CN117683780A - Wheat stripe rust resistance gene YrLumai15 and application thereof - Google Patents

Wheat stripe rust resistance gene YrLumai15 and application thereof Download PDF

Info

Publication number
CN117683780A
CN117683780A CN202211105731.3A CN202211105731A CN117683780A CN 117683780 A CN117683780 A CN 117683780A CN 202211105731 A CN202211105731 A CN 202211105731A CN 117683780 A CN117683780 A CN 117683780A
Authority
CN
China
Prior art keywords
stripe rust
seq
wheat
rust resistance
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211105731.3A
Other languages
Chinese (zh)
Inventor
吴佳洁
于洋
兰圣洁
石勇
刘佳俊
李金龙
黄德华
倪飞
付道林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202211105731.3A priority Critical patent/CN117683780A/en
Publication of CN117683780A publication Critical patent/CN117683780A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a wheat stripe rust resistance gene YrLumai15 and application thereof, belonging to the technical field of molecular genetics. The invention firstly separates and clones from wheat variety Lu Mai15 to obtain a new stripe rust resistance gene YrLumai15. It was found that the yrlumi 15 gene was linked to the wheat stripe rust resistance phenotype and that mutation of this gene resulted in loss of the wheat stripe rust resistance phenotype. Therefore, the YrLumai15 gene can provide stripe rust resistance and has important application value in the cultivation of wheat stripe rust resistant varieties.

Description

Wheat stripe rust resistance gene YrLumai15 and application thereof
Technical Field
The invention relates to the technical field of molecular genetics, in particular to a wheat stripe rust resistance gene YrLumai15 and application thereof.
Background
Wheat stripe rust (wheat stripe rust or yellow rust) is a worldwide air-borne disease caused by infection with wheat stripe rust (Puccinia striiformis f.sp.tritici, pst). The disease has destructive harm to wheat production in China, and the epidemic year can lead to the wheat yield reduction of more than 40 percent, even the wheat yield is out of service (Ma Zhanhong, 2018).
The traditional medicament control not only increases the production cost, but also threatens the ecological environment, and the most economical, effective and environment-friendly stripe rust control measure is to cultivate and popularize disease-resistant wheat varieties. Under the disease-resistant breeding bottleneck that the mutation speed of the rust race is too high and the genetic basis of the main cultivated variety resistance is narrow, yr gene combination has very good resistance effect on rust bacteria, and the cultivation of durable disease-resistant varieties with multiple disease-resistant gene aggregation becomes the main direction of disease-resistant breeding (Feng Jing, etc., 2022). However, isolation of disease-resistant genes in the huge genome of wheat is a great challenge, of the 83 stripe rust resistant genes that have been named currently, only 7 genes are cloned (Fu et al, 2009) (Krattinger et al, 2009) (Moore et al, 2015) (clemenece et al, 2018) (klemiuk et al, 2018) (Zhang et al, 2019) (athyannan et al, 2022). Therefore, there is an urgent need to discover more disease-resistant genes to enrich the diversity of disease-resistant genes.
The substitution of the short arm of the 1B chromosome of wheat with the short arm of the 1R chromosome of rye results in a wheat-rye 1BL/1RS translocation line, the 1BL/1RS variety harboring multiple disease-resistant genes from rye, including the stripe rust resistance gene Yr9 et al (magoetal, 2015). Wheat variety Lu Mai is highly resistant to stripe rust, both leaf rust and stalk rust, is immune to physiological race No. 22-28 in the stripe, and is highly resistant to physiological race No. 29 in the stripe (Sun Lanzhen et al, 1994). The variety carries the stripe rust resistance gene from the 1RS chromosome in the whole growth period, is linked with a far-end marker Iag95 (Mago et al, 2002), but the stripe rust resistance gene is successfully separated from the strain by no one, so that the sequence of the disease resistance gene and the information of the coded protein are undefined, and the disease resistance potential of the stripe rust resistance gene is difficult to fully develop.
Disclosure of Invention
Aiming at the prior art, the yellow rust resistance gene YrLumai15 is obtained by separating and cloning from wheat variety Lu Mai. The yrlumi 15 gene is linked to the wheat stripe rust resistant phenotype and mutation of this gene results in loss of the wheat stripe rust resistant phenotype. Therefore, the YrLumai15 gene can provide stripe rust resistance and has important application value in the cultivation of wheat stripe rust resistant varieties.
In order to achieve the above purpose, the invention adopts the following technical scheme:
in a first aspect of the present invention, there is provided a wheat stripe rust resistance gene yrlumi 15, wherein the wheat stripe rust resistance gene yrlumi 15 is a nucleic acid molecule as shown in i) or ii) or iii) or iv) below:
i) The nucleotide sequence is a nucleic acid molecule shown as SEQ ID NO. 1;
ii) the nucleotide sequence is a nucleic acid molecule shown as SEQ ID NO. 3;
iii) A nucleic acid molecule encoding the amino acid sequence shown in SEQ ID NO.2 other than i) or ii);
iv) a nucleic acid molecule which has 90% or more identity to the nucleotide sequence of i) or ii) and expresses the same functional protein.
Wherein, the full-length cDNA sequence of the wheat stripe rust resistance gene YrLumai15 is shown in SEQ ID NO. 1; the protein coded by the YrLumai15 gene (namely YrLumai15 protein) has an amino acid sequence shown as SEQ ID NO. 2; the full-length expression frame of the YrLumai15 genome comprises a promoter, a genome coding region and a terminator, and the nucleotide sequence of the full-length expression frame is shown as SEQ ID NO. 3.
In a second aspect of the present invention, there is provided a protein encoded by the wheat stripe rust resistance gene yrlumi 15 described above.
The recombinant expression vector carrying the wheat stripe rust resistance gene YrLumai15, a transgenic cell line or a genetically engineered bacterium are also the protection scope of the invention.
In a third aspect of the present invention, there is provided the use of the wheat stripe rust resistance gene yrlumi 15 in (1) or (2) as follows:
(1) Regulating and controlling the resistance of plants to stripe rust;
(2) Cultivating the stripe rust resistant plant variety.
In the above application, the plant is preferably a gramineous plant; further preferred are wheat plants; more preferably, the plant is wheat, barley or rye.
In a fourth aspect, the invention provides the use of a recombinant expression vector carrying the wheat stripe rust resistance gene YrLumai15, a transgenic cell line or a genetically engineered bacterium in the cultivation of wheat plants with increased or decreased stripe rust resistance.
Preferably, the wheat plant is wheat, barley or rye.
In a fifth aspect of the present invention, there is provided the use of a protein encoded by the wheat stripe rust resistance gene yrlumi 15 in (1) or (2) as follows;
(1) Improving the disease resistance of the plants to the stripe rust;
(2) Preparing the medicament for preventing and treating the stripe rust.
Preferably, the protein encoded by the wheat stripe rust resistance gene yrlumi 15 is a protein as shown in any one of the following (A1) or (A2):
(A1) A protein consisting of an amino acid sequence shown as SEQ ID NO.2 in a sequence table;
(A2) A fusion protein obtained by ligating the N-terminal and/or C-terminal of the protein defined in (A1) with a protein tag.
Wherein, the proteins (A1) and (A2) can be synthesized artificially or can be obtained by synthesizing the encoding genes and then biologically expressing.
Among the above proteins, the protein tag refers to a polypeptide or protein that is fusion expressed together with the target protein by using a DNA in vitro recombination technique, so as to facilitate the expression, detection, tracing and/or purification of the target protein. Wherein, in order to facilitate purification of the protein in (A1), a tag may be attached to the amino-terminal or carboxyl-terminal of the protein of (A1). The tag may be Poly-Arg (typically 6 RRRRRs), poly-His (typically 6 HHHHHH), FLAG (DYKDDDDK), strep-tag II (WSHPQFEK) or c-myc (EQKLISEEDL).
In the above application, the plant is preferably a gramineous plant; further preferred are wheat plants; more preferably, the plant is wheat, barley or rye.
In a sixth aspect of the invention, there is provided a method of increasing resistance to stripe rust in a plant, comprising: transferring the stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO.3 into a plant to obtain a plant with improved stripe rust resistance;
or up-regulating expression of stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO.3 in plant genome, and screening to obtain plant with improved stripe rust resistance.
In the above method, the method for transferring the stripe rust resistance gene into wheat or barley comprises: polyethylene glycol method, agrobacterium mediated method or gene gun bombardment method.
In the above method, the method of up-regulating the expression of a stripe rust resistance gene in a plant genome comprises: introducing a DNA fragment capable of activating or increasing the transcription level or translation level or protein activity of the stripe rust resistance gene; or controlling the synthesis of specific small RNA molecules, and up-regulating the accumulation of stripe rust resistance gene mRNA.
In the above method, the plant is preferably a gramineous plant; further preferred are wheat plants; more preferably, the plant is wheat, barley or rye.
In a seventh aspect of the invention, there is provided a method of reducing resistance to stripe rust in a plant, comprising: inhibiting expression of stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO.3 in plant genome, and screening to obtain plant with reduced stripe rust resistance.
In the above method, the method of inhibiting expression of a stripe rust resistance gene in a plant genome comprises: mutating or knocking out all or part of the sequence of the stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO. 3; or interfering RNA is used for interfering the expression of stripe rust resistance genes shown in SEQ ID NO.1 or SEQ ID NO. 3; alternatively, the anti-stripe rust gene shown in SEQ ID NO.1 or SEQ ID NO.3 may be silenced using a gene silencing system.
Preferably, the stripe rust resistance gene shown in SEQ ID NO.1 is subjected to at least one of the following mutations (1) to (6):
(1) Mutating the 211G base to an A base;
(2) Mutating the G base at position 1396 to an A base;
(3) Mutating the G base at position 2023 to an A base;
(4) Mutating the 2107G base to a T base;
(5) Mutating the G base at position 2633 to an A base;
(6) The G base at position 1503 is mutated to a C base.
In an eighth aspect of the present invention, there is provided a molecular marker YrLumai15-2728 for identifying wheat stripe rust resistance gene YrLumai15, wherein the molecular marker YrLumai15-2728 is a PCR marker designed based on the coding region of YrLumai15, and the nucleotide sequence is shown in SEQ ID NO. 4.
The primers used for amplifying the molecular markers YrLumai15-2728 are YrLumai15-FP (SEQ ID NO. 5) and YrLumai15-RP (SEQ ID NO. 6). After amplification by the primer, if a 1261bp specific band appears, the gene carries the wheat YrLumai15 gene; if nonspecific amplification occurs, it is recommended that the corresponding wheat is not resistant to wheat stripe rust.
In a ninth aspect of the present invention, there is provided the use of the above-mentioned molecular marker YrLumai15-2728 or a primer for amplifying the molecular marker YrLumai15-2728 in any one of the following (1) to (3):
(1) Identification of stripe rust resistance genes;
(2) Plant breeding;
(3) Preventing and treating plant stripe rust.
In the above application, the plant is preferably a gramineous plant; further preferred are wheat plants; more preferably, the plant is wheat, barley or rye.
The invention has the beneficial effects that:
the invention firstly separates and clones from wheat variety Lu Mai15 to obtain a new stripe rust resistance gene YrLumai15. It was found that the yrlumi 15 gene was linked to the wheat stripe rust resistance phenotype and that mutation of this gene resulted in loss of the wheat stripe rust resistance phenotype. Therefore, the YrLumai15 gene can provide stripe rust resistance and has important application value in the cultivation of wheat stripe rust resistant varieties.
Drawings
Fig. 1: the mutant of the disease-resistant YrLumai15 is high in wheat stripe rust at the seedling stage; wherein 1-5 are different disease-inducing mutants, and 6 and 7 are mutagenesis parents Lu Mai.
Fig. 2: detecting the susceptibility mutant with an Iag95 marker; wherein 1-5 are 5 susceptibility mutants 2365, 3289, 3530, 2333 and 3222.
Fig. 3: the YrLumai15 gene structure and the mutation site of the Rumex 15 stripe rust mutant; 2365. 3289, 3530, 2333 and 3222 represent 5 mutants, of which 2365 carries 2 mutation sites.
Fig. 4: identifying a molecular marker YrLumai15-2728 of a wheat YrLumai15 gene; wherein Lu Mai is a parent material carrying a stripe rust resistance gene YrLumai15, and CB037-PstS is a stripe rust resistance material; f (F) 2 R is Lu Mai/CB 037-PstS combination F 2 Single strain carrying YrLumai15 gene in population, F 2 S is a single plant which does not carry the YrLumai15 gene.
Detailed Description
It should be noted that the following detailed description is illustrative and is intended to provide further explanation of the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
As described in the background section, the development of new stripe rust resistance genes is not only important but also impossible to terminate in the evolving situation of the continued pathogenic bacteria. Wheat variety Lu Mai exhibits high resistance to wheat stripe rust, in order to isolate its stripe rust resistance gene, we used Lu Mai to mutagenize Lu Mai using ethyl methylsulfonate (Ethyl methanesulfonate, EMS), screen stripe rust type mutants, and identify the disease resistance gene in parent Lu Mai by analyzing mutant genes common to stripe rust type mutants.
For more than 3000 parts of M 4 And (5) inoculating and identifying the generation Lu Mai mutant, and screening 5 parts of stripe rust-sensitive mutants. The physiological race of the adopted rust bacteria is CYR29, CYR31 and CYR32 mixed spores. The mutant phenotype is shown in FIG. 1.
RNA-seq sequencing was performed on mutant parental Lu Mai and 5 parts of the infected mutant material, and SNP-rolling was performed to obtain single base differences between the mutant material and mutant parental Lu Mai. And then analyzing the SNP, counting the number of the SNP by taking the transcript as a unit, and finding that 6 SNP are on the transcript trans/1460, wherein the SNP corresponds to 5 mutants of the infectious disease respectively.
Then we combined with the Kenong 9204 reference genome data also containing 1BL/1RS translocation to analyze, find the corresponding gene sequence TraesKN1B01HG01710, confirm the full-length coding region of the gene.
In summary, the invention performed RNA-seq sequencing on randomly selected 5 mutants of the disease, found that compared with the mutant parent Lu Mai, the 5 mutants identified as being diseased all had single base mutation on the same gene (EMS mutation base is random, the probability of multiple independent mutants mutating on the same transcript is very low, if the 5 mutants all mutate on the same transcript, it is sufficient to demonstrate the relationship of the transcript to disease resistant phenotype). Thus, the present invention designates this gene as yrlumi 15. The full-length cDNA sequence of the YrLumai15 gene is shown as SEQ ID NO. 1; the protein coded by the YrLumai15 gene (namely YrLumai15 protein) has an amino acid sequence shown as SEQ ID NO. 2; the full-length expression frame of the YrLumai15 genome comprises a promoter, a genome coding region and a terminator, and the nucleotide sequence of the full-length expression frame is shown as SEQ ID NO. 3. The method comprises the following steps:
full-length cDNA sequence of YrLumai15 gene:
ATGGATATTGTCACGGGTGCCATTGCCAACCTGATCCCCAAGCTGGGAGAGCTGCTTGTGGGGGAGTACAAGCTGCACAAGGGCGTCAAGAAAAATATCGAGGACCTCCTGAAAGAGCTCAAGACCATGAACGCTGCGCTCATCAAGATTGGTGAGGTGCCGCCGGACCAGCTCGACAGCCAAGACAAGCTTTGGGCCGATGAGGTCAGAGAGCTCTCCTACGTCATTGAGGATGTGGTGGACAAGTTCCTCGTACGGGTCCATGGCATTGAGCCCGATGACAACACTAACGGATTCAAGGGGCTCGTCAAGAGGACCACCAAGTTGTTGAAGAAGGTCGTGGATAAGCATGGGATAGCTCACGCGATCAAGGACATCAAGAAGGAACTCCATGAGGTGGCTGCTAGGCGTGACAGGAACAAGTTCGATGGTATTGCTTCTACTCCTACTGAAGCAATCGATCCTCGTCTTCATGCTCTCTACATAGAAGCCGCAGAGCTAGTTGGCATCTATGGGAAGAGGGATCAGGCACTCATGAGTTTGCTCTCCTTGGAGGGCGATGATGCCTCTACCAAGAAACTGAAGAAGGTCTCCATTGTTGGATTTGGAGGGTTGGGCAAGACCACTCTTGCCAGAGCAGTATACGAGAAGATTAAAGGTGATTTTGGTTGCCACGCATTTGTTCCTGTCGGGCAGAACCCTGATATCAAGAAGGTTTTCAGGGATATCCTCATTGACCTCCGAAAATCAAACTCAGATCCTAGCAACTCTAACTCAGATCTTGTGATACTGGATGCAACACAGCTTATCGACAAGCTTCGTGAATTCCTTGAGAACAAGAGGTACCTCGTAATAATTGATGATATATGGGATGAAAAATTGTGGAGATACATCAACCTTGCTTTCTCTATCAATAACAATCTAGGAAGTCGGCTAATCACCACAACCCGAGATTTCGATGTCTCCAAATCATGCTGCTCATCAGCTGATGATTCAATTTATCATATGAAACCTCTTTGTACCAATGACTCCAGAAGGCTCTTCTATAAAAGAGTATTTGCCGACGCTAGTGGATGTCCAAGTGAATTTGAACAAGTGTCTAAAGATATATTGAAGAAATGTGGCGGGGTACCACTAGCCATCATTACTATTGCAAGTGCTTTGGCTAGTGGCCAGCAAGTGAAACCAAAGCATGAGTGGGATATTCTACTCCAGTCCCTTGGCTCCGGAGTAACAAAAGATAATAGTTTGGCTGAGATGCGGAGAATACTATCTTTCAGCTATTATAATCTACCGTCTCATCTGAAAACTTGTCTACTTTACCTATGTATATATCCAGAAGATAGCACCATTGGTAGAGATAGACTGATATGGAAGTGGGTGGCCGAAGGATTTGTCCACCATGGAGATCAAGGGACCAGCCTGTTTTTGGTCGGATTAAACTACTTCAACCAGCTCATTAATAGAAGTATGATCCAGCCTATATATGATAATGCAGGCCAGGTATATGCTTGCCGTGTACATGATATGGTTCTGGACCTTATCTGCAACTTGTCACATGAAGCAAAGTTTGTTAATCTATTGGATGCCACTGGGAATAGCACATCTTCACAAAGTAATGTTCGTCGTTTGTCCCTTCAGAATAAAAATGAAGATCATCAAGCCAAGCCTCTCACAAATATCATGAGTATGTCACGAGTGAGGTCCATTACTATCTTTCCACCTGCTGTTAGTATCATGCCAAGTCTGTCAATGTTTGAAGTTCTGAGTGTACTTGATCTGTCGAACTGTGATTTGGGACAAAGTAGCAGCCTGCAGCTTAACCTAAAGGGTGTTGTACATTTAATCCACCTAAGGTACCTTGGTCTAGCAGGCACTCAAATTAGTGAACTCCCGACTGAGATAGGAAACCTGCAGTTTTTGGAGGTGTTGGATCTTGGAGATAATTATGAGCTAGATGAATTGCCTTCCACTCTTTTCAAATTGAGAAGATTAATCTACCTAAATGTTTATCTCTTTAAGGTGGTTCCAACTCCTGGTGTGTTGCAGAATCTGACATGCATAGAAGTGTTGAGGGGGATCTTGGTCTCTCTGAACATTATTGCACAAGAGCTTGGCAACCTGGCAAGGCTGAGGGAGCTTTCGATTCGCTTCAAGGATGGTAGTTTGGATTTGTATGAAGGTTTCGTGAATTCTCTGTGCAACCTACATCACATAGAATGCCTAAGTATTGGTTGGAATTCTGAAAAAACGTCTTTTGAACTGATGGATCTCTTGGGAGAACGCTGGGTGCCTCCTGTACATCTCCGCGAATTTGTGTCTAGGATGCCCAGCCAACTCTCTGCACTGCGAGGGTGGACAAAGAGAGACCCCTCGCATCTCTCCAACCTCTCCAAGTTAATCCTCTCGTCAGTGAAGGAAGTGCAGCAGGAGGACGTGGAAATCATTGGGGGGTTGCTGTCCCTTCGCCGTCTCTGGATAAAGAGCACCCACCAAACACAGCGGCTGCTAGTCATCCCTACAGATGGGTTCCGCTGTATGGTAGAATTTTACTTGAATTGTGGGTTAGCAGCGCAGATAATGTTTGAACCAGGAGCTTTGCCGAGGGCGGAAGAAGTTACGTTCAGCCTGGGCGTGCGGGTGGCAAAAGAGGATGGAAACTGTGGCTTCGAATTGGGCGTGCAGGGGAACCTGCTCTCCCTTCGGCGGCAGGTCTGGGTTAGGATGTATTGTGGTGGAGTGAGGGTTGGGGAGGCAAAGAAAGCGGAGGCTGCGGTGAGGCACGCACTCGAAGCCCATCCCAATCATCCCAGGATTTATATTGATATGTGCCCGCGTATAGCAGAAGATGCTCATGATGACGATTTGTGCGAGGACGAGGAGATCTGA。
protein encoded by the yrlumi 15 gene:
MDIVTGAIANLIPKLGELLVGEYKLHKGVKKNIEDLLKELKTMNAALIKIGEVPPDQLDSQDKLWADEVRELSYVIEDVVDKFLVRVHGIEPDDNTNGFKGLVKRTTKLLKKVVDKHGIAHAIKDIKKELHEVAARRDRNKFDGIASTPTEAIDPRLHALYIEAAELVGIYGKRDQALMSLLSLEGDDASTKKLKKVSIVGFGGLGKTTLARAVYEKIKGDFGCHAFVPVGQNPDIKKVFRDILIDLRKSNSDPSNSNSDLVILDATQLIDKLREFLENKRYLVIIDDIWDEKLWRYINLAFSINNNLGSRLITTTRDFDVSKSCCSSADDSIYHMKPLCTNDSRRLFYKRVFADASGCPSEFEQVSKDILKKCGGVPLAIITIASALASGQQVKPKHEWDILLQSLGSGVTKDNSLAEMRRILSFSYYNLPSHLKTCLLYLCIYPEDSTIGRDRLIWKWVAEGFVHHGDQGTSLFLVGLNYFNQLINRSMIQPIYDNAGQVYACRVHDMVLDLICNLSHEAKFVNLLDATGNSTSSQSNVRRLSLQNKNEDHQAKPLTNIMSMSRVRSITIFPPAVSIMPSLSMFEVLSVLDLSNCDLGQSSSLQLNLKGVVHLIHLRYLGLAGTQISELPTEIGNLQFLEVLDLGDNYELDELPSTLFKLRRLIYLNVYLFKVVPTPGVLQNLTCIEVLRGILVSLNIIAQELGNLARLRELSIRFKDGSLDLYEGFVNSLCNLHHIECLSIGWNSEKTSFELMDLLGERWVPPVHLREFVSRMPSQLSALRGWTKRDPSHLSNLSKLILSSVKEVQQEDVEIIGGLLSLRRLWIKSTHQTQRLLVIPTDGFRCMVEFYLNCGLAAQIMFEPGALPRAEEVTFSLGVRVAKEDGNCGFELGVQGNLLSLRRQVWVRMYCGGVRVGEAKKAEAAVRHALEAHPNHPRIYIDMCPRIAEDAHDDDLCEDEEI。
the yrlumi 15 genome full-length expression framework:
CATCAATAACGATTAAGTACCTGGCAGAGAAATTAATTAATGGAAATAATATTTTACAGACTTAAAGTATGGGTAATTCAAATAGGCATGTAGGAGGATGCGCTCCTGGGTGAAAGAAATGATATTCTTGGTGTTAAAAAGTTCTGGAAGAACGTACACATGTACATGTCCGCATCCTATGTGTAGATGTGATTTTGCATGCAAAACACAATTTTTGTGGCCCGTGTGAAACCCAAAATGGGCCAGCTGGTTTTCTTTTGGCACAACCCAATTTATGTCTATGGGGCGGTCGGAGACTCGGAGTTGACGTCGGAGGGGGACGGTGTGTATGGCAGTGAGGCGTATGGTGGCATGGATCTGCTCCACCATGAGGCAGCATGCTTGGCCGCAGCCACCTCTTTCTCAGACGTCGTCCGCTTGGATGCCTCGATGACCTCCCATAATGCCTTCGCGTTTTTGCGACGACGGCCACGGGCGCCCATCTCCGTGGAGGTCAATGAACGGAGCCGGACCTAGTCGTCGTCGAAGAAAGATGGCATGCACATGATTGAAGCAGAGCCGCACCGGCTAGATCCGACCTTCTGGGTCACCTGGCAGACGCCAGCCGCTAGCGCCTTGGACTCCGGGAGCTGTTACAGGCTCAGATGGCGCGGCACGATAAGCTAGCGGCGACAAGGAGTGCATACGACAGTGATACACCGAAGCTGTATGACTGACGCCACACGACTAGGGACAGCACGAAATGCCTCCATCCTAGGATGCATTCTCCCTGGCAATCGGTGGGGGATGACACGAAGCTCGAAGAGCCTCCCTTGTCCATCCGCTTGCGGCAGAGGGCGACATAGAGGCGAGGTCCTCATCGGAGGCACAGAGCTTGAGTCCTTCGCCGCGAGCGCATCCCAATCATTCGGATAAGCCTCGCTGTCAGAGTCGGCTATGTCGGAGCAGAGGGCAACGAGGAGGGGAGATGATTGTGATGGAGCGGTTGAGAATGAGGACCCGATGTTTGGTTTGGGGTGGGGGTATATGTGGGGTTGGAGTGAGCCAGCCTGGGCCGGTCAGACGGCCCCATATCTGCCCGACATATGGGTTGGGTTTGACCACGCAACAAACACACACAACAACACCAACACAGAGACAAACAAACAACAAGGATACAATAGACTACAGAAAAAGCTAGCAGGCCACGACAAAGCACTAACACAAAGCTTCGACAAACAATGCATTCGATCGACGCCACGATCTTGTCGAAGAGGATACAAAAGCCAGGGAGGTGGCTTGCCACCGGAAGAAACCTGTGTGCCATCAAATCCCTGAGGCCACACCTGCGTCACACCAAACATCTCCGCCGCCAAAGAAGGCACCACCTGCCCTCTCGGCCTAGTTCGTAAGGCGCCGCCCCGTCGGTATGGCGGAGTTGCTCCCCTTGAGCATGCATGGATATTGAACAACCAGAGGCCCAAGGTAGGATGACAAGCACCAACACCTCATCTCACGAGACACCTCATCACTTGCACCTCTCTCCTTCAAAACCCACCACAGTGCACGACCCAACTGCCGGACGAAAGCACCACCGAAGACGCAGATAGAAGAAATGCACGACGCCATGGGGCACAACTGGAGCTCTAGCAGGAACCCTATCTACCACTGAGCACCGCACCAATGAAGAACAAATCAACCGCAAACAGCTGCGACCACCTGCGCGACAGCAATGCCTGCCCTCCCGTTGTCCAAAGCTGACGCCTTGAAGAAGGCGAACGACACCGGAGCGCCGCCGCTGCCAAAATCCCAAGCCCTAGGTCAACCCGCTACATCTGACGAACCAAAGGCCACCGAAATCCCGGTGTGGCGGGGTTAGCCAAGTTGCACGCCAAGCAACCACCTTCTTCAGAATCTTGCGCCAAGAGCATGTGGAGACGGCCCTCGGGCCATGACCCACATCCATCGCCGCCTTGCCGCGCGCGCGGCCAAGGGGACTGCTCGTAGCCACGGCGTCCGCCACCTGCTGCAAGGGAGTGACGCCCTTGCCATGGGGGCCGCTGCCTCAGATCAAGAACCCCCCCCCCCTCCACATGGACCATGGGGCGGAGAAGATCCTCGCCGCCGCCTTCCTCGGCGGCCGTGTGGGCTGCCCGGCGACCCCCTCAGGCAACGACGAGAGGGAGGAAAGGGGAGGGGATCTGGTGTGGCGGCGCTAGGGTTTCGCCATGGAGGGGCGACGCGAGGGGAGGGGAAGGGGAGCCACACACAAATCTAGAGATAACTAGCAAGGTCATTTGCCCTGTACGTGTGAGGTGGGTTCGAGGGTTCTGGTTGTAGATGGTCTTAGCGTAGTGGAATATGATTATATTTTTATGTTATTTTGATCTATGATGTTACCTCGGCATCCCTGTGAAAATATATTCAAGGAGATGGGACTAGTTAAGAGTTAAGAGTCATTTCATATTTTTGAATTGCAGAACGCAAGTAGTAAGAGAATATAACTAGCTGGTGAAGATTCCCTTTGGACGAAATTGATTAGGAAAACATGTATTATATTTAAAAGATCTTTGAATTTGTCATCAGACGAAGTTTCTAACCATATAATATTTTTGCATAGTATACCTGTTTTATTAGTCAAATCAAACATCTAAACCACCGACTTATAAACTCAATCAGAAGTATATAGTCCCTCCGTCCCATAGGACATGGAGGGAGTACTTCTTAGAGCATCTCCAGCCGTTGGCCCCAAGGACGTGTCGAAAACCGCCGTCTGGGGGCGAGCCGGCGCTAGTTTCGGCTTGGGTGCCAGTTCGTTCCCAGTCGCCGGCCCCCCAGGTCGCCCCCCAGGCGCCGATATCGGCCCATTTTCGGTGCTTTCAGCCCATTTTCGGCGCTTTTCAGCCCTTTTCTGGCGCAAAACGGCCCAGGCTCGACGTTGTCGTAAATAGTTCACATAGATAGATAGATAGTTCACATATATAGATAGATAGATAGTTCACATAATCTTAACTCTACGATAGATAGATAAATAGATAGTTCACATAGTCTTCTCCTACGACCTACTACTACTAGTCATTCTCCGACTCGGACTCTTCCTCGGTGATGTCCTCCTCCGATGTCTCAGCGTAGGTGTCAAGGAACCGCTCGTCGGTGAAGTCCCAGGAGGACGCATCTCCTAGCTCGACGTTGGACTTAGCGATCGCCCTCCGCGCTCGCTTGTCCTCGCAATAAGCCGCTCGCTCCTTCCTCCTCTTCTTCCTCTCCGCCCTCTTCTCGGCCAAGAACTGGTGCTCGTCGATGAAGTCTTGCGGTAAGTTTTGGCGCCACGTCGCCATGGCTTCCTCATCCATCTCGGCCAAGTTGAGATGATGCGCCCGCCTACGGTTCTTCCGACGATTTTCGTCGGTTCTAAGCCGCGGGGGAGGCGCCAGCTCCTGTGCCCGCTCCAGAGTCGGCACGTCCGTGAAGTTCATGTCCCAACGGGAACGCCGGAGGCGCCACGCCGCAGCGTCGTACGCGCGGGCGCCCTCCTGAGCGGTGTCGAAGGTTCCGAGGCGGAGGCGCACGTCGCCCGACTGAATCTTGGCAGAGTAGGTGCCAGACGGACGAACCCGGACGCCGCGGTAGCCCGCACCTCCCCGGCGGCGAGGCGGCATGGGGGCGCAGTGCATGTCGGCGACGAAACAGCCAGCGGCCGGAGGGGCGCAGTGCGTGGCAGTGTGGAGAGTGCGGTGGGGCGATGGGGCTGCGGTGTGGGCGTTGACCGGCGAGGTAGGCTGCTTTTATAGCCGGAGCTCGGGCGGCGAGAGGCGCATGCCAGGCGACGCGTGGCGGTCGCCCGTGGTGCCGGGCGACGCGACGGGCCGCTGGGCGGCATCAATGGCAGGCGACGGCTCGGCAGTGCGGCAGCTTTGGCATTGATTCCCGCGGGAACCGAGGCGATGAGGACGACGAAGCAGCGCGTCGCTGACAGGGCGGGCCCATCACATTCGCGCCAAAAAACGCCTCGCCCGGCGCCCCCAGGCGACCCCAGCGCCCCGGGTTCGGGTTGGGTCCGCCGGCGCCAGTTTCGGCCCAATCCGGCAATTTTCGGCGTCCTGGGGGCGCGACTGGGCCATTTTTTCAGCGCCGGCGCCTAAAAAGTGGCCTTGGGGGGGGGGCGGCTGGAGATGCTCTTAGCGTTTCTCTTTTGTAGTAGCTGGTAATAATCGAGTTCCTCCGTCCAGTTTGAAATTTTGGTTTGGTTGAGAGTATTGACTGGGATGGGGATCTTTCGATTTCGGGTGCTTGTAATTATGATTCTCGCCATCCTTCAACTCTGGATCCTCCATCCTTCAAAACAACAACTACCAAAACACGAACTCAACGGCGTCTGAATTGATTTTTTTTTTAAATTACAAATAATAATCTAAAATTGCTAATTTCTTTTGAAACACACACGATCTAGTGTTATACTCATGTGAAAAGTAAGGAATGATTTTCCTGGTATTCTGAGTGAAAGAAAACAAAATCGACATTGTATAAATGTTACTATTCGCGCTTTTTTACTCATAATATATATTTTGCCTTGAAGTCAACTTTAGTCCTTCCATTGTGAATTTTTTTATACGAGTATAACACTAGATCACATATGTTTCCAAAATGTTCCAGAAATTTTTGAACTGTATTGCAGTTTCTCAATTATTATTTCAGTTCAGGTGCATTGGGACCCAAGACCCATTGGGTATACCAACCGGCAAATGTGTGCATGAAGGAGAGAGAGAGGGGTAAATGCATGATGTGGACTGAGCAACCAACTGAGAGAGATTCAGAGAAATGAGAGAAGAGTAAATACAGTGAAGCAATGGGATATGTCATTGTTTTCTCTGAATCCCTGTCTCTCTATGACCCACTGCACTGAATGATTACATCAACGAAAAACTGTACTGTTCGGAGGGATCGTGCGGCTCTGTTATCTCTTCCAAGAGCATACTGCTAGTAATTTCCTCTCTTGATTGATTGTTGTTGTGGGTCTTCCTCGCCTCCACTGAGTGCTCCCTTCCTCTCGTCTCAGTCATCTCCATCTTTTCAAGTTGTGAACTGAAACTATGTGCTTATTCTACAGTTTAGCCTATATATGTTCATGATCCCTCAGTTTTGTAGGTATGGTTTCAGCTTCTGTTACAGTTTAACGCACGTTCATGAACTGAAACTATGCTTTCCCTAGCACTAGTACCCAAAGGCATTGAGTATTCACTACCAAACCGAAATTTTCAAACTGAACAGAGGGATCCAATTATTTACCGGTTGCAAAGATGAACGCTAGTGAGTAAAATTAGTAGTGTCATTTCCTGATAAGTGCATGAAGGATGGAGAGATGGTAGATGCCTGGCAGGTGCATGAGGGAGATTGAGAGAAATGAGAGGACGTACAATTATTGTCTCTTGAGTCACTGTCCCTGTATGACCCACTGCACTGAATGATTGCATGACCCACTGTACAATTATTCAGAGGCATCGTGGGTGCTCTCTTATCTCTTGACCTGCTGTTGTTAGTCTTCCTCTGCTCCTCATCTCCACCACCGACAGAAGAGTGCTCCCTTCCTCGCATCTCAGTCCTCTCCTCCATTGCGCGCCCTATTGGTGATCTCATCCAACCTCCGACTCCGAGCTCGCCCGTGGACATTTTTGGGTATATTTCTTGTCGATTTGTTTCCAGTTAAAGTAGCAATGCTTGCATCTAAAAGTTATTATTTCTCCTGCTTGAGATTCTGATCCATTTGTGTTGATTGAATCCAGGGTGGGATCGTGGGGCTCTGTATCTTTCTAGTTCAGAGTACTATTGTGCTTCCTCTGCTCCTCGTCTCCGCTTCCAACTAGCGGCCTGGTAAAAATTTCACTCCCATCTTTATTGCTATTCTCTTCTTATTAATCTGCTGATTTGCTAGATTGTAAAGTTCTTATTACTTATTCTTCCAGATCGAGTGAAGCGACCTCCGCTGCCGTCTTGTCCCCTAGGACGCAGTTGTGTCCTGCTCTGTCCTGCTCTGCTGGTGAAGCATCAACGGTGATGGCCATCCGGTGTTGATGCCGCCGCTGTGTGCTGCTCTGCCGTGAAGTATCAAAGGTGGGTTTAGATGGATATCGCAGTTTGGATTGGCAACTCACTTCTAGAGCTCGTTGAAATTAAAGCGTCACACTGTTTGGATTGGATTACAGCTCCCCATATTCATCTATTTTGTAGGTTTCCGGTTATTATTCAGAGCAACACGCTCACGGATCTGACCTCTGGTGCCCAGCCGCCGCTTCCGCTTTGTTGTCCCCACAACACGACCATCCGACGAAGACGCGGCCGTTGTGTTCTGCTCTACTGTGAAGCACCAAAGGTGGGCTTGGTCCAGATCCCTACATTCATCGATTTGGCTTGGCAACTCCGTTCTAGAGCTTGGATTGTGTTACAGATCCCTACATTCATCGATTTGCAGGTTTCCAGTTAATTGATCCAGAGAGCTCTCATGGATATTGTCACGGGTGCCATTGCCAACCTGATCCCCAAGCTGGGAGAGCTGCTTGTGGGGGAGTACAAGCTGCACAAGGGCGTCAAGAAAAATATCGAGGACCTCCTGAAAGAGCTCAAGACCATGAACGCTGCGCTCATCAAGATTGGTGAGGTGCCGCCGGACCAGCTCGACAGCCAAGACAAGCTTTGGGCCGATGAGGTCAGAGAGCTCTCCTACGTCATTGAGGATGTGGTGGACAAGTTCCTCGTACGGGTCCATGGCATTGAGCCCGATGACAACACTAACGGATTCAAGGGGCTCGTCAAGAGGACCACCAAGTTGTTGAAGAAGGTCGTGGATAAGCATGGGATAGCTCACGCGATCAAGGACATCAAGAAGGAACTCCATGAGGTGGCTGCTAGGCGTGACAGGAACAAGTTCGATGGTATTGCTTCTACTCCTACTGAAGCAATCGATCCTCGTCTTCATGCTCTCTACATAGAAGCCGCAGAGCTAGTTGGCATCTATGGGAAGAGGGATCAGGCACTCATGAGTTTGCTCTCCTTGGAGGGCGATGATGCCTCTACCAAGAAACTGAAGAAGGTCTCCATTGTTGGATTTGGAGGGTTGGGCAAGACCACTCTTGCCAGAGCAGTATACGAGAAGATTAAAGGTGATTTTGGTTGCCACGCATTTGTTCCTGTCGGGCAGAACCCTGATATCAAGAAGGTTTTCAGGGATATCCTCATTGACCTCCGAAAATCAAACTCAGATCCTAGCAACTCTAACTCAGATCTTGTGATACTGGATGCAACACAGCTTATCGACAAGCTTCGTGAATTCCTTGAGAACAAGAGGTATGCATCACTTACAGCAAAATTGTGCACTATTATGACATGATTATTTCATATGCTAGTTGTACAAGTAATACCGAAAGTGTCTAAACATATTGTAGCGGGAGGGTTCAGAATAATTTTTCCATTGAGGCCACCTTTACTGGCATATGCAGTTCACACTAAACTGTAGACCTTCTAGGTGATAAATTTCAAGCATGTAGAAGTTTATACTATGTTACTATGTCTGAAACTTATTGGCATTGGTCCAGGAAATCCATCTAAACATTTTGCGTTACACCAAAGTGAGTGTAATGACAACTGTAACAAGTAAGGAAAGAAAGAGGAAGATAAATGTTACAAAAATTTAAATCAAACTTATTACCATTTCTTTCTTAACCCACCTAGTTTTAAAACACATATTCTAAAGGGTGGCGATGCGTGCCAAAGGCTGCCCAATAAACTTCCTAAAATATTGTATATTGGATCCAAACAAGAAGTTAAATTGTCCCTTCACCAACTCATTATATTCACCATGTATGCCTTTTTTTCTGGAGACAAACTATCAGCAAAATATAGATGAAAAGACACTTCTTTTTCGGTACAACCCCCTTAGACACATCAATGGACCAGATCTGCCTCTACCCCTTCATAAGAAAGGGTATGATTGTCCTTTTACGAAATACGTCTCCCGGACCGTACAACAGGGAGCAGTAAACTGGGCCGGCCCAACAGCAAACGATGCACGTAGTGGACTTGTACTGAAACAGTGGAACAGCCTAAAAAATTAAAATTCATTCTAGCAAGTATCGAGCACAAGACCTCCCACATTAACACAAACCAACACAACCACTTGATTGAGGCAGCTATCTTGACTAATTTGCAGCGCGGCCTTTTAAGAACTATGACCAGTGACATATTTGACCATTATTTTGGATATTAGAACGTGACTTTTTTAAAACGTGGACATTTTTCCAAAATGTAAACAAATGTTTTAAAATTCTAACAAATTTTCCGAAAAGTGGAACACATTTATAAAGTCTCAACCAATTTAAAATAATGAGACTTTTTTTAAAATTCTGACAATTTTTTAAACACAAACTATTTTGAAACTTGAAACTTGTTTGAAAATGCGGCCATTTTTTGGTATTTTCGAACTTTATTGAGAAATATGAATAAATAAATAAATAAATAAATATGTTGAACATTTTTTGAAGTTTGCGATTTTGAAAGATAAAAAGATTCATGTACCTTTTTAAACATTCCCAAAACAGGTTAAAACCGGCCTAAAACCATCTAACAAGGTTCTCAAAACCGGCATCTGCAGAGGCAACGAACAAATTAAGATGGGCTGGATTATGTTCAATCGTATCGATTGTGTGTGTGAGAAACAACAACTGTTTGACGTAATAAATGTCAAATAGAGTTTCCCTCAACACATGCCCGATGGGATCGTTGTCGTCCGCTAGTTAAGCCAACGGCTAACCATTTTGTTTTCTATTTTTTTGTTATTACTTTTGAAACTTGTTCAAAAAATTTGAAAATTATTTGGAATACCTGCAATGTTCTTCTTTTCAAATATTTTTTAGAAATTTCAAAAAAATCTGGAATCTCAAAAAATGTTCGTGTTCTCGAATATCTTGTTCACAAAAGAAGAAATGCACGTGTTTCAAAAAATGATAATTTTATAGAAAAGTAAGAATTCCCTATTTTTGTTCAAATTTTTTATCAACTGTTCGAAATTTGTTATCAATTGTCGAAAAGGTGTTTAAACTTGTAATTTTTTCATAAATAAATTTAAATTTCAAAATTGTTCACAAATTTCAAGAGATGGTTAGTTCACAACAAAATGTTCATGTTGGTTGATAATGACAGAAGTTACAAATAACAAAAGCTTTTAAATTGGGAAAATTTACATGCTCATGGGACTCTGTCTGGCCTAGTCTAGCACACTCCTCTCAACTAGTGGCCTTTTGACTATGGATAAATGACCCCAACTTTTTTTAGCAGCCTGGTACGGACACATGAGGCATCCGTGCTAGGTTTGAACGACTTCCGACATTGTTTGCATGTTGTGACATGTCCAACCATTTATTGGTCCTTTTTCATCAAGAAAACTCTAGAAAAGGAATTCTTTTCCAAAACTCAAACAACTTGGCATGGTGTCTAGAATTGGCCATATAAGCTCATGGAATAAATTTGGGTCATATGATGGATGCCGAAAAATGGTCTCAAGCGGACCCTTCTCGCCTACTTGAACACTCCATGATAGGTGTGAATGAATTCCCAATAACATGGTCTAATTTAAGACATGCATGAAATGACCCCAACTTTTGCAAGCAGGTGGGAATGCCCGCGGTAGGCATCCATGATAGGTTTGAACGAATTCCTACACCATATGTAAGTTGCGTCACGTCTAGCCATTTATTGGTCATTTTTCATTGAGAAAACTCCAAAAAATGCAAGAGTTGTCGAAAACTCAAACAGTTGGCCTGATACCTTGAAATGGTCATGCATGGCCATGAAAACAAAATTGGGTCCATTTAAGGGATGTCGACAAACGAGTTGCTCCCAAACGGACCATTTTGGACCCAAACACTCTCTGTTGAACATGATATTTTATTGGAAATCTCAGGATCGACCTCAACTTTTGCAAGCAGGTTGGCATGCCCATGTTAGGCGTCCGACCATTTATGGGGCTATTTTCACCGAGAAAACTCTAGAAAAAGCAAAACTTGTCAAAAACCGAAATAACTTGTTATGGTGCCTTCAAATGGTGTCAATGAAAAAAATTGGGGCCAGTTCAAGGGTGTGATATGAGAATATGAAGCCTATTATTTTGGAGATGGGAATGAAGCAAATATTTAGGTCGTTGGAAACATGCTATACGGACCAATGAAGCATGCTAAATTTTGAGTTGATGTGGAGGCAAAAAACGTAGTTTTGGTGCACTGTAAATGAATAGAGACGATTTTTTTTGGTGTCATTTTAGTTGCACTGGAAGTAAATTTTGGTAACATTGGATAATTTTTTTGCTTGATCGATTATTTTCCTTTAAAATCTTGAATTAGTTTTCTAAGGTTTATTTTGCTTTCTTAAATCGGTGATTTGTTTCCCAACTCGTGTGATCTATGGGCAGTTATTAGTATCCACCAAGCACATTTAGAAAAAGCTTTGCTGGCGCACGTTCTATGCCTTCCAATCGGATCTGTGTGTCAGTTTCTACATATTGAATGATGATGAAGTGGTCTGATCTGATTACTAGCAGTTCTCTTCTTTTAGCGTCACATCTGGCGCATGAACAAGTAAAATCAAATGTTGTAGGTAGTACAGCAGCCGTAGGTCTTCCAGTTGGTTACTGCCAGTGGATCGTTACAGAGAGGTAACGCGATCGATTCTCATTACCACCATCTAATTTTGAATGTTATGGAAAAAATTAATGGGCGAGCCCAGGACGCCAGAATGTTAAAGAAAAATATTTATGGGCCTAGCCCATGACGCGTGGGGGCGACTATTCGCACAGAGTTTTTTTTTTTGCATGGCTATTCGCACAGAGTTGGGCACTCCAAATGAACAAACATATGGCGTATACGTCTCAGCGGACAACCCATCATGCATGCAAAAATGGATACGATATGTGAAATGTCTGTACTATCCTTTATACGTTTTAGAGGGGGGTTGTACCGAAGCAAAACTCATGAAAAGATAATGCCATACTATTTGAGTGAGTCTCCAAGTGGTTCATTAGCTGCCATATATTAAATTGGTGGGCCAATCTATACTAGGATCTTTTCGATATATCTACCTGACCATTTTAACTTCTGTAGTTAATTGTATTCTACATATGGTCACTGATTCAGCAATTGCTAGTTGTGTTTTACTCCCTTGAATCTTAAATATTTATTCATTTTGTTTGTCGTTTTAAGATGCATGCCTGTTACGAGTTTGTTTCTGAATATACGCCCTTATAGATTGTTAGTTCCACCCATATATTCGTATGCCCTCAGTTTTTTGATATGTGTAGACCTTACACTGATGCTCTGAACTAATGTAGGTACCTCGTAATAATTGATGATATATGGGATGAAAAATTGTGGAGATACATCAACCTTGCTTTCTCTATCAATAACAATCTAGGAAGTCGGCTAATCACCACAACCCGAGATTTCGATGTCTCCAAATCATGCTGCTCATCAGCTGATGATTCAATTTATCATATGAAACCTCTTTGTACCAATGACTCCAGAAGGCTCTTCTATAAAAGAGTATTTGCCGACGCTAGTGGATGTCCAAGTGAATTTGAACAAGTGTCTAAAGATATATTGAAGAAATGTGGCGGGGTACCACTAGCCATCATTACTATTGCAAGTGCTTTGGCTAGTGGCCAGCAAGTGAAACCAAAGCATGAGTGGGATATTCTACTCCAGTCCCTTGGCTCCGGAGTAACAAAAGATAATAGTTTGGCTGAGATGCGGAGAATACTATCTTTCAGCTATTATAATCTACCGTCTCATCTGAAAACTTGTCTACTTTACCTATGTATATATCCAGAAGATAGCACCATTGGTAGAGATAGACTGATATGGAAGTGGGTGGCCGAAGGATTTGTCCACCATGGAGATCAAGGGACCAGCCTGTTTTTGGTCGGATTAAACTACTTCAACCAGCTCATTAATAGAAGTATGATCCAGCCTATATATGATAATGCAGGCCAGGTATATGCTTGCCGTGTACATGATATGGTTCTGGACCTTATCTGCAACTTGTCACATGAAGCAAAGTTTGTTAATCTATTGGATGCCACTGGGAATAGCACATCTTCACAAAGTAATGTTCGTCGTTTGTCCCTTCAGAATAAAAATGAAGATCATCAAGCCAAGCCTCTCACAAATATCATGAGTATGTCACGAGTGAGGTCCATTACTATCTTTCCACCTGCTGTTAGTATCATGCCAAGTCTGTCAATGTTTGAAGTTCTGAGTGTACTTGATCTGTCGAACTGTGATTTGGGACAAAGTAGCAGCCTGCAGCTTAACCTAAAGGGTGTTGTACATTTAATCCACCTAAGGTACCTTGGTCTAGCAGGCACTCAAATTAGTGAACTCCCGACTGAGATAGGAAACCTGCAGTTTTTGGAGGTGTTGGATCTTGGAGATAATTATGAGCTAGATGAATTGCCTTCCACTCTTTTCAAATTGAGAAGATTAATCTACCTAAATGTTTATCTCTTTAAGGTGGTTCCAACTCCTGGTGTGTTGCAGAATCTGACATGCATAGAAGTGTTGAGGGGGATCTTGGTCTCTCTGAACATTATTGCACAAGAGCTTGGCAACCTGGCAAGGCTGAGGGAGCTTTCGATTCGCTTCAAGGATGGTAGTTTGGATTTGTATGAAGGTTTCGTGAATTCTCTGTGCAACCTACATCACATAGAATGCCTAAGTATTGGTTGGAATTCTGAAAAAACGTCTTTTGAACTGATGGATCTCTTGGGAGAACGCTGGGTGCCTCCTGTACATCTCCGCGAATTTGTGTCTAGGATGCCCAGCCAACTCTCTGCACTGCGAGGGTGGACAAAGAGAGACCCCTCGCATCTCTCCAACCTCTCCAAGTTAATCCTCTCGTCAGTGAAGGAAGTGCAGCAGGAGGACGTGGAAATCATTGGGGGGTTGCTGTCCCTTCGCCGTCTCTGGATAAAGAGCACCCACCAAACACAGCGGCTGCTAGTCATCCCTACAGATGGGTTCCGCTGTATGGTAGAATTTTACTTGAATTGTGGGTTAGCAGCGCAGATAATGTTTGAACCAGGAGCTTTGCCGAGGGCGGAAGAAGTTACGTTCAGCCTGGGCGTGCGGGTGGCAAAAGAGGATGGAAACTGTGGCTTCGAATTGGGCGTGCAGGGGAACCTGCTCTCCCTTCGGCGGCAGGTCTGGGTTAGGATGTATTGTGGTGGAGTGAGGGTTGGGGAGGCAAAGAAAGCGGAGGCTGCGGTGAGGCACGCACTCGAAGCCCATCCCAATCATCCCAGGATTTATATTGATATGTGCCCGCGTATAGCAGAAGGTACTCACGCCGCACCTAACTACTCACGCTCAACTCCCATCCCAGTCATCCCCTGATTAGGTATATGTTTTTTTCGAAATGATGGACTGACATTATTACTTTCTGCATTGATTTTGATCTCTGAATCTACCAAGATGCTCATGATGACGATTTGTGCGAGGACGAGGAGATCTGATTTCTGATCCAGAGCGTCTCACATTGCATCAGATGTGCTCTCAGGTATGTAGCAGATATTTGCATGTTATGTTTTCCATCTTTCTCCCTCGTCTAGAGCTCAGCTTTTCGTTTCATTCACCGACTATGCTATAGTGATTATACGGAAATTAGAAACAGATTAAGGTATTTACAAAAATTGCTTAGACACAAGGATCTGATCAGAAAAGTGAACTTGGCAGTGTACTGTGAAACCTGCCCAGTCTCTTTTTTGGCAAAGGGCTGATGAAAGAAAATAATTATTTTATGCAAATTTGTAGAAGGATAGTTAATAATGGGGAATTAGCCACAGATCTATCTTTATGTAAGCATATCTCTGTAGCTAGAGTACTACATGCTAATTTCTCTTTATGTAAGCATATCTCTGTAGCTAGAGTACTACACGCTAATTTCACTGCTCTAAAATTTAGGGGGGGTCTGTATGGTGAAACTGCTGAGCTATGGCATCAATTTCTTGCTGATCGTGAAGGTTTTAGTCTTGAGGAATGAGCAAGATTCATGTAGATGACCCCACAAAATAAATATTCATTTAAATGGCTTCTAGAGAAGAATGAAGTATTTTCCGTGCATCCTATGTTTATAGCTTTGAAAGCTCAACAAGTGAAATGACTAGAAATATAATTTTGGTATGTAAAAGGTCAACTTAATACCATAGTATTTTTGTGGTTAGCATTCAGAAATAGTATCAGCAGAGTTGATCTGAAGCGTCGAGGTAGTGTGGTATAGGAAAGTGTCTTTTTCGAAGTAGAAAATAGCCAGTGCATCTTCCTAAAGTGTTTGGTTGCTTGTTATATTTGCTTTTTGTGTTGACAGTCCGGATTTTGTGATTGGGTGATGAATTCCAGGGATAAAGATAGGAGTTTGATTTTTGCTGGGATAGGGTCAGTTATTTAGTCTATTTGGAAAGCGAGGAATGATAATTGCTTGAAAACTATTTTTTCCATGGATCCCAACTGAGTGTAGGTTGTAAAGTTTCATATGGTATGTTTTATTAGTCTAGCTTACAAAGGAAAGAATTTCAGGATGTGCAGGTGGCAGGGGCGCGGCGTTACTGCTGGTGGCATCGAGGATACATGTTTCACAAACATTTTGGATGGGCGCCGGACGTGCCAAGAATGGAAGTTGTGTGATGAGCTTCTTTTAAATAGCTAAGAAAGAGATATTGCTTTGTTTTGTAATGAATAAGTAAGGGCGTTGGAGTGAATTACAAGGATACCTTTGCTTTGCTTCAGTTGAGGGCCATCGTTGCTGCTCTGTTTTGCTCTGTTTTTTGTTTTTAAAGCTGAACCGGACAAACCTGAGGTTGTATTATCAGTTTCGTGATGAGTGAAATGAGGGGTTCACCTAAGCTCCTTAATTCGAATAAAACTGTGATTCACTGTTGGGATTTGTTACTTGAAAAATATTAACTAGTTTTCCTATTTTTAGTGTGTGCTTCCAACTGACAAGCAGTAGTATTTTAAAGTGTGCTTCCATCTAACAAGCATGTATACCCCATGGTAGCAAATTATTTTCGTATTTTTGGAAGTGTCGTCTCGCGAAAGGACCTAGAACGAAAAGGGCTATATATGTTTGTACAGAGAGTGGCAGAGCTACAATGAAAAAGATGAAGAGCACAGAAACTTCAAATTTTGGAGCATATAAACTATTGAGTGAATTATATATTTATACGCTACCAAATTAGAAATTATTGTTAAACCGTGAGCTAGTAACAATGGCTTTGTTCTGAACTTGTATAAACTTTAAAAGTGGCTTTTGTTGGGCAAACATCACTATTCTAATGAGCCATTGACGAAATTTTTCCACCCGGCTGACTCTTTTGTGTAGTGCCCAGCAGTTAGGTGCCACACCACACTGTGTAGCGCCTGACTGATAGGCGCTACACGCCTAGCCAGAGTCACATCCCGGGTTGTCTGAAACTTGCTAAGCCAATGTGCAAAGTCTGAGAGTTAGGCGCTACACTGTATAGGCGTTGCACTAGTGGCTACAATATTAGCCACTACATCTAGAAGCAGCCCGCTTTTGAGGGAGTACTTCATCACTGAAACTTGGTAAGAAAAAAAAAATCTCTGAATTCCGCTTTTGAGCATACTTCAACACTGAACTTCAAAAAATTGAAAACCTGAAAAAAAGGAAAGAAAAAAAAACATTAGTGCCAAACTGCCTCTCACCACTCACCTATGCTAAGAAAAATGAAAAGGAAGAAAGAAAGAAAAAAAGCAGCACCGATCGCTGATAAAAAGATATGCAGAGCTCTGAAGTATGCTACTGAACATAGATTAACACTGAAGTATAGACAGCGCGTAATGTAATCCCCACAACTACAGCGAGACAGACATCACATGGGAAAAAGATCACCGGCGAGCAGGCGACGGGCGGTGATTCCGGGCGAGCATGCTATATATCCATCCCCTCCTTCCTTCCTCCCGCTGCTCCGGTCCGCCTCCGCCTCCCTCGTCGGCGACGCCCGGACCCTCGCTGTTCCGGAGGCAGCATCGATCATCTGCTATTCGCGGGCATCAATCAAGTGAATCCCAAGCACGCCCTGACCCTCACTCTCGTCATCCGTCTCCTTCCATTAATCCTATATATAATTATATACAGTATCTCTCTCAGTGGTGATGTCTCACTCACCACACCCAAGGTGTTTGACAAAATGACCAACTAAGATAAGGGTGGCTTTCACAGCACGTACTAGTAGTATTTGTGTTTTCCTTTCTCTCTGCTAATGTAACTAATGTGGGTCTAACATTTCTAATGTCGTGGGTGGCAGTGTGAGCGGCTGCAGCTGCACATGACGCCGCTCAGTGCTGATTTGCCGCGGATGCATGCTGCCATAGTAGTGCTGGAGGACGCCGCATCAGCCTGTTTCAAGAAATCGAGGCTGCTTCCTGGACGCCCTTGAGTTACTCGACGAAATGCACAGGAGAGAGAGAGACTGCGGTCGACCACAACAACGACACTATTGGCAGGTGTGTAACAACTTGCTTGCCTTCACTCTCTTCCTATTTTTCTGCATGTAGATTAATGTACTAGTTTATGAATGCATAGTTTGTAGCATGTCCGGCTCCTCCCCACCACCCTTAGAGCGCACCCGCTGCTCTTTCCCGCCTCGACTGCAGGCGTGAGCTCCGACGACCCCTTCCTATAGCGTTAGCACTGCTCACGTCCGCCTCAAGGCACTGCCTCCATCCGTCCAGTTTGAGATTGGGACGTGTATCTTTGGGTCTCGGGTGCCGATGCATCCGAAAAGAGAGAAATAATTTAGAAATTTCAAAAATAAATCAAAATTGTGATTTGTTTAGAACAAACATGATATTGTGTTACACTCATGTCAAAAGATTCACGAATGAATGACTTTCATGTACTCTAGGCGAAAGAAACCAAAATCGACGCTATATAAAAGTTACTATTTATGCTTTTATACTCACTATATAATATCTTTTTTGCCCTCAAGTCATTCTTTCGCAAAACTTTCTATACGAGTATAACACTATATCAAGTATGCTTCCAAAATGTTCTAGAATTTTGCGACCTTTTTTGCAATTTCTAAATTATTTTTTCAGTTCAGATGCATTGGGTATTTTCGGTATCTGATTGCCTTTGAGTATTTTATAGGAGTAATATGCATGCTGTGGACTGACCAAACAACTGAGAGAGATTCAGAGAAATGAGAAGAGAGTAAATGCAGTGAAGCATGGCTGGTGCCTGGTGGACGGACCATATACAGTGGTATGTAATTATTTTCTCTGAATCCCTGTGTCTCTATGACCCACTGAATAAACACATCATCCCAAAAGCAGTTCTGAGGGAGTGTGGGGGCTTCTTTCCACGCCCACCCACCGAAAGCACTGATGAACAAACACATGAGCCGAAAGCATTACTGTTCCGAGGGATTCGTATCTTGACTTGCTGTTGTGGGTCTTCCTCTGCTCCTCGCCTCCACTGAGTGCTCCCTTCTTCTCGTCTAAGTCCTCTCCTTCTTTTCAAGTTGTTTATTCTCCTGAAACTATGTTTTTATTGTTACAGTTTAGCATTTGTTCATGATCGCCCAGTTTTTGTAGGCAAGGTTTAAGGCTCTGAACTTCCAAACCATAATTAGTTTCATATTGGGGGTCTGTGGCGCGGATTTGTTAGCTTTACACGTTCTCGATTCTTGTGCTACCTTCAATATGGTGCAGAATTTTGTGTTGTTAAGAGCATCTCCAACAGCCGCGCTATACTAGCGCCACGCCTGAAAAAACGCCATTTTAGCGCGCGCGCAACGCGTCGCACCGCTCCAGCGGGCGCCCAAAAAACGCGCGCGCGCTAAAACGAGTTGGGCGCGCTGGTGAATGCCCCATCCCGCGCTGTTGATTTGGAGCGTTCACTTCCGCGCGCGGCACACTCTCGCGCGCGCGCGAACACTCATTTCTTCCACCGCGCTCGTTGCTCCCCCGCTCTCTCCCTCCATCCGGCCGCGCCGCCGCCGCCGCTCGCGCCGCCGCCGCCGCCGCTCGCGCCGCC。
it was found that the yrlumi 15 gene was linked to the wheat stripe rust resistance phenotype and that mutation of this gene resulted in loss of the wheat stripe rust resistance phenotype. Therefore, the YrLumai15 gene can provide stripe rust resistance and has important application value in the cultivation of wheat stripe rust resistant varieties.
In order to enable those skilled in the art to more clearly understand the technical solutions of the present application, the technical solutions of the present application will be described in detail below with reference to specific embodiments.
The test materials used in the examples and comparative examples of the present invention are conventional in the art and are commercially available. The experimental procedure, without specifying the detailed conditions, was carried out according to the conventional experimental procedure or according to the operating instructions recommended by the suppliers. Wherein:
the experimental materials used in the invention are 3000 parts of Lu Mai EMS mutant, wild type lupulus 15 (disease-resistant control material) and CB037-PstS (disease-sensitive control material); the stripe rust races used were mixed spores (CYR 29, CYR31, CYR 32), single race CYR34.
The wheat material of the invention is planted in fields and growth chambers, and large Tian Dongji wheat is generally planted in the first 10 months of the year and harvested in the next 6 months of the year. The material to be inoculated needs to be inserted with 2 rows of disease-sensitive contrast in 20 rows to be used as an induction row, and the field is normally managed; the wheat is germinated in a culture dish in advance, transplanted when the seeds grow 2cm tender stems, and the materials are transplanted into a small square basin or a gallon basin according to the research purpose. The growth conditions of the growth chamber are as follows: the temperature in the daytime is controlled at 23 ℃, and the illumination is carried out for 16 hours; the night temperature is 18 ℃ and the darkness is 8 hours. And (3) inoculating the physiological wheat seeds of the wheat stripe rust by adopting a manual inoculation method. The physiological seed inoculation of the field stripe rust bacteria generally adopts a comprehensive inoculation method of injection inoculation and spore spraying water, and the inoculation time is generally carried out in 3 months each year; the artificial climate box inoculation generally adopts a smearing inoculation method, and if the disease is insufficient, smearing inoculation or injection inoculation is carried out again.
The PCR primers and sequences of the invention are shown in Table 1.
Table 1: PCR primer used in the present invention
Example 1: screening of susceptibility mutants
The invention utilizes ethyl methylsulfonate (Ethyl methanesulfonate, EMS) to mutagenize wild type lupulus 15, selfing to M 4 At the generation, more than 3000 mutants were inoculated with mixed spores (CYR 29, CYR31, CYR 32) to identify phenotype, and 5 parts of the wheat 15 stripe rust mutants were screened. M corresponding to 5 parts of infectious material 5 Inoculating mixed spores (CYR 29, CYR31, CYR 32) instead, and verifying that 4 parts of 5 parts of materials show a disease; if it is replaced withInoculation of more toxic CYR 34M 5 Instead, 5 parts of material all exhibited a feeling of illness. DNA of the infectious material was extracted and verified by using 1BL/1RS linkage marker Iag95, and the detection results showed that the infectious individual plant had genetic background of Happy 15 (FIGS. 1 and 2).
Example 2: isolation of the yrluma. I15 gene using transcriptomics
The invention uses RNA-seq sequencing results to compare and analyze transcriptomes of disease-resistant materials Lu Mai and 5 disease-sensitive mutants, and uses GATK (Genome Analysis Toolkit) to carry out SNP-cloning, filtering and analyzing the SNP. Total RNA was extracted using TRIzol reagent and related methods (Life Technologies, grand Island, N.Y., USA). Library construction and high throughput double-ended sequencing (HiSeq 2500, illumina; paired-end, PE 150) involved in RNA sequencing was undertaken by Beijing berui and Kangbiotech Co., ltd (Berry Genomics Company, beijin, china).
The invention discovers a new gene, which is named YrLumai15 gene, and the sequences of the new gene are shown as SEQ ID NO.1 and SEQ ID NO. 3. Single base mutations were made in the gene at all 5 of the susceptibility mutants subjected to RNA-seq sequencing.
Example 3: sequencing confirmation of susceptibility mutants
The sequence of the amplification primer is shown as SEQ ID NO.7, SEQ ID NO.8, SEQ ID NO.9, SEQ ID NO.10, SEQ ID NO.11 and SEQ ID NO.12 according to the gene design. The 5 mutants of example 2 were sequenced after amplification, and the sequencing data were aligned with the gene region of the mutant parent yrlumi 15, and it was found that the 5 susceptible mutants had single base mutations in the gene (table 2), all consistent with the results of transcriptome sequencing in example 2.
Table 2: mutation of YrLumai15 gene in susceptibility mutant 1
/>
1 The table describes the mutation of 5 mutants in the yrlumi 15 region.
2 The left letter is the base of the disease-resistant YrLumai15 gene, the middle number represents the base position of the cDNA level relative to the ATG of the initiation codon, and the right letter is the base after mutation.
3 The left letter is the corresponding amino acid in the disease-resistant YrLumai15 protein, the middle number represents the position relative to the first amino acid, and the right letter is the mutated amino acid.
Example 4: yrLumai15-2728 marker detection YrLumai15 gene
The YrLumai15-2728 marker is a PCR marker designed based on the YrLumai15 coding region, and the nucleotide sequence of the marker is shown as SEQ ID NO. 4.
The primers used for amplification of YrLumai15-2728 were YrLumai15-FP (SEQ ID NO. 5) and YrLumai15-RP (SEQ ID NO. 6). After amplification by the primer, if a 1261bp specific band appears, the gene carries the wheat YrLumai15 gene; if nonspecific amplification occurs, it is recommended that the corresponding wheat is not resistant to wheat stripe rust.
The specific method comprises the following steps:
1. material selection
The plant material used in this example was wheat variety Lu Mai containing the yrlumi 15 gene and the susceptible wheat variety CB037-PstS containing no yrlumi 15 gene.
2. The specific method for extracting the wheat genome DNA is as follows:
(1) The leaves are taken and put into a centrifuge tube with steel balls, and the centrifuge tube is put into liquid nitrogen to be frozen for 30 to 60 seconds.
(2) The centrifuge tube was removed and placed in an adapter and placed in a tissue grinder for shaking grinding to powder (18 hz,40 s).
(3) 800. Mu.L of the DNA extract containing RNase (100. Mu.g/mL) was rapidly added, and the mixture was placed in a water bath at 37-42℃for 30 minutes, and inverted 5-6 times every 10 minutes.
(4) The water bath sample was placed at 4℃or on ice for 10min. After a short centrifugation, 400. Mu.L of 6M ammonium acetate pre-cooled at 4℃was added, mixed upside down, and then placed on 4℃or ice for 15min.
(5) Centrifuge at 12,000rpm for 10min, aspirate 450. Mu.L of supernatant into a fresh centrifuge tube containing 450. Mu.L of isopropanol and 45. Mu.L of sodium acetate, mix upside down and then place at-20℃for 30min.
(6) Centrifuge at 12,000rpm for 10min, pour out supernatant, then add 500. Mu.L of 75% ethanol, centrifuge at 12,000rpm for 10min, then pour out supernatant.
(7) The above step 6 is repeated.
(8) And sucking out redundant liquid by using a pipetting gun with the measuring range of 200 mu L, and drying on an ultra-clean bench until no alcohol smell volatilizes in the centrifuge tube.
(9) Adding ddH 2 O100. Mu.L, DNA was dissolved overnight at 4 ℃. After DNA is dissolved, the DNA is preserved at-20 ℃ for standby.
DNA quality detection
Detecting the purity of DNA: after the DNA is completely dissolved, the spectrophotometer is calibrated, 1 mu L of DNA solution is taken and placed in the spectrophotometer to detect the purity and the concentration.
Detecting the DNA quality: 2. Mu.L of DNA was dispensed into a 200. Mu.L centrifuge tube, and 3. Mu.L of 6 XLoading Buffer, 15. Mu.L of ddH was added 2 O, the DNA mass was detected by agarose gel electrophoresis at 0.8%.
DNA purity requirement: the theoretical value of A260/A280 is about 1.8 when detecting the purity of DNA. An impurity such as protein may be present when the concentration is lower than 1.6, and contamination with RNA may be present when the concentration is higher than 2.0.
DNA quality requirements: the complete DNA electrophoresis result shows that a bright and clear band exists, and if a tail or a small fragment exists, certain degradation can exist.
The PCR amplification system and procedure were as follows:
the system was formulated on ice according to table 3.
TABLE 3 composition of the reaction system
After the reaction system is prepared, PCR amplification is carried out on a PCR instrument, and the PCR reaction procedure is as follows:
pre-denaturation at 95℃for 3min;
denaturation at 95℃for 15s;
annealing at 55 ℃ for 15s;
extending at 72 ℃ for 30s;
extending for 5min at 72 ℃;
preserving at 15 ℃.
The PCR amplified products were subjected to gel electrophoresis analysis, and the results are shown in FIG. 4.
In summary, the mutant mutation site analysis results show that mutation of the YrLumai15 gene can cause loss of the wheat stripe rust resistance phenotype, and the disease resistance gene can be detected by marking YrLumai 15-2728. Thus, expression of the full length expression frame (SEQ ID NO. 3) of the YrLumai15 genome provides wheat with resistance to stripe rust, and mutation of this gene results in loss of the wheat stripe rust resistance trait.
The foregoing description is only of the preferred embodiments of the present application and is not intended to limit the same, but rather, various modifications and variations may be made by those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the present application should be included in the protection scope of the present application.

Claims (12)

1. A wheat stripe rust resistance gene yrlumi 15, characterized in that the wheat stripe rust resistance gene yrlumi 15 is a nucleic acid molecule as shown in i) or ii) or iii) or iv) below:
i) The nucleotide sequence is a nucleic acid molecule shown as SEQ ID NO. 1;
ii) the nucleotide sequence is a nucleic acid molecule shown as SEQ ID NO. 3;
iii) A nucleic acid molecule encoding the amino acid sequence shown in SEQ ID NO.2 other than i) or ii);
iv) a nucleic acid molecule which has 90% or more identity to the nucleotide sequence of i) or ii) and expresses the same functional protein.
2. A protein encoded by the wheat stripe rust resistance gene yrlumi 15 of claim 1; preferably, the amino acid sequence of the protein is shown as SEQ ID NO. 2.
3. A recombinant expression vector, transgenic cell line or genetically engineered bacterium carrying the wheat stripe rust resistance gene yrlumi 15 of claim 1.
4. Use of the wheat stripe rust resistance gene yrlumi 15 of claim 1 in (1) or (2) as follows:
(1) Regulating and controlling the resistance of plants to stripe rust;
(2) Cultivating a stripe rust resistant plant variety;
the plant is preferably a gramineous plant; further preferred are wheat plants; more preferably, the plant is wheat, barley or rye.
5. Use of a recombinant expression vector carrying the wheat stripe rust resistance gene yrlumi 15 of claim 1, a transgenic cell line or a genetically engineered bacterium for breeding wheat plants with increased or decreased stripe rust resistance;
preferably, the wheat plant is wheat, barley or rye.
6. The application of the protein coded by the wheat stripe rust resistance gene YrLumai15 in the following (1) or (2);
(1) Improving the disease resistance of the plants to the stripe rust;
(2) Preparing a medicament for preventing and treating stripe rust;
preferably, the protein encoded by the wheat stripe rust resistance gene yrlumi 15 is a protein as shown in any one of the following (A1) or (A2):
(A1) A protein consisting of an amino acid sequence shown as SEQ ID NO.2 in a sequence table;
(A2) A fusion protein obtained by ligating the N-terminal and/or C-terminal of the protein defined in (A1) with a protein tag.
7. A method of increasing resistance to stripe rust in a plant, comprising: transferring the stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO.3 into a plant to obtain a plant with improved stripe rust resistance;
or up-regulating expression of stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO.3 in plant genome, and screening to obtain plant with improved stripe rust resistance.
8. A method of reducing resistance to stripe rust in a plant, comprising: inhibiting the expression of stripe rust resistance genes shown in SEQ ID NO.1 or SEQ ID NO.3 in a plant genome, and screening to obtain plants with reduced stripe rust resistance;
the method of inhibiting expression of a stripe rust resistance gene in a plant genome comprises: mutating or knocking out all or part of the sequence of the stripe rust resistance gene shown in SEQ ID NO.1 or SEQ ID NO. 3; or interfering RNA is used for interfering the expression of stripe rust resistance genes shown in SEQ ID NO.1 or SEQ ID NO. 3; alternatively, the anti-stripe rust gene shown in SEQ ID NO.1 or SEQ ID NO.3 may be silenced using a gene silencing system.
9. The method according to claim 8, wherein the stripe rust resistance gene shown in SEQ ID NO.1 is subjected to at least one of the following mutations (1) to (6):
(1) Mutating the 211G base to an A base;
(2) Mutating the G base at position 1396 to an A base;
(3) Mutating the G base at position 2023 to an A base;
(4) Mutating the 2107G base to a T base;
(5) Mutating the G base at position 2633 to an A base;
(6) The G base at position 1503 is mutated to a C base.
10. The molecular marker YrLumai15-2728 for identifying the wheat stripe rust resistance gene YrLumai15 is characterized in that the nucleotide sequence of the molecular marker YrLumai15-2728 is shown as SEQ ID NO. 4.
11. A primer for amplifying the molecular marker yrlumi 15-2728 according to claim 10, wherein the sequence of the primer is shown in SEQ ID No.5 and SEQ ID No. 6.
12. Use of the molecular marker yrlumi 15-2728 of claim 10 or the primer for amplifying the molecular marker yrlumi 15-2728 of claim 11 in any one of the following (1) - (3):
(1) Identification of stripe rust resistance genes;
(2) Plant breeding;
(3) Preventing and treating plant stripe rust.
CN202211105731.3A 2022-09-09 2022-09-09 Wheat stripe rust resistance gene YrLumai15 and application thereof Pending CN117683780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211105731.3A CN117683780A (en) 2022-09-09 2022-09-09 Wheat stripe rust resistance gene YrLumai15 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211105731.3A CN117683780A (en) 2022-09-09 2022-09-09 Wheat stripe rust resistance gene YrLumai15 and application thereof

Publications (1)

Publication Number Publication Date
CN117683780A true CN117683780A (en) 2024-03-12

Family

ID=90132597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211105731.3A Pending CN117683780A (en) 2022-09-09 2022-09-09 Wheat stripe rust resistance gene YrLumai15 and application thereof

Country Status (1)

Country Link
CN (1) CN117683780A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618638A (en) * 2012-01-13 2012-08-01 山西省农业科学院作物科学研究所 Molecular marker for wheat stripe rust disease-resistant new gene Yr50 assisted selection and using method thereof
CN109321582A (en) * 2018-06-01 2019-02-12 山东农业大学 Application of the aegilops tauschii Yr4DS gene in the plant stripe rust resisting breeding of wheat race

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618638A (en) * 2012-01-13 2012-08-01 山西省农业科学院作物科学研究所 Molecular marker for wheat stripe rust disease-resistant new gene Yr50 assisted selection and using method thereof
CN109321582A (en) * 2018-06-01 2019-02-12 山东农业大学 Application of the aegilops tauschii Yr4DS gene in the plant stripe rust resisting breeding of wheat race

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROHIT MAGO ET AL.: "The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus", 《NATURE PLANTS》, 30 November 2015 (2015-11-30), pages 1 - 3 *

Similar Documents

Publication Publication Date Title
EP3805391B1 (en) Use of yr4ds gene of aegilops tauschii in stripe rust resistance breeding of triticeae plants
US9663794B2 (en) Heat-resistance rice gene OsZFP, screening marker and separation method thereof
EP3978613A1 (en) Parthenogenetic haploid induction gene dmp and application thereof
US20240065193A1 (en) Oilseed plants having reduced pod shatter
EP3936519A1 (en) Method for cultivating plant resistant to gray leaf spot
CN110157726A (en) The method of Plant Genome fixed point replacement
EP3932939A1 (en) Zmwak-rlk protein related to gray leaf spot resistance, and encoding gene and application thereof
CN110892074A (en) Compositions and methods for increasing the shelf life of bananas
CN102618510A (en) Plant male fertility related protein and coded gene and application thereof
CN101412751B (en) Protein related to cold resistance of plant, coding genes and application thereof
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
US20210198682A1 (en) Application of sdg40 gene or encoded protein thereof
CN107326035B (en) Deubiquitinating enzyme gene UBP5 for regulating rice grain shape and leaf color and application thereof
CN112126652B (en) Application of rice OsAUX3 gene in regulation of rice seed grain length
CN110386967B (en) Plant male fertility-related protein SiMS1, and coding gene and application thereof
CN102477091B (en) Rice male sterile protein and coding gene and application thereof
CN107253980A (en) Application of the OsGRF7 genes in plant type of rice regulation and control
CN116253784B (en) Wheat leaf rust resistance protein, and coding gene and application thereof
CN114875062B (en) Method for improving wheat scab resistance through genome editing
CN114213515B (en) Gene OsR498G0917707800.01 and application of encoded protein in regulation of rice chalkiness
CN107446031B (en) Plant glutelin transport and storage related protein OsVHA-E1, and coding gene and application thereof
CN117683780A (en) Wheat stripe rust resistance gene YrLumai15 and application thereof
US20220251589A1 (en) RHIZOBIAL tRNA-DERIVED SMALL RNAs AND USES THEREOF FOR REGULATING PLANT NODULATION
CN114657157A (en) ZmD13 protein in regulating corn plant height
CN105950598B (en) Rice dormancy-breaking related protein and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination