,c i ) Wherein P is 1 1 st robot end position information for sampling, P i The method comprises the steps of sampling the position information of the tail end of an ith robot, wherein the range of i is 2-n, and n is the number of sampling points;
let the midpoint of the line segment be P m,1i (x i ,y i ,z i ) The sagging equation for the line segment is as follows:
a i *(x-x i )+b i *(y-y i )+c i *(z-z i )=0 (2)
simultaneous plane equations:
converting it into a matrix form:
solving the overdetermined linear equation system by using a least square method to obtain the spherical center coordinate P 0 After solving the coordinates of the sphere center, calculating the distance between each sampling point and the sphere center, taking the average value, and obtaining the radius length, namely the total length L of the legs total
Wherein,for the end position coordinate P to the sphere center coordinate P 0 Is a length of (2);
the thigh and calf length L of the patient can be obtained according to the preset thigh and calf ratio mu 1 And L is equal to 2
In step 4, the end position information in the robot world coordinate system obtained by the acquisition point is converted into a patient coordinate system, and then the knee joint angle beta is converted according to the end position information in the patient coordinate system and the thigh and calf lengths 3 Angle beta of hip joint 2
In step 5, as shown in fig. 5, in the patient leg two-bar model, the thigh and the calf of the patient are respectively a first bar (link 1 in the figure) and a second bar (link 2 in the figure); if the first bar bears part of the weight of the second bar, i.e.
N 2 ·sinβ 2 Not less than 0 or
In this case, the first rod acts as a support for the second rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along the direction of the first rod, and the force balance equation is as follows:
and (3) carrying out stress analysis on the whole: the moment balance equation is as follows:
wherein:
d 1 =k 1 *L 1 *cosβ 2 ,k 1 the weight ratio of the center of gravity of the thigh to the thigh is preset;
d 2 =L 1 *cosβ 2 +k 2 *L 2 *cosβ 3 ,k 2 the weight ratio of the center of gravity of the lower leg to the lower leg is preset;
d 3 =E p,lc (1)-O p,lc (1)
d 4 =E p,lc (3)-O p,lc (3)
the gravity direction expression after simplification is as follows:
the second bar taking part of the weight of the first bar, i.e
N 2 ·sinβ 2 <0 or
In this case, the second rod acts as a support for the first rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along its direction, and the force balance equation is as follows:
the gravity direction expression after simplification is as follows:
the resulting force is appliedOutput as a compensation force.
In step 6, determining a gravity correction coefficient: recording force data F acquired by a force sensor when a patient uses a robot for the first time Sensor The correction coefficients are:
the corrected compensation force is:
as shown in fig. 3, the force sensor's acquisition force F Sensor And G cal The difference in (2) may be considered the patient's force, which does not include a gravitational term, and the result is more accurate.
For a typical lower limb rehabilitation process, the change curve of the end position and the knee and hip joint angles in the lower limb rehabilitation process is shown in fig. 6, and the change curve of the end position and the stress in the lower limb rehabilitation process is shown in fig. 7.
The embodiment of the application also provides a robot controller, which comprises a processor and a memory, wherein the memory stores a computer program, and the computer program executes the method when being called by the processor.
Embodiments of the present application also provide a computer readable medium storing a computer program which, when invoked by a computer, performs a method as described above.
The foregoing is merely a preferred embodiment of the present application, and it should be noted that modifications and improvements can be made by those skilled in the art without departing from the inventive concept of the present application, which fall within the protection scope of the present application.

Claims (9)

1. The weight reduction auxiliary method for the bedside lower limb rehabilitation robot is characterized by comprising the following steps of:
step 1, establishing a patient leg two-connecting-rod model;
step 2, under the condition that the legs of the patient straighten, guiding the legs of the patient to move by any section of track, and recording the position information of the tail ends of the legs of the patient in the process;
step 3, identifying the leg length and hip joint coordinates of the patient based on the leg two-connecting-rod model;
step 4, converting the position information of the tail end of the leg of the patient into knee joint and hip joint angles of the patient through an inverse kinematics model based on the leg length and hip joint coordinates of the patient identified in the step 3;
and 5, calculating the gravity of the leg at the current position based on the connecting rod statics model.
2. The weight-loss assisting method for a bedside lower limb rehabilitation robot according to claim 1, wherein the patient leg two-link model established in step 1 comprises the following parameters: patient hip joint position O p,lc Patient knee joint position K p,lc Patient ankle position E p,lc Patient hip joint angle beta 2 Patient knee joint angle beta 3 Thigh length L of patient 1 Patient calf length L 2 Thigh center of gravity relative to hip joint position k 1 L 1 The position k of the center of gravity of the lower leg relative to the knee joint 2 L 2 The thigh and the shank are subjected to the gravity G 1 、G 2 Vertical and horizontal forces required for leg retention
3. The weight-saving support method for a bedside lower limb rehabilitation robot according to claim 1, wherein in step 2, the position information of the leg end of the patient is acquired through a plurality of acquisition points provided at the robot end.
4. The weight-loss assisting method for a bedside lower limb rehabilitation robot according to claim 1, wherein in step 3, the patient's leg straightens during the identification, the hip joint position remains unchanged, and the ankle joint position overlaps with the robot end position, so that the robot end position during the movement can be regarded as the movement of the patient's ankle joint on the sphere; in the spatial coordinate system, the spherical equation is as follows:
(x-x 0 ) 2 +(y-y 0 ) 2 +(z-z 0 ) 2 =R 2 (1)
wherein (x) 0 ,y 0 ,z 0 ) Is the spherical center coordinate P 0 (x, y, z) is the end position coordinate P, R is the sphere radius;
respectively connected with sampling points P 1 And P i Form line segment P 1 P i (a i ,b i ,c i ) Wherein P is 1 1 st robot end position information for sampling, P i The method comprises the steps of sampling the position information of the tail end of an ith robot, wherein the range of i is 2-n, and n is the number of sampling points;
let the midpoint of the line segment be P m,1i (x i ,y i ,z i ) The sagging equation for the line segment is as follows:
a i *(x-x i )+b i *(y-y i )+c i *(z-z i )=0 (2)
simultaneous plane equations:
converting it into a matrix form:
solving the overdetermined linear equation system by using a least square method to obtain the spherical center coordinate P 0 After solving the coordinates of the sphere center, calculating the distance between each sampling point and the sphere center, taking the average value, and obtaining the radius length, namely the total length L of the legs total
Wherein,for the end position coordinate P to the sphere center coordinate P 0 Is a length of (2);
the thigh and calf length L of the patient can be obtained according to the preset thigh and calf ratio mu 1 And L is equal to 2
5. The weight-reduction assisting method for bedside lower limb rehabilitation robot according to claim 1, wherein in step 4, the end position information in the robot world coordinate system obtained by the acquisition point is converted into the patient coordinate system, and then the knee joint angle beta is converted according to the end position information in the patient coordinate system and the thigh and calf lengths 3 Angle beta of hip joint 2
6. The weight-reduction assisting method for a bedside lower limb rehabilitation robot according to claim 5, wherein in step 5, in the patient leg two-bar model, the thigh and the calf of the patient are respectively a first bar and a second bar; if the first bar bears part of the weight of the second bar, i.e.
N 2 ·sinβ 2 Not less than 0 or
In this case, the first rod acts as a support for the second rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along the direction of the first rod, and the force balance equation is as follows:
and (3) carrying out stress analysis on the whole: the moment balance equation is as follows:
wherein:
d 1 =k 1 *L 1 *cosβ 2 ,k 1 the weight ratio of the center of gravity of the thigh to the thigh is preset;
d 2 =L 1 *cosβ 2 +k 2 *L 2 *cosβ 3 ,k 2 the weight ratio of the center of gravity of the lower leg to the lower leg is preset;
d 3 =E p,lc (1)-O p,lc (1)
d 4 =E p,lc (3)-O p,lc (3)
the gravity direction expression after simplification is as follows:
the second bar taking part of the weight of the first bar, i.e
N 2 ·sinβ 2 <0 or
In this case, the second rod acts as a support for the first rod, so that the force N of the first rod against the second rod 2 The second rod should be individually force analyzed along its direction, and the force balance equation is as follows:
the gravity direction expression after simplification is as follows:
the resulting force is appliedOutput as a compensation force.
7. The weight-loss assisting method for a bedside lower limb rehabilitation robot according to claim 1, further comprising the steps of:
determining a gravity correction coefficient: recording force data F acquired by a force sensor when a patient uses a robot for the first time Sensor The correction coefficients are:
the corrected compensation force is:
8. a robot controller comprising a processor and a memory, the memory storing a computer program which, when invoked by the processor, performs the method according to any one of claims 1-7.
9. A computer readable medium, characterized in that the computer readable medium stores a computer program, which when called by a computer performs the method according to any of claims 1-7.
CN202311681585.3A 2023-12-08 2023-12-08 Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot Active CN117796812B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311681585.3A CN117796812B (en) 2023-12-08 2023-12-08 Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311681585.3A CN117796812B (en) 2023-12-08 2023-12-08 Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot

Publications (2)

Publication Number Publication Date
CN117796812A true CN117796812A (en) 2024-04-02
CN117796812B CN117796812B (en) 2024-07-12

Family

ID=90424383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311681585.3A Active CN117796812B (en) 2023-12-08 2023-12-08 Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot

Country Status (1)

Country Link
CN (1) CN117796812B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076348A (en) * 2008-12-26 2010-07-06 재단법인 포항지능로봇연구소 Biped robot and method for controlling of walking biped robot
CN103536424A (en) * 2013-10-26 2014-01-29 河北工业大学 Control method of gait rehabilitation training robot
US20160007885A1 (en) * 2007-10-15 2016-01-14 Alterg, Inc. Method of gait evaluation and training with differential pressure system
WO2016149891A1 (en) * 2015-03-20 2016-09-29 中国科学院自动化研究所 Multi-pose lower-limb rehabilitation training robot
US20180071580A1 (en) * 2016-09-12 2018-03-15 Lunghwa University Of Science And Technology Pneumatic lower extremity gait rehabilitation training system
DE202017107583U1 (en) * 2017-06-30 2018-04-19 Hyundai Motor Company Multi-limbed linkage and exoskeletal robot of the lower extremity
CN108056898A (en) * 2017-12-21 2018-05-22 东南大学 The virtual-scene interacting recovery exercising robot and its control method of information are felt based on lower limb connecting rod model and power
CN108297130A (en) * 2018-01-10 2018-07-20 浙江大学 A kind of weight losing method for robot palletizer
CN110801226A (en) * 2019-11-01 2020-02-18 西安交通大学 Human knee joint moment testing system method based on surface electromyographic signals and application
CN111888186A (en) * 2020-07-21 2020-11-06 埃斯顿(南京)医疗科技有限公司 Three-degree-of-freedom bedside exoskeleton lower limb rehabilitation robot and use method thereof
CN115805594A (en) * 2023-02-06 2023-03-17 中国科学技术大学 Compound optimization method for track and configuration of reconfigurable rope-driven lower limb rehabilitation robot
WO2023077768A1 (en) * 2021-11-08 2023-05-11 武汉可德医疗器械有限公司 Knee osteoarthritis treatment and rehabilitation equipment based on koapt
CN116702455A (en) * 2023-05-25 2023-09-05 浙江工业大学 Sliding mode observer-based lower limb rehabilitation exoskeleton robot joint angular velocity estimation method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160007885A1 (en) * 2007-10-15 2016-01-14 Alterg, Inc. Method of gait evaluation and training with differential pressure system
KR20100076348A (en) * 2008-12-26 2010-07-06 재단법인 포항지능로봇연구소 Biped robot and method for controlling of walking biped robot
CN103536424A (en) * 2013-10-26 2014-01-29 河北工业大学 Control method of gait rehabilitation training robot
WO2016149891A1 (en) * 2015-03-20 2016-09-29 中国科学院自动化研究所 Multi-pose lower-limb rehabilitation training robot
US20180071580A1 (en) * 2016-09-12 2018-03-15 Lunghwa University Of Science And Technology Pneumatic lower extremity gait rehabilitation training system
DE202017107583U1 (en) * 2017-06-30 2018-04-19 Hyundai Motor Company Multi-limbed linkage and exoskeletal robot of the lower extremity
CN108056898A (en) * 2017-12-21 2018-05-22 东南大学 The virtual-scene interacting recovery exercising robot and its control method of information are felt based on lower limb connecting rod model and power
CN108297130A (en) * 2018-01-10 2018-07-20 浙江大学 A kind of weight losing method for robot palletizer
CN110801226A (en) * 2019-11-01 2020-02-18 西安交通大学 Human knee joint moment testing system method based on surface electromyographic signals and application
CN111888186A (en) * 2020-07-21 2020-11-06 埃斯顿(南京)医疗科技有限公司 Three-degree-of-freedom bedside exoskeleton lower limb rehabilitation robot and use method thereof
WO2023077768A1 (en) * 2021-11-08 2023-05-11 武汉可德医疗器械有限公司 Knee osteoarthritis treatment and rehabilitation equipment based on koapt
CN115805594A (en) * 2023-02-06 2023-03-17 中国科学技术大学 Compound optimization method for track and configuration of reconfigurable rope-driven lower limb rehabilitation robot
CN116702455A (en) * 2023-05-25 2023-09-05 浙江工业大学 Sliding mode observer-based lower limb rehabilitation exoskeleton robot joint angular velocity estimation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BORISOV, A. ET AL: "Controlling 3-d model of two exoskeleton links with variable length", 《INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE ENVIRONMENTAL RISKS AND SAFETY IN MECHANICAL ENGINEERING (ERSME-2020) 2020 IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 1001 》, 31 December 2020 (2020-12-31) *
沈林勇;章亚男;钱晋武;徐柳伶;文忠;: "下肢步行康复训练机器人的人-机耦合力检测", 电子测量技术, no. 12, 15 December 2012 (2012-12-15) *
赵富强; 杜特; 常宝玉; 牛志刚: "肢腿履带足机构抬腿工况动力学分析与实验研究", 《 工程设计学报》, 1 September 2022 (2022-09-01) *

Also Published As

Publication number Publication date
CN117796812B (en) 2024-07-12

Similar Documents

Publication Publication Date Title
US11312003B1 (en) Robotic mobility device and control
WO2019119723A1 (en) Lower limb connecting rod model and force sensing information-based method for controlling virtual scenario interactive rehabilitation training robot
CN112057077B (en) Information processing device, information processing method, and storage medium
Cahouët et al. Static optimal estimation of joint accelerations for inverse dynamics problem solution
US20120266648A1 (en) Force and/or Motion Measurement System Having Inertial Compensation and Method Thereof
US20080091373A1 (en) Method for calibrating sensor positions in a human movement measurement and analysis system
Colobert et al. Force-plate based computation of ankle and hip strategies from double-inverted pendulum model
CN109077785A (en) Fracture recovering evaluation method based on six axis parallel connection bone external fixation devices
JP7215965B2 (en) Posture Estimation Apparatus, Posture Estimation Method, and Posture Estimation Program
JP4934806B2 (en) Method and apparatus for estimating link length parameter of link mechanism model using motion capture
Bonnet et al. Fast determination of the planar body segment inertial parameters using affordable sensors
CN113197752A (en) Limb gravity dynamic compensation method of upper limb rehabilitation robot
Chao et al. The application of 4× 4 matrix method to the correction of the measurements of hip joint rotations
CN117796812B (en) Weight reduction auxiliary method and medium for bedside lower limb rehabilitation robot
KR20190022198A (en) Method for calibrating posture of lower body using wearable sensors, and computer readable medium for performing the method
CN113283116B (en) Multi-information fusion human motion analysis method and device
KR20200008973A (en) Wearable Type Lower Body Motion Information Collecting Device
Yoshiyasu et al. Forward dynamics simulation of human figures on assistive devices using geometric skin deformation model
Yi et al. Sensor-movement-robust angle estimation for 3-DoF lower limb joints without calibration
González et al. Center of mass estimation for rehabilitation in a multi-contact environment: A simulation study
Rodić et al. Contribution to the modeling of nonsmooth multipoint contact dynamics of biped locomotion—Theory and experiments
JP2004163990A5 (en)
KR101606012B1 (en) Method for correcting data of Center Of Pressure using image processing technique
Krishnan et al. Invariant spatial parametrization of human thoracohumeral kinematics: A feasibility study
Venture et al. Creating Personalized Dynamic Models

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant