CN117700806A - 一种低跨膜电压的单片型双极膜及其制备方法 - Google Patents

一种低跨膜电压的单片型双极膜及其制备方法 Download PDF

Info

Publication number
CN117700806A
CN117700806A CN202311564174.6A CN202311564174A CN117700806A CN 117700806 A CN117700806 A CN 117700806A CN 202311564174 A CN202311564174 A CN 202311564174A CN 117700806 A CN117700806 A CN 117700806A
Authority
CN
China
Prior art keywords
membrane
film
bipolar membrane
soaking
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311564174.6A
Other languages
English (en)
Inventor
卿波
廖巧
楼照
黄伟平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Lanran Technology Co ltd
Original Assignee
Hangzhou Lanran Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Lanran Technology Co ltd filed Critical Hangzhou Lanran Technology Co ltd
Priority to CN202311564174.6A priority Critical patent/CN117700806A/zh
Publication of CN117700806A publication Critical patent/CN117700806A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Urology & Nephrology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及低跨膜电压的单片型双极膜及其制备方法,包括:将苯乙烯、二乙烯基苯及引发剂进行预聚合,形成果冻状时降温停止反应,制得膜液;将膜液加热至液体状,进行聚烯烃薄膜含浸;将含浸薄膜放入水中进行聚合反应制成底膜;将底膜进行氯甲基化并进行单面胺化,制成半阴膜;将半阴膜胺化的一面再进行单面部分磺化,使得此膜的阳层中和阴阳层界面处都有叔胺基团;将上一步处理得到的膜片再次进行单面季胺化,将膜中未反应的部分全部接枝季铵基团;将上一步处理得到的双极膜再浸泡在FeCl2溶液中,之后取出浸泡在碱液中转型,制得双极膜。本发明的单片型双极膜相比现有双极膜,有效降低了跨膜电压,且具备稳定的跨膜电压,有利于能耗降低。

Description

一种低跨膜电压的单片型双极膜及其制备方法
技术领域
本发明属于双极膜技术领域,具体涉及一种低跨膜电压的单片型双极膜及其制备方法。
背景技术
双极膜为阳离子交换膜和阴离子交换膜贴合而成的复合膜,其具有产生如下被称为水解的现象的功能:通过对浸渍于水溶液中的双极膜的两侧施加电压而将膜内的水离解为质子和氢氧根。利用该功能,将双极膜和阳离子交换膜、阴离子交换膜组合来进行电渗析,由此例如可以由中性盐制造酸、碱。
现有双极膜的跨膜电压较高,造成能耗高,同时也更容易导致烧膜等故障发生;基于此,本领域亟需寻求如何降低双极膜的跨膜电压的技术,以节约能耗。
发明内容
基于现有技术中存在的上述缺点和不足,本发明的目的之一是至少解决现有技术中存在的上述问题之一或多个,换言之,本发明的目的之一是提供满足前述需求之一或多个的一种低跨膜电压的单片型双极膜及其制备方法。
为了达到上述发明目的,本发明采用以下技术方案:
一种低跨膜电压的单片型双极膜的制备方法,包括以下步骤:
(1)将苯乙烯、二乙烯基苯及引发剂在第一温度下进行预聚合,当预聚物开始形成果冻状时降温停止反应,制备成膜液;
(2)将膜液加热至液体状,此时将聚烯烃薄膜浸润在其中进行含浸,在含浸一定时间后,将含浸后薄膜从有机混合物中取出;
(3)将含浸薄膜放入第二温度的水中进行聚合反应,聚合反应结束后,制成底膜;
(4)将底膜进行氯甲基化并进行单面胺化,制成半阴膜;
(5)将半阴膜胺化的一面再进行单面部分磺化,控制磺化反应条件,磺化结束后,使得此膜的阳层中和阴阳层界面处都有一定量的具备水解离催化能力的叔胺基团;
(6)将步骤(5)处理得到的膜片再次进行单面季胺化,将膜中未反应的部分全部接枝季铵基团,反应完的膜片已具备双极膜特性;
(7)将步骤(6)处理得到的双极膜再浸泡在FeCl2溶液中,待浸泡一定时间后,再将膜片取出浸泡在碱液中转型,制得单片型双极膜。
作为优选方案,所述步骤(1)中,预聚合的温度为60~80℃、时间为0.3~1.5h。
作为优选方案,所述步骤(1)中,预聚物开始形成果冻状的判断条件为:粘度为200~500dPa·s。
作为优选方案,所述步骤(2)中,膜液的加热温度为60~80℃,含浸时间为5~30min。
作为优选方案,所述步骤(3)中,聚合反应的温度为60~80℃、时间为4~10h。
作为优选方案,所述步骤(4)中,将底膜浸泡在氯甲醚中加热至30~45℃,以SnCl4为催化剂,反应2~8h后,将反应后的薄膜取出,用水清洗残留的氯甲基化液后备用;
将清洗之后的膜片单面浸泡在5~10wt%的二甲胺溶液中,胺化1.5~4h后结束,然后再用清水洗至中性,得到半阴膜。
作为优选方案,所述步骤(5)中,半阴膜低温烘干后,将胺化的一面与硫酸反应,加热至50~80℃,反应1~4h,以使部分阴膜发生磺化反应。
作为优选方案,所述步骤(6)中,季胺化的温度为20~40℃。
作为优选方案,所述步骤(7)中,FeCl2溶液的浓度为0.5~5wt%,转型的温度为25~60℃、时间为5~30min。
本发明还提供如上任一项方案所述的制备方法制得的单片型双极膜。
本发明与现有技术相比,有益效果是:
本发明的单片型双极膜相比现有的双极膜,有效降低了跨膜电压,最低达可到1.15V,且具备稳定的跨膜电压,有利于能耗的降低。
具体实施方式
以下将对本发明提供的单片型双极膜及其制备方法作进一步说明。
本发明提供的单片型双极膜的制备方法,包括:以苯乙烯、二乙烯基苯、引发剂为原料,在一定温度下进行预聚合,当上述混合物开始形成果冻状时降温停止反应,制备成膜液;取膜液加热至液体状,此时,将聚烯烃薄膜浸润在其中进行含浸,在含浸一定时间后,将含浸后薄膜从有机混合物中取出;将制备的含浸薄膜放入一定温度的水中进行聚合反应,聚合反应结束后,制成底膜;将底膜进行氯甲基化;将氯甲基化的膜片二甲胺进行单面胺化,制成半阴膜;取半阴膜,将进行胺化的一面再进行单面部分磺化,控制磺化反应条件,磺化结束后,使得此膜的阳层中和阴阳层界面处都有一定量的具备水解离催化能力的叔胺基团;之后再次进行单面季胺化,将膜中未反应的部分全部接枝季铵基团,此时,反应完的膜片已具备双极膜特性;将双极膜再浸泡在FeCl2溶液中,待浸泡一定时间后,再将膜片取出浸泡在碱液中转型,此时,阳层中和界面处既有叔胺基团,又交换有具备水解离催化能力的Fe2+,可使双极膜的水解电压(即跨膜电压)更低,从而制得具备较低水解电压的单片型双极膜。
具体地,本发明的单片型双极膜的制备方法,包括以下步骤:
(1)将苯乙烯、二乙烯基苯及引发剂进行预聚合,当预聚物开始形成果冻状时降温停止反应,制备成膜液;
(2)将膜液加热至液体状,此时将聚烯烃薄膜浸润在其中进行含浸,在含浸一定时间后,将含浸后薄膜从有机混合物中取出;
(3)将含浸薄膜放入第二温度的水中进行聚合反应,聚合反应结束后,制成底膜;
(4)将底膜进行氯甲基化并进行单面胺化,制成半阴膜;
(5)将半阴膜胺化的一面再进行单面部分磺化,控制磺化反应条件,磺化结束后,使得此膜的阳层中和阴阳层界面处都有一定量的具备水解离催化能力的叔胺基团;
(6)将步骤(5)处理得到的膜片再次进行单面季胺化,将膜中未反应的部分全部接枝季铵基团,反应完的膜片已具备双极膜特性;
(7)将步骤(6)处理得到的双极膜再浸泡在FeCl2溶液中,待浸泡一定时间后,再将膜片取出浸泡在碱液中转型,制得单片型双极膜。
在一实施例中,上述步骤(1)的预聚合的温度为60~80℃、时间为0.3~1.5h。
在一实施例中,上述步骤(1)的预聚物开始形成果冻状的判断条件为:粘度为200~500dPa·s。
在一实施例中,上述步骤(2)中,膜液的加热温度为60~80℃,含浸时间为5~30min。
在一实施例中,上述步骤(3)中,聚合反应的温度为60~80℃、时间为4~10h。
在一实施例中,上述步骤(4)中,将底膜浸泡在氯甲醚中加热至30~45℃,以SnCl4为催化剂,反应2~8h后,将反应后的薄膜取出,用水清洗残留的氯甲基化液后备用;
将清洗之后的膜片单面浸泡在5~10wt%的二甲胺溶液中,胺化1.5~4h后结束,然后再用清水洗至中性,得到半阴膜。
在一实施例中,上述步骤(5)中,半阴膜低温烘干(烘干温度为40~50℃)后,将胺化的一面与硫酸(硫酸的浓度为95-98%)反应,加热至50~80℃,反应1~4h,以使部分阴膜发生磺化反应。
在一实施例中,上述步骤(6)中,季胺化的温度为20~40℃。浓度为2~40wt%,可以是三甲胺或者其他能进行季胺化的叔胺中的一种或多种组合。
在一实施例中,上述步骤(7)中,FeCl2溶液的浓度为0.5~5wt%,转型的温度为25~60℃、时间为5~30min。
在一实施例中,上述步骤(7)中,FeCl2溶液还可以是FeCl2、FeCl3、CrCl3、SnCl2、SnCl4其中的一种或多种的组合。
在一实施例中,上述步骤(7)中,浸泡的碱液可以为NaOH、KOH等强碱性无机溶液,浓度为0.5~10wt%。
以下通过具体实施例对单片型双极膜的制备方法做进一步说明。
实施例1:
本实施例的单片型双极膜的制备方法,包括以下步骤:
步骤1:取20g苯乙烯、2.8g二乙烯基苯、0.02g偶氮二异丁腈,60℃下预聚合1小时,粘度达到300dPa·s后,降温终止反应,得膜液;
步骤2:在1L烧杯中,注入600ml纯水,在恒温水域中加热至80℃,并保温备用;
步骤3:将步骤1制备的膜液加热至80℃,使其转变为液体状,将裁切好的低密度聚乙烯薄膜浸泡在其中,浸泡5分钟后,马上将浸泡后薄膜取出,直接放入步骤2)准备好的热水中进行聚合反应,聚合5小时后得到底膜;
步骤4:将步骤3得到的底膜浸泡在氯甲醚中,加热至40℃,以SnCl4为催化剂,反应2小时后,将反应后的薄膜取出,用水清洗残留的氯甲基化液后备用;
步骤5:将步骤4得到的膜片单面浸泡在二甲胺溶液中,胺化130min后结束,然后再用清水洗至中性,最后的膜片即为半阴膜,其胺化层厚度约为42%;
步骤6:将步骤5得到的半阴膜低温烘干后,将胺化的一面与96%的硫酸反应,加热至60℃,反应75min,此时膜厚度约有40%的阴膜发生磺化反应(即阳层厚度为40%),且在这40%的区域内还存留有一定的叔胺基团并未被全部磺酸化;
步骤7:将步骤6制得的膜片再次进行单面季胺化,将膜种未反应的部分全部接枝季铵基团,此时,已制备出具有双极膜特性的单片型双极膜;
步骤8:将步骤7制得的膜片,直接浸泡在2%的FeCl2溶液中,浸泡1小时后,取出用清水洗涤后,再将膜片浸泡8%的氢氧化钠溶液中,加热至40℃,反应25分钟进行转型,转型完成后得到水解电压较低的单片型双极膜。
实施例2:
本实施例的单片型双极膜的制备方法,与实施例1的不同之处在于:步骤5和步骤6不同;
具体地,步骤5的胺化层厚度控制为52%,步骤6的阳层厚度控制为50%;
其他步骤同实施例1。
实施例3:
本实施例的单片型双极膜的制备方法,与实施例1的不同之处在于:步骤5和步骤6不同;
具体地,步骤5的胺化层厚度控制为62%,步骤6的阳层厚度控制为60%;
其他步骤同实施例1。
实施例4:
本实施例的单片型双极膜的制备方法,与实施例1的不同之处在于:步骤5和步骤6不同;
具体地,步骤5的胺化层厚度控制为72%,步骤6的阳层厚度控制为70%;
其他步骤同实施例1。
实施例5:
本实施例的单片型双极膜的制备方法,与实施例1的不同之处在于:步骤5和步骤6不同;
具体地,步骤5的胺化层厚度控制为82%,步骤6的阳层厚度控制为80%;
其他步骤同实施例1。
对比例1:
本对比例的单片型双极膜的制备方法,与实施例2的不同之处在于:
未经过步骤8处理;
其他步骤同实施例1。
对比例2:
本对比例的单片型双极膜的制备方法,与实施例2的不同之处在于:
未经过步骤5处理;
其他步骤同实施例1。
对比例3:
本对比例的单片型双极膜的制备方法,与实施例2的不同之处在于:
步骤1未进行预聚合,直接混合得到膜液;且未经过步骤8处理;
其他步骤同实施例1。
对比例4:
本对比例的单片型双极膜的制备方法,与实施例2的不同之处在于:
步骤1未进行预聚合,直接混合得到膜液;
其他步骤同实施例1。
以下分别对上述实施例1-5以及对比例1-4的单片型双极膜进行测试,测试结果如表1所示。
表1单片型双极膜的测试结果
其中,稳定性指膜片制备过程中,是否能保证每张膜片都能加工成双极膜片,且具备稳定的跨膜电压。由表1可知,本发明各实施例的单片型双极膜的跨膜电压得到有效降低,且具备稳定的跨膜电压,有利于能耗的降低,节约能源。
以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (10)

1.一种低跨膜电压的单片型双极膜的制备方法,其特征在于,包括以下步骤:
(1)将苯乙烯、二乙烯基苯及引发剂在第一温度下进行预聚合,当预聚物开始形成果冻状时降温停止反应,制备成膜液;
(2)将膜液加热至液体状,此时将聚烯烃薄膜浸润在其中进行含浸,在含浸一定时间后,将含浸后薄膜从有机混合物中取出;
(3)将含浸薄膜放入第二温度的水中进行聚合反应,聚合反应结束后,制成底膜;
(4)将底膜进行氯甲基化并进行单面胺化,制成半阴膜;
(5)将半阴膜胺化的一面再进行单面部分磺化,控制磺化反应条件,磺化结束后,使得此膜的阳层中和阴阳层界面处都有一定量的具备水解离催化能力的叔胺基团;
(6)将步骤(5)处理得到的膜片再次进行单面季胺化,将膜中未反应的部分全部接枝季铵基团,反应完的膜片已具备双极膜特性;
(7)将步骤(6)处理得到的双极膜再浸泡在FeCl2溶液中,待浸泡一定时间后,再将膜片取出浸泡在碱液中转型,制得单片型双极膜。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,预聚合的温度为60~80℃、时间为0.3~1.5h。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤(1)中,预聚物开始形成果冻状的判断条件为:粘度为200~500dPa·s。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,膜液的加热温度为60~80℃,含浸时间为5~30min。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,聚合反应的温度为60~80℃、时间为4~10h。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中,将底膜浸泡在氯甲醚中加热至30~45℃,以SnCl4为催化剂,反应2~8h后,将反应后的薄膜取出,用水清洗残留的氯甲基化液后备用;
将清洗之后的膜片单面浸泡在5~10wt%的二甲胺溶液中,胺化1.5~4h后结束,然后再用清水洗至中性,得到半阴膜。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(5)中,半阴膜低温烘干后,将胺化的一面与硫酸反应,加热至50~80℃,反应1~4h,以使部分阴膜发生磺化反应。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤(6)中,季胺化的温度为20~40℃。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤(7)中,FeCl2溶液的浓度为0.5~5wt%,转型的温度为25~60℃、时间为5~30min。
10.如权利要求1-9任一项所述的制备方法制得的单片型双极膜。
CN202311564174.6A 2023-11-22 2023-11-22 一种低跨膜电压的单片型双极膜及其制备方法 Pending CN117700806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311564174.6A CN117700806A (zh) 2023-11-22 2023-11-22 一种低跨膜电压的单片型双极膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311564174.6A CN117700806A (zh) 2023-11-22 2023-11-22 一种低跨膜电压的单片型双极膜及其制备方法

Publications (1)

Publication Number Publication Date
CN117700806A true CN117700806A (zh) 2024-03-15

Family

ID=90154263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311564174.6A Pending CN117700806A (zh) 2023-11-22 2023-11-22 一种低跨膜电压的单片型双极膜及其制备方法

Country Status (1)

Country Link
CN (1) CN117700806A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039694A (ja) * 2007-08-10 2009-02-26 Astom:Kk バイポーラ膜及びその製造方法
CN101613483A (zh) * 2009-08-05 2009-12-30 福建师范大学 以光敏剂或光催化半导体材料为中间层的双极膜及其制备方法
CN102061004A (zh) * 2010-09-14 2011-05-18 北京廷润膜技术开发有限公司 一种单片型双极性膜的制造方法
CN114774987A (zh) * 2022-03-14 2022-07-22 东华大学 一种铁基双极膜及其制备方法和应用
CN115714187A (zh) * 2022-10-12 2023-02-24 池州学院 一种中间催化层改性的双极膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039694A (ja) * 2007-08-10 2009-02-26 Astom:Kk バイポーラ膜及びその製造方法
CN101613483A (zh) * 2009-08-05 2009-12-30 福建师范大学 以光敏剂或光催化半导体材料为中间层的双极膜及其制备方法
CN102061004A (zh) * 2010-09-14 2011-05-18 北京廷润膜技术开发有限公司 一种单片型双极性膜的制造方法
CN114774987A (zh) * 2022-03-14 2022-07-22 东华大学 一种铁基双极膜及其制备方法和应用
CN115714187A (zh) * 2022-10-12 2023-02-24 池州学院 一种中间催化层改性的双极膜及其制备方法

Similar Documents

Publication Publication Date Title
CN103387690B (zh) 一种交联型复合阴离子交换膜的制备方法
CN109546191B (zh) 一种混合基质型阴离子膜及其制备方法
CN113667161B (zh) 一种改性聚(偏二氟乙烯-co-六氟丙烯)接枝乙烯基咪唑阴离子交换膜的制备方法
KR20130120065A (ko) 연료전지용 음이온 교환 고분자 전해질 복합막 및 그의 제조방법
CN111111478A (zh) 一种pvdf基阳离子交换膜的制备方法
CN108682776B (zh) 一种高性能锂离子电池复合隔膜及其制备方法
CN113041850A (zh) 一种用于扩散渗析的多孔交联阴离子交换膜的制备方法
CN114276505A (zh) 含有聚乙二醇柔性亲水侧链的聚亚芳基哌啶共聚物及制备方法、阴离子交换膜及应用
CN103772725A (zh) 一种引入n-烷基双核咪唑阳离子的阴离子膜及其制备方法
CN117700806A (zh) 一种低跨膜电压的单片型双极膜及其制备方法
CN112366425A (zh) 一种防漏涂蓝色陶瓷涂覆膜及其制备方法
CN109954409B (zh) 一种苯乙烯系均相阴离子交换膜的制备方法
CN112724689B (zh) 一种耐候性能好的pvb膜片及其制备方法
CN114369276B (zh) 一种燃料电池膜用亲水改性ePTFE膜及其制备方法
CN107623138B (zh) 一种复合质子交换膜及其制备方法
CN109004253A (zh) 一种用于制备燃料电池用氢的氢氧根离子交换膜及制备方法
CN113185738A (zh) 一种含氨基的聚芳醚酮砜/阳离子型金属有机框架阴离子交换膜及其制备方法
CN109954410B (zh) 一种半均阴相离子交换膜的制备方法
CN117482767A (zh) 一种高选择透过性阴膜的制备方法
CN117624700A (zh) 一种阳离子交换膜及其制备方法
CN114361544A (zh) 一种交联型质子交换膜及其制备方法
CN114792832B (zh) 一种交联的有机-无机碱性聚电解质膜的制备方法
CN113314746B (zh) 一种交联型功能化聚乙烯醇阴离子交换膜及其制备方法
CN117393819B (zh) 一种改性全氟磺酸质子交换膜的制备及应用
CN114288855B (zh) 一种水电解膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination