CN117410374A - 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用 - Google Patents

一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用 Download PDF

Info

Publication number
CN117410374A
CN117410374A CN202311294893.0A CN202311294893A CN117410374A CN 117410374 A CN117410374 A CN 117410374A CN 202311294893 A CN202311294893 A CN 202311294893A CN 117410374 A CN117410374 A CN 117410374A
Authority
CN
China
Prior art keywords
solution
gaas
gaas nano
nano array
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311294893.0A
Other languages
English (en)
Inventor
袁小明
申晶晶
李业军
何军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202311294893.0A priority Critical patent/CN117410374A/zh
Publication of CN117410374A publication Critical patent/CN117410374A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种溶液‑凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用,包括:步骤S1、将GaAs纳米阵列浸没至HF溶液中一段时间;步骤S2、将步骤S1处理后的GaAs纳米阵列浸入到一定浓度(NH4)2S溶液中一段时间,然后取出并用气体吹干;步骤S3、向步骤S2处理后的GaAs纳米阵列加入一定浓度的(NH4)2S溶液及溶液‑凝胶法生长SiO2薄膜的原料,搅拌下反应一段时间后洗涤干净。本发明的方法能保护表面原有的S端键,而且有利于缺陷的减少和悬空键的钝化。

Description

一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及 应用
技术领域
本发明涉及半导体材料表面钝化技术领域,特别涉及一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用。
背景技术
III-V族半导体材料凭借其卓越的电学和光学特性,在电子设备中发挥着关键且不可或缺的作用。其中,砷化镓(GaAs)凭借其高电子迁移率、直接带隙、高电子迁移率、高能带隙等独特性能,被广泛应用于光电器件、集成电路、太阳能电池、导航和通信***等各个领域。然而,GaAs表面往往表现出高密度的非辐射复合中心,尤其是对纳米尺寸器件更需要进行表面钝化。
常用的GaAs表面钝化方式包括使用含S和N的化学物质进行溶液钝化。其中,硫化已被证明通过形成S-端基键在去除半导体表面的本征氧化物和富含As元素方面非常有效。然而,当暴露在空气或水中时,这种终端仍不够稳定。因此,硫化之后通常通过沉积钝化薄膜来封装GaAs表面。此外,在沉积过程中,将洁净的GaAs表面暴露于热能和氧气等的等离子体中可能会破坏S-端基键,并再次对侧壁表面造成损害,对器件性能造成很大损伤。因此,如果没有适当封装的钝化薄膜,可能导致化学钝化稳定性急剧降低。
SiO2溶液-凝胶法制备薄膜已被证明在纳米柱阵列的钝化中非常有效,然而由于现有技术中样品长时间经S化处理后长时间暴露在水溶液中且经过不断搅拌使得原本生成的S端键断裂,样品表面重新被氧化,态密度增加,钝化效果变差。因此,当样品暴露于空气或水时,这种终端更加不稳定。因此需要对这种传统的溶液-凝胶法进行进一步优化。
发明内容
为克服现有技术中SiO2溶液-凝胶法所生长的薄膜在S溶液处理后会破坏原有表面,导致GaAs钝化效果不佳的问题,本发明提出一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法。
具体而言,本发明提供如下技术方案:
一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法,包括:
步骤S1、将GaAs纳米阵列浸没至HF溶液中一段时间;
步骤S2、将步骤S1处理后的GaAs纳米阵列浸入到一定浓度(NH4)2S溶液中一段时间,然后取出并用气体吹干;
步骤S3、向步骤S2处理后的GaAs纳米阵列加入一定浓度的(NH4)2S溶液及溶液-凝胶法生长SiO2薄膜的原料,搅拌下反应一段时间后洗涤干净。
可选地,步骤S1中,HF溶液浓度为3-10wt%,优选5wt%;浸没时间为5-15s,优选10s。通过HF溶液能去除GaAs纳米阵列表面的污渍,同时通过控制HF浓度与浸没时间,也能避免HF对GaAs纳米阵列造成破坏。
可选地,步骤S2具体为:取出步骤S1得到的GaAs纳米阵列,用去离子水洗涤,N2吹干后,浸入8-12wt%(NH4)2S溶液中5-15min,然后将GaAs纳米阵列取出并用N2吹干;(NH4)2S溶液浓度优选为10wt%,浸入时间优选为10min。
可选地,步骤S3具体为:将无水乙醇和去离子水的混合溶液倒入放置有GaAs纳米阵列的容器中,然后加入一定量CTAB并搅拌一段时间,随后依次加入NH4OH、(NH4)2S溶液和TEOS,室温下搅拌一段时间后,用去离子水和无水乙醇洗涤干净。步骤S2中(NH4)2S作用为钝化剂,而在步骤S3中则用作提供S氛围,防止溶胶-凝胶反应过程破坏S端键,因此步骤S2中所用(NH4)2S浓度要低于步骤S3的浓度。通过步骤S3,能避免现有技术中将样品长时间S化处理后长时间暴露于水溶液中且由于不断搅拌导致的S端键断裂,使得钝化效果变差。
可选地,步骤S3中原料比例为:无水乙醇∶去离子水∶NH4OH∶(NH4)2S∶TEOS=40-45∶55-60∶0.2-0.4∶0.2-0.4∶0.04-0.08,优选比例为42∶58∶0.3∶0.3∶0.3∶0.06,以上比例为体积比。CTAB用量为原料总质量的0.1-0.3%。
可选地,NH4OH浓度为28-30wt%;(NH4)2S溶液为14wt%;步骤S3的反应条件为500rpm下搅拌1.5h。
进一步的,本发明还提供了一种SiO2薄膜钝化的GaAs纳米阵列。
进一步的,本发明还提供了SiO2薄膜钝化的GaAs纳米阵列在光电器件、集成电路、太阳能电池、导航和通信***领域的应用。
本发明提供的技术方案带来的有益效果至少包括:
本发明在S溶液钝化的基础上进一步在GaAs纳米阵列表面生长SiO2薄膜,有效去除表面氧化物并减少表面态;在SiO2溶液-凝胶法生长过程中加入硫化铵溶液以维持稳定氛围,采用这种方法制备的SiO2封装壳层,可以规避原有SiO2溶液-凝胶法的弊端,保护表面原有的S端键,而且SiO2的非晶化有利于缺陷的减少和悬空键的钝化。以溶液法生长替代干法镀膜,成本低,生长温度低,厚度均匀,PL提升效果明显。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明溶液-凝胶法生长SiO2薄膜的原理示意图;
图2为GaAs纳米线上未添加(NH4)2S溶液时采用溶液-凝胶法生长的SiO2壳的形态和结构图,其中(a)为GaAs纳米线SEM图,(b)为GaAs纳米线生长SiO2壳后SEM图,(c)为生长时间为10分钟,标尺为100nm下的SiO2壳的纳米线TEM图像,(d)为生长时间为10分钟,标尺为50nm下的SiO2壳的纳米线TEM图像,(e)为生长时间为10分钟,标尺为20nm下的SiO2壳的纳米线TEM图像,(f)为SiO2与GaAs交界处的TEM图,(g)为生长时间为30分钟,标尺为200nm下的SiO2壳的纳米线TEM图像,(h)为生长时间为30分钟,标尺为100nm下的SiO2壳的纳米线TEM图像,(i)为生长时间为30分钟,标尺为50nm下的SiO2壳的纳米线TEM图像,(j)为生长时间为30分钟,EDS面扫图;
图3(a)为直径为1.8μm的GaAs纳米阵列经HF、钝化S处理和添加(NH4)2S溶液的SiO2溶胶-凝胶法生长钝化膜后,在室温下的PL光谱图;图3(b)为直径为1.8μm的GaAs纳米阵列经HF、钝化S处理和添加(NH4)2S溶液的SiO2溶胶-凝胶法生长钝化膜后的TRPL衰减曲线;图3(c)为直径分别为0.5μm、0.75μm、1μm和1.8μm的GaAs纳米柱阵列的归一化积分PL强度;图3(d)为直径分别为0.5μm、0.75μm、1μm和1.8μm的GaAs纳米柱阵列的载流子转移寿命直方图;
图4为为不同处理方式下的Ga 3d XPS光谱;其中(a)为ICP蚀刻后的GaAs晶片;(b)为仅经HF和(NH4)2S钝化处理后的样品;(c)为使用HF和(NH4)2S处理后采用未添加(NH4)2S的溶胶-凝胶法生长SiO2壳后的样品;(d)为使用HF和(NH4)2S处理后采用添加(NH4)2S的溶胶-凝胶法生长SiO2壳后的样品。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明的技术方案进行详细的描述。
实施例1
步骤S1、将刻蚀后的GaAs纳米阵列浸没在5%HF中10s;取出样品,用去离子水洗涤、N2吹干;
步骤S2、在室温条件下浸入使用14%的H2O中的硫化铵溶液制备的,10wt%的(NH4)2S稀释溶液中10分钟,然后将样品直接取出并用N2干燥;
步骤S3、最后将42ml无水乙醇(EtOH)和58ml去离子水的混合液倒入放置了样品的烧杯中,在室温下将0.1g CTAB倒入上述溶液并在500rpm的转速下搅拌5分钟,随后将0.3ml28-30%NH4OH溶液、0.3ml 14%(NH4)2S溶液和0.06ml TEOS溶液依次滴加到反应物中,将所得混合物在室温、500rpm转速下连续搅拌1.5小时。最后用去离子水和EtOH洗涤晶片数次,得到厚度约50nm的SiO2薄膜壳层。
对比例1
样品仅经过实施例1中的S1、S2步骤处理,之后未生长SiO2壳层。结果发现钝化效果虽然相对初始刻蚀后的GaAs样品具有一定钝化效果,但该效果不稳定,还需要进一步处理。
对比例2
其他条件于实施例1相同,不同之处在于步骤S3中在采用溶液-凝胶法生长SiO2壳时未加入(NH4)2S溶液。结果发现钝化效果相对实施例1及对比例1较差。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法,其特征在于,包括:
步骤S1、将GaAs纳米阵列浸没至HF溶液中一段时间;
步骤S2、将步骤S1处理后的GaAs纳米阵列浸入到一定浓度(NH4)2S溶液中一段时间,然后取出并用气体吹干;
步骤S3、向步骤S2处理后的GaAs纳米阵列加入一定浓度的NH4)2S溶液及溶液-凝胶法生长SiO2薄膜的原料,搅拌下反应一段时间后洗涤干净。
2.根据权利要求1所述的方法,其特征在于,步骤S1中,HF溶液浓度为3-10wt%,优选5wt%;浸没时间为5-15s,优选10s。
3.根据权利要求1所述的方法,其特征在于,步骤S2具体为:取出步骤S1得到的GaAs纳米阵列,用去离子水洗涤,N2吹干后,浸入8-12wt%(NH4)2S溶液中5-15min,然后将GaAs纳米阵列取出并用N2吹干;(NH4)2S溶液浓度优选为10wt%,浸入时间优选为10min。
4.根据权利要求1所述的方法,其特征在于,步骤S3具体为:将无水乙醇和去离子水的混合溶液倒入放置有GaAs纳米阵列的容器中,然后加入一定量CTAB并搅拌一段时间,随后依次加入NH4OH、(NH4)2S溶液和TEOS,室温下搅拌一段时间后,用去离子水和无水乙醇洗涤干净。
5.根据权利要求1所述的方法,其特征在于,步骤S3中比例为:无水乙醇∶去离子水∶NH4OH∶(NH4)2S∶TEOS=40-45∶55-60∶0.2-0.4∶0.2-0.4∶0.04-0.08,优选比例为42∶58∶0.3∶0.3∶0.3∶0.06;CTAB用量为原料总质量的0.1-0.3%。
6.根据权利要求5所述的方法,其特征在于,NH4OH浓度为28-30wt%;(NH4)2S溶液为14wt%;步骤S3中在500rpm下搅拌1.5h。
7.一种权利要求1-6任一项所述方法制备得到的SiO2薄膜钝化的GaAs纳米阵列。
8.权利要求7所述的SiO2薄膜钝化的GaAs纳米阵列在光电器件、集成电路、太阳能电池、导航和通信***领域的应用。
CN202311294893.0A 2023-10-08 2023-10-08 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用 Pending CN117410374A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311294893.0A CN117410374A (zh) 2023-10-08 2023-10-08 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311294893.0A CN117410374A (zh) 2023-10-08 2023-10-08 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用

Publications (1)

Publication Number Publication Date
CN117410374A true CN117410374A (zh) 2024-01-16

Family

ID=89488095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311294893.0A Pending CN117410374A (zh) 2023-10-08 2023-10-08 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用

Country Status (1)

Country Link
CN (1) CN117410374A (zh)

Similar Documents

Publication Publication Date Title
CN102064090B (zh) 化合物半导体晶片清洗方法
Capasso et al. A proposed hydrogenation/nitridization passivation mechanism for GaAs and other III–V semiconductor devices, including InGaAs long wavelength photodetectors
US7998359B2 (en) Methods of etching silicon-containing films on silicon substrates
US4273594A (en) Gallium arsenide devices having reduced surface recombination velocity
Karbassian et al. Formation of luminescent silicon nanowires and porous silicon by metal-assisted electroless etching
Angermann et al. Preparation of H-terminated Si surfaces and their characterisation by measuring the surface state density
US4843037A (en) Passivation of indium gallium arsenide surfaces
CN117410374A (zh) 一种溶液-凝胶法生长SiO2薄膜钝化GaAs纳米阵列的方法及应用
Shelton et al. Ultrasmooth GaN etched surfaces using photoelectrochemical wet etching and an ultrasonic treatment
US6451711B1 (en) Epitaxial wafer apparatus
US5366934A (en) Method for sulfide surface passivation
US11201049B2 (en) Thiourea organic compound for gallium arsenide based optoelectronics surface passivation
JPH02196426A (ja) ヒ化アルミニウムガリウムの選択エッチング法
CN113299551A (zh) 一种调控半导体腐蚀区域的方法
US6723578B2 (en) Method for the sulphidation treatment of III-V compound semiconductor surfaces
US6228672B1 (en) Stable surface passivation process for compound semiconductors
JPH07211688A (ja) 化合物半導体基板の製造方法
Angermann et al. Surface charge and interface state density on silicon substrates after Ozone based wet-chemical oxidation and Hydrogen-termination
CN107352505A (zh) 一种制备Si‑Cu2O异质结纳米线阵列的方法
JP2775117B2 (ja) 保護膜形成方法
Chen et al. Study on the properties of gallium antimonide surface passivatied with S2Cl2 solution
CN108683074B (zh) 一种半导体激光器件及其谐振腔面钝化膜、制作方法
CN106952951B (zh) InP基异质结双极晶体管的制作方法
Sakai et al. Evaluation of Ultrathin Native Oxide on GaAs Surface
Chen et al. Optical properties of gallium arsenide passivated by ZnS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination