CN117626084A - Composite tungsten electrode material and preparation method thereof - Google Patents

Composite tungsten electrode material and preparation method thereof Download PDF

Info

Publication number
CN117626084A
CN117626084A CN202311736163.1A CN202311736163A CN117626084A CN 117626084 A CN117626084 A CN 117626084A CN 202311736163 A CN202311736163 A CN 202311736163A CN 117626084 A CN117626084 A CN 117626084A
Authority
CN
China
Prior art keywords
cnt
composite
composite material
tungsten electrode
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311736163.1A
Other languages
Chinese (zh)
Inventor
李文岭
赵长庆
李志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Btm Science & Technology Co ltd
Original Assignee
Beijing Btm Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Btm Science & Technology Co ltd filed Critical Beijing Btm Science & Technology Co ltd
Priority to CN202311736163.1A priority Critical patent/CN117626084A/en
Publication of CN117626084A publication Critical patent/CN117626084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

The invention is applicable to the technical field of composite tungsten electrodes, and provides a composite tungsten electrode material and a preparation method thereof, wherein the composite tungsten electrode material comprises the following components: tungsten powder, CNT/Fe3O4 composite material, WC/CNT composite material, silicon carbide and rare earth oxide; the preparation method of the composite tungsten electrode material comprises the following steps: s1, CNT/Fe 3 O 4 Preparing a composite material; s2, preparing a WC/CNT composite material; s3, doping, compression molding and sintering to obtain the composite tungsten electrode. The composite tungsten electrode material and the preparation method thereof provided by the invention have the advantages that the obtained product has good stability and excellent thermionic emission capability, and CNT/Fe is introduced 3 O 4 The composite material, WC/CNT composite material and silicon carbide greatly reduce the content of rare earth in the traditional composite tungsten electrode material and save the cost.

Description

Composite tungsten electrode material and preparation method thereof
Technical Field
The invention relates to the technical field of composite tungsten electrodes, in particular to a composite tungsten electrode material and a preparation method thereof.
Background
Tungsten has a high melting point, a high electron emission capability, a high elastic modulus and a low vapor pressure, so that the tungsten has been used as a thermionic emission material for a long time, the emission efficiency of a pure metal tungsten electrode is low, and the tungsten wire is sagged and broken due to the fact that the tungsten wire is recrystallized at a high temperature to form an equiaxed grain structure.
Most of the existing composite tungsten electrodes are only doped with rare earth oxides for modification, and the production cost of the composite tungsten electrodes is high due to the high price of rare earth.
Disclosure of Invention
The invention aims to provide a composite tungsten electrode material and a preparation method thereof, which are used for solving the problem that in the prior art, the composite tungsten electrode is mostly only doped with rare earth oxide for modification, and the production cost of the composite tungsten electrode is high due to the high price of rare earth.
In order to achieve the above purpose, the present invention provides the following technical solutions: the first aspect of the invention provides a composite tungsten electrode material, which comprises the following components:
tungsten powder, CNT/Fe 3 O 4 Composites, WC/CNT composites, silicon carbide, rare earth oxides.
Preferably, the rare earth oxide is CeO 2 、ThO 2 、La 2 O 3 、ZrO 2 And Y 2 O 3 One or more of the following.
Preferably, the content of each component in mass percent is as follows:
CNT/Fe 3 O 4 0.6 to 1.2 percent of composite material, 0.9 to 1.8 percent of WC/CNT composite material, 0.3 to 0.6 percent of silicon carbide, 0.5 to 1 percent of rare earth oxide and the balance of tungsten powder.
Preferably, the CNT/Fe 3 O 4 The content ratio of the composite material, WC/CNT composite material and silicon carbide is 2:3:1.
The second aspect of the invention provides a preparation method of the composite tungsten electrode material according to the first aspect of the invention, which comprises the following steps:
S1,CNT/Fe 3 O 4 preparation of the composite material:
weighing CNTs, adding the CNTs into a nitric acid solution with the mass fraction of 10%, condensing and refluxing for 12 hours at the temperature of 90 ℃, taking out the CNTs, drying, dispersing the CNTs in water, ultrasonically oscillating for 1-2 hours, then weighing a proper amount of copperas, adding a proper amount of polyethylene glycol into the dispersion, and enabling the content of the polyethylene glycol to be equalContinuously dispersing ultrasonic for 1-2 h at 50g/L, then adding a proper amount of ammonia water and a trace amount of hydrogen peroxide, wherein the content of the ammonia water is 2.5wt%, transferring into a reaction kettle, keeping the constant temperature of 150-160 ℃, carrying out hydrothermal reaction for 12h, and filtering, washing and drying after the reaction is finished to obtain the CNT/Fe 3 O 4 A composite material;
s2, preparing a WC/CNT composite material:
weighing CNTs, placing the CNTs in a nitric acid solution with the mass fraction of 10%, condensing and refluxing the CNTs for 12 hours at the temperature of 90 ℃, then placing the CNTs in a proper amount of ammonium metatungstate aqueous solution, carrying out ultrasonic oscillation for 1-2 hours, dipping for 24 hours, drying again, then placing a sample in a tubular resistance furnace, introducing nitrogen for 0.5 hour, introducing mixed gas of methane and hydrogen, heating to 750-850 ℃, keeping the constant temperature for 12 hours, and cooling to obtain the WC/CNT composite material;
s3, doping, compression molding and sintering to obtain the composite tungsten electrode:
tungsten powder, CNT/Fe 3 O 4 Mixing the composite material, WC/CNT composite material, silicon carbide and rare earth oxide according to the content to obtain a mixture, adding a binder, pressing and forming, preparing a tungsten rod by adopting a vertical melting sintering method, and preparing the composite tungsten electrode by the processes of wire drawing, straightening, cutting, polishing and the like.
Preferably, the volume ratio of methane to hydrogen in the S2 is 10:1
Preferably, the binder in the step S3 is a mixture of ethanol and glycerol, the volume ratio of the ethanol to the glycerol is 2:3, and the dosage ratio of the binder to the mixture is 10mL/kg.
The invention has at least the following beneficial effects:
the composite tungsten electrode material and the preparation method thereof provided by the invention have the advantages that the obtained product has good stability and excellent thermionic emission capability, and CNT/Fe is introduced 3 O 4 The composite material, WC/CNT composite material and silicon carbide greatly reduce the content of rare earth in the traditional composite tungsten electrode material and save the cost.
Detailed Description
The following description of the embodiments of the present invention will be made clearly and completely, and it is apparent that the described embodiments are only some embodiments of the present invention, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Example 1
The composite tungsten electrode material comprises the following components in percentage by mass:
CNT/Fe 3 O 4 0.6% of composite material, 0.9% of WC/CNT composite material, 0.3% of silicon carbide, 0.5% of rare earth oxide and the balance of tungsten powder.
Wherein the rare earth oxide is CeO 2
Wherein CNT/Fe 3 O 4 The content ratio of the composite material, WC/CNT composite material and silicon carbide is 2:3:1.
Example 2
The composite tungsten electrode material comprises the following components in percentage by mass:
CNT/Fe 3 O 4 1.2% of composite material, 1.8% of WC/CNT composite material, 0.6% of silicon carbide, 1% of rare earth oxide and the balance of tungsten powder.
Wherein the rare earth oxide is CeO 2 、ThO 2 、La 2 O 3 、ZrO 2 And Y 2 O 3 And CeO 2 、ThO 2 、La 2 O 3 、ZrO 2 And Y 2 O 3 The content of (3) is the same.
Wherein CNT/Fe 3 O 4 The content ratio of the composite material, WC/CNT composite material and silicon carbide is 2:3:1.
Example 3
The composite tungsten electrode material comprises the following components in percentage by mass:
CNT/Fe 3 O 4 0.8% of composite material, 1.2% of WC/CNT composite material, 0.4% of silicon carbide, 0.7% of rare earth oxide and the balance of tungsten powder.
Wherein the rare earth oxide is ThO 2
Wherein CNT/Fe 3 O 4 The content ratio of the composite material, WC/CNT composite material and silicon carbide is 2:3:1.
Example 4
The content of each component of the composite tungsten electrode material in this embodiment is the same as that in embodiment 3, except that the rare earth oxide is La 2 O 3
Example 5
The contents of the components of the composite tungsten electrode material in this example are the same as those in example 3, except that the rare earth oxide is ZrO 2
Example 6
The content of each component of the composite tungsten electrode material in this embodiment is the same as that in embodiment 3, except that the rare earth oxide is Y 2 O 3
Example 7
The content of each component of the composite tungsten electrode material in this embodiment is the same as that in embodiment 3, except that the rare earth oxide is CeO 2 And ThO 2 And CeO 2 And ThO 2 The content of (2) is 1:3.
Example 8
The content of each component of the composite tungsten electrode material in this embodiment is the same as that in embodiment 3, except that the rare earth oxide is La 2 O 3 、ZrO 2 And Y 2 O 3 And La (La) 2 O 3 、ZrO 2 And Y 2 O 3 The content of (2) is 2:2:1.
Example 9
The content of each component of the composite tungsten electrode material in this embodiment is the same as that in embodiment 3, except that the rare earth oxide is CeO 2 、ZrO 2 And Y 2 O 3 And CeO 2 、ZrO 2 And Y 2 O 3 The content of (2) is 1:2:3.
It should be noted that the technical solutions provided in the above embodiments 1 to 9 are some embodiments of the present invention, but not all embodiments, especially the components and content ratios of rare earth oxides.
The preparation method of the composite tungsten electrode material provided in the above embodiments 1 to 9 comprises the following steps:
S1,CNT/Fe 3 O 4 preparation of the composite material:
weighing CNTs, adding the CNTs into a nitric acid solution with the mass fraction of 10%, condensing and refluxing for 12 hours at the temperature of 90 ℃, taking out the CNTs, drying, dispersing the CNTs in water, ultrasonically oscillating for 1-2 hours, then weighing a proper amount of copperas, adding a proper amount of polyethylene glycol into the dispersion, enabling the content of the polyethylene glycol to be 50g/L, continuously dispersing ultrasonic for 1-2 hours, then adding a proper amount of ammonia water and trace hydrogen peroxide, enabling the content of the ammonia water to be 2.5wt%, transferring the ammonia water into a reaction kettle, keeping the constant temperature of 150-160 ℃, performing hydrothermal reaction for 12 hours, and filtering, washing and drying after the reaction is finished to obtain CNTs/Fe 3 O 4 A composite material;
s2, preparing a WC/CNT composite material:
weighing CNTs, placing the CNTs in a nitric acid solution with the mass fraction of 10%, condensing and refluxing the CNTs for 12 hours at the temperature of 90 ℃, then placing the CNTs in a proper amount of ammonium metatungstate aqueous solution, carrying out ultrasonic oscillation for 1-2 hours, dipping for 24 hours, then drying, placing the sample in a tubular resistance furnace, introducing nitrogen for 0.5 hour, introducing mixed gas of methane and hydrogen, wherein the volume ratio of the methane to the hydrogen is 10:1, heating the mixture to 750-850 ℃, keeping the constant temperature for 12 hours, and cooling the mixture to obtain the WC/CNT composite material;
s3, doping, compression molding and sintering to obtain the composite tungsten electrode:
tungsten powder, CNT/Fe 3 O 4 The composite material, WC/CNT composite material, silicon carbide and rare earth oxide are mixed according to the content to obtain a mixture, a binder is added, the binder is a mixture of ethanol and glycerol, the volume ratio of the ethanol to the glycerol is 2:3, the dosage ratio of the binder to the mixture is 10mL/kg, the mixture is pressed and molded, a tungsten rod is prepared by adopting a vertical melting sintering method, and then the composite tungsten electrode is prepared by the processes of wire drawing, straightening, cutting, polishing and the like.
The composite tungsten electrode material and the preparation method thereof provided by the invention have the advantages that the obtained product has good stability, the effective work function at 1300 ℃ is 2.81 eV-3.12 eV, and the product has excellent thermionic emission capabilityBy introducing CNT/Fe 3 O 4 The composite material, WC/CNT composite material and silicon carbide greatly reduce the content of rare earth in the traditional composite tungsten electrode material and save the cost.
While the fundamental and principal features of the invention and advantages of the invention have been shown and described, it will be apparent to those skilled in the art that the invention is not limited to the details of the foregoing exemplary embodiments, but may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, substitutions and alterations can be made therein without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

Claims (7)

1. The composite tungsten electrode material is characterized by comprising the following components:
tungsten powder, CNT/Fe 3 O 4 Composites, WC/CNT composites, silicon carbide, rare earth oxides.
2. A composite tungsten electrode material according to claim 1, wherein: the rare earth oxide is CeO 2 、ThO 2 、La 2 O 3 、ZrO 2 And Y 2 O 3 One or more of the following.
3. The composite tungsten electrode material according to claim 1, wherein the contents of the components in mass percent are as follows:
CNT/Fe 3 O 4 composite 0.61.2 percent, WC/CNT composite material 0.9 to 1.8 percent, silicon carbide 0.3 to 0.6 percent, rare earth oxide 0.5 to 1 percent, and the balance being tungsten powder.
4. A composite tungsten electrode material according to claim 3, wherein said CNT/Fe is 3 O 4 The content ratio of the composite material, WC/CNT composite material and silicon carbide is 2:3:1.
5. A method of producing a composite tungsten electrode material according to any one of claims 1 to 4, comprising the steps of:
S1,CNT/Fe 3 O 4 preparation of the composite material:
weighing CNTs, adding the CNTs into a nitric acid solution with the mass fraction of 10%, condensing and refluxing for 12 hours at the temperature of 90 ℃, taking out the CNTs, drying, dispersing the CNTs in water, ultrasonically oscillating for 1-2 hours, then weighing a proper amount of copperas, adding a proper amount of polyethylene glycol into the dispersion, enabling the content of the polyethylene glycol to be 50g/L, continuously dispersing ultrasonic for 1-2 hours, then adding a proper amount of ammonia water and trace hydrogen peroxide, enabling the content of the ammonia water to be 2.5wt%, transferring the ammonia water into a reaction kettle, keeping the constant temperature of 150-160 ℃, performing hydrothermal reaction for 12 hours, and filtering, washing and drying after the reaction is finished to obtain CNTs/Fe 3 O 4 A composite material;
s2, preparing a WC/CNT composite material:
weighing CNTs, placing the CNTs in a nitric acid solution with the mass fraction of 10%, condensing and refluxing the CNTs for 12 hours at the temperature of 90 ℃, then placing the CNTs in a proper amount of ammonium metatungstate aqueous solution, carrying out ultrasonic oscillation for 1-2 hours, dipping for 24 hours, drying again, then placing a sample in a tubular resistance furnace, introducing nitrogen for 0.5 hour, introducing mixed gas of methane and hydrogen, heating to 750-850 ℃, keeping the constant temperature for 12 hours, and cooling to obtain the WC/CNT composite material;
s3, doping, compression molding and sintering to obtain the composite tungsten electrode:
tungsten powder, CNT/Fe 3 O 4 Mixing the composite material, WC/CNT composite material, silicon carbide and rare earth oxide according to the content to obtain a mixtureAdding binder, press forming, preparing tungsten rod by vertical fusion sintering, drawing, straightening, cutting off and polishing to obtain the final product.
6. The method of manufacturing according to claim 5, wherein: and the volume ratio of methane to hydrogen in the S2 is 10:1.
7. The method of manufacturing according to claim 5, wherein: the binder in the step S3 is a mixture of ethanol and glycerol, the volume ratio of the ethanol to the glycerol is 2:3, and the dosage ratio of the binder to the mixture is 10mL/kg.
CN202311736163.1A 2023-12-18 2023-12-18 Composite tungsten electrode material and preparation method thereof Pending CN117626084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311736163.1A CN117626084A (en) 2023-12-18 2023-12-18 Composite tungsten electrode material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311736163.1A CN117626084A (en) 2023-12-18 2023-12-18 Composite tungsten electrode material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN117626084A true CN117626084A (en) 2024-03-01

Family

ID=90019913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311736163.1A Pending CN117626084A (en) 2023-12-18 2023-12-18 Composite tungsten electrode material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN117626084A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149841A (en) * 1985-12-24 1987-07-03 Toshiba Corp Tungsten material
WO2015054974A1 (en) * 2013-10-16 2015-04-23 苏州汉瀚储能科技有限公司 Tungsten-based material super battery and supercapacitor
CN104630532A (en) * 2015-02-10 2015-05-20 中南大学 Preparation method of carbide/rare-earth oxide composite reinforced fine-grain tungsten material
CN106602088A (en) * 2016-12-07 2017-04-26 浙江工业大学 Nano sheet-like ammonium metatungstate, CNT supported nano sheet-like tungsten oxide palladium-loaded composite material and application thereof
CN107604186A (en) * 2017-09-15 2018-01-19 江西理工大学 A kind of composite rare-earth oxide strengthens tungsten base high-specific-gravity alloy composite and preparation method thereof
US20220325380A1 (en) * 2019-08-12 2022-10-13 Henan University Of Science And Technology Tungsten-base alloy material and preparation method therefor
CN115341125A (en) * 2022-08-12 2022-11-15 广州市华司特合金制品有限公司 Tungsten alloy medical shielding plate and preparation method thereof
CN117004857A (en) * 2023-08-15 2023-11-07 中南大学 High-strength and high-toughness tungsten alloy and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149841A (en) * 1985-12-24 1987-07-03 Toshiba Corp Tungsten material
WO2015054974A1 (en) * 2013-10-16 2015-04-23 苏州汉瀚储能科技有限公司 Tungsten-based material super battery and supercapacitor
CN104630532A (en) * 2015-02-10 2015-05-20 中南大学 Preparation method of carbide/rare-earth oxide composite reinforced fine-grain tungsten material
CN106602088A (en) * 2016-12-07 2017-04-26 浙江工业大学 Nano sheet-like ammonium metatungstate, CNT supported nano sheet-like tungsten oxide palladium-loaded composite material and application thereof
CN107604186A (en) * 2017-09-15 2018-01-19 江西理工大学 A kind of composite rare-earth oxide strengthens tungsten base high-specific-gravity alloy composite and preparation method thereof
US20220325380A1 (en) * 2019-08-12 2022-10-13 Henan University Of Science And Technology Tungsten-base alloy material and preparation method therefor
CN115341125A (en) * 2022-08-12 2022-11-15 广州市华司特合金制品有限公司 Tungsten alloy medical shielding plate and preparation method thereof
CN117004857A (en) * 2023-08-15 2023-11-07 中南大学 High-strength and high-toughness tungsten alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
Xie et al. PdP 2 nanoparticles–reduced graphene oxide for electrocatalytic N 2 conversion to NH 3 under ambient conditions
US3380856A (en) Method of making fuel cell electrodes comprised of borides, carbides, nitrides and/or silicides of one or more transition metals
CN104745864B (en) A kind of preparation technology of Ti-based getters
CN101642812A (en) Molybdenum-yttrium alloy wire preparation method
CN101660066A (en) Making method of tungsten or molybdenum composite material containing lanthanum
Chen et al. New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells
CN113113584A (en) NiFe-LDH composite C3N4@Mo2Preparation method of material C
Huang et al. Microwave‐Assisted Rational Designed CNT‐Mn3O4/CoWO4 Hybrid Nanocomposites for High Performance Battery‐Supercapacitor Hybrid Device
CN117626084A (en) Composite tungsten electrode material and preparation method thereof
CN102061419B (en) Hard alloy material taking Co-Cu as bonding phase and preparation method thereof
CN104928551B (en) A kind of tungsten-copper composite material and preparation method thereof
CN111485165B (en) Yttrium-scandium-iron alloy material, yttrium-titanium-scandium-iron alloy material, preparation method and application
CN103305712A (en) Production method of titanium carbide-based hard alloy
CN110695372B (en) Preparation method for improving copper-graphene interface by using rare earth elements
CN110642233B (en) Preparation method of C-doped boron nitride nanotube and bismuth telluride composite film
CN106242571A (en) A kind of preparation method of titanium carbide hydrogen storage material
CN107746057B (en) Preparation method of superfine molybdenum carbide
CN1952194B (en) Method for producing tungalloy bar for use in electrode
CN115747866A (en) Ferrovanadium based nitride carbide heterojunction nano composite material, preparation method and application
CN105112755B (en) A kind of high temperature molybdenum alloy and preparation method thereof
JP4118620B2 (en) Boron addition for the production of potassium doped tungsten
CN112159920A (en) Rare earth tungsten alloy electrode material and preparation method thereof
CN112435771A (en) Rare earth tungsten alloy electrode material and preparation method thereof
CN110747367A (en) Preparation method of copper-based graphene composite coiled material
CN111470538A (en) Method for modifying transition metal chalcogenide by phosphorus in molten system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination