CN117267962A - 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法 - Google Patents

一种硫化钼-氧化铝太阳能吸收涂层及其制备方法 Download PDF

Info

Publication number
CN117267962A
CN117267962A CN202311331042.9A CN202311331042A CN117267962A CN 117267962 A CN117267962 A CN 117267962A CN 202311331042 A CN202311331042 A CN 202311331042A CN 117267962 A CN117267962 A CN 117267962A
Authority
CN
China
Prior art keywords
sputtering
layer
target
solar energy
molybdenum sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311331042.9A
Other languages
English (en)
Inventor
孟瑜
龚庆庆
畅庚榕
尹志福
成桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University
Original Assignee
Xian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University filed Critical Xian University
Priority to CN202311331042.9A priority Critical patent/CN117267962A/zh
Publication of CN117267962A publication Critical patent/CN117267962A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种硫化钼‑氧化铝太阳能吸收涂层及其制备方法,所述硫化钼‑氧化铝太阳能吸收涂层包括依次连接的红外反射层、吸收层和减反射层,所述红外反射层为导电金属,所述吸收层为MoS2‑Al2O3复合薄膜,所述减反射层为Al2O3或MoS2。所述硫化钼‑氧化铝太阳能吸收涂层在中高温环境下具有优异的疏水性、光学性能和热稳定性。

Description

一种硫化钼-氧化铝太阳能吸收涂层及其制备方法
技术领域
本发明属于太阳能热利用和功能薄膜制备技术领域,具体涉及一种硫化钼-氧化铝太阳能吸收涂层及其制备方法。
背景技术
太阳能因环保、可再生的特点倍受人们的关注,目前开发的太阳能利用技术包括光电转换、光热转换和光化学转换,其中太阳能光热转换技术是一种简单、直接的能源转换方法,已广泛应用于太阳能热水器、太阳能热电站等。将太阳能直接转换为热能的装置称为太阳能集热器,太阳能吸收涂层作为集热器的核心部分,其光学性能和热稳定性决定了太阳能吸收涂层在工程中的应用,包括转换效率、工作温度和使用寿命。此外,固体表面的水蒸气和灰尘均会降低太阳能热利用效率和服役寿命,疏水涂层能够实现良好的抗污效果,因此,制备具有自清洁、高吸收率的太阳能吸收涂层在太阳能热利用领域具有广阔的应用前景和重要价值。
在众多的太阳能吸收涂层中,金属-陶瓷型太阳能吸收涂层成为研究焦点,如过渡金属掺杂金属氧化物。中国发明专利CN201407852Y公开了一种钼-氧化铝作为吸收层的太阳能光谱高温选择性吸收膜,但该类太阳能吸收涂层在中高温环境下,容易发生金属粒子的扩散迁移或发生氧化反应,严重影响涂层的光学性能,甚至使其失效。
发明内容
本发明的目的在于提供一种硫化钼-氧化铝太阳能吸收涂层及其制备方法,所述硫化钼-氧化铝太阳能吸收涂层在中高温环境下具有优异的疏水性、光学性能和热稳定性。
本发明通过以下技术方案实现:
一种硫化钼-氧化铝太阳能吸收涂层,包括依次连接的红外反射层、吸收层和减反射层,所述红外反射层为导电金属,所述吸收层为MoS2-Al2O3复合薄膜,所述减反射层为Al2O3或MoS2
优选的,所述导电金属为铝或钼。
所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,包括:
步骤1)以导电金属靶为溅射靶材,在基底上采用磁控溅射的方式制备金属薄膜,作为红外反射层;
步骤2)以铝靶和硫化钼靶作为溅射靶材,在红外反射层上进行磁控共溅射制备MoS2-Al2O3复合薄膜,作为吸收层;
步骤3)以铝靶或硫化钼靶为溅射靶材,在吸收层上采用磁控溅射的方式制备Al2O3薄膜或MoS2薄膜,作为减反射层。
优选的,所述基底为单晶硅、金属铝、玻璃或不锈钢。
进一步的,所述单晶硅为单面抛光的Si(100)基底。
优选的,步骤1)之前,对所述基底进行预处理:将基底依次置于丙酮和无水乙醇中分别超声清洗,然后用水冲洗,烘干。
优选的,对于步骤1)中的导电金属靶和步骤3)中的铝靶,采用直流溅射的方式进行磁控溅射,溅射功率为60~80W。
优选的,对于硫化钼靶,采用射频溅射的方式进行磁控溅射,溅射功率为50~80W。
优选的,步骤1)、步骤2)和步骤3)均在室温下进行。
与现有技术相比,本发明具有如下的有益效果:
本发明硫化钼-氧化铝太阳能吸收涂层包括红外反射层、吸收层和减反射层,所述吸收层为MoS2-Al2O3复合薄膜,减反射层为MoS2,MoS2作为一种应用前景广阔的光热转换材料,具有低反射率、高吸收率的特点,可以有效提高太阳能吸收涂层对光的吸收效率和转化效率,另外,其高热稳定性和化学稳定性可以提高吸收涂层的热稳定性和服役寿命。由上述同质层组成的多层复合结构的太阳能吸收涂层,吸收率≥0.94,反射率≤0.10,具有光学性能优异、疏水性好、热稳定性高的特点,可长期在650℃非真空环境下使用。因此,本发明在太阳能热利用技术领域具有广阔的应用前景。
本发明采用磁控溅射技术在基底上沉积同质多层结构,提高界面结合特性,通过在氧化铝中引入硫化钼,形成由非晶氧化铝包覆的纳米晶结构的硫化钼,形成纳米复合结构,颗粒均匀,得到硫化钼-氧化铝太阳能吸收涂层,通过优化制备工艺实现薄膜组分和微观组织结构的可控制备。
附图说明
图1是本发明太阳能吸收涂层的结构示意图。
图2是本发明实施例4中太阳能吸收涂层表面的水接触角测试图。
图3是本发明实施例4中太阳能吸收涂层的反射和吸收图谱。
图4是本发明实施例4中太阳能吸收涂层退火前后的吸收图谱。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明进行描述,这些描述只是进一步解释本发明的特征和优点,并非用于限制本发明的权利要求。
如图1所示,本发明所述硫化钼-氧化铝太阳能吸收涂层,包括依次连接的红外反射层、吸收层和减反射层,红外反射层为导电金属,吸收层为MoS2-Al2O3复合薄膜,减反射层为Al2O3或MoS2
本发明所述导电金属为铝或钼优选为铝或钼。
本发明所述硫化钼-氧化铝太阳能吸收涂层的制备方法,包括:
步骤1)红外反射层的制备:以铝靶或钼靶为溅射靶材,采用磁控溅射在基底上制备红外反射层;
步骤2)吸收层的制备:红外反射层溅射完后,以铝靶和硫化钼靶作为溅射靶材,进行磁控共溅射制备MoS2-Al2O3复合薄膜,作为吸收层;
步骤3)减反射层的制备:在吸收层上,以铝靶或硫化钼靶为溅射靶材,采用磁控溅射制备Al2O3薄膜或MoS2薄膜,作为减反射层。
本发明所述基底优选为单晶硅、金属铝、玻璃或不锈钢。所述单晶硅优选为单面抛光的Si(100)基底。
本发明磁控溅射前,对所述基底进行预处理:基底依次置于丙酮和无水乙醇中分别超声清洗,最后用去离子水反复冲洗,烘干备用。
本发明中,铝靶或钼靶为溅射靶材时,采用直流溅射的方式进行磁控溅射,溅射功率为60~80W;硫化钼靶为溅射靶材时,采用射频溅射的方式进行磁控溅射,溅射功率为50~80W。
本发明中,步骤2)中,需要通入气体,进行磁控共溅射,以Ar气作为溅射气体,O2作为反应气体;Ar和O2的流量为3:1。
本发明中,步骤3)中,当铝靶为溅射靶材制备Al2O3薄膜时,需要通过反应溅射实现,以O2作为反应气体,Ar气作为溅射气体,Ar/O2比为3:1。
实施例1
一种太阳能吸收涂层,依次由红外反射层、吸收层和减反射层组成,红外反射层为金属Al,采用直流磁控溅射技术制备;吸收层为MoS2-Al2O3复合薄膜,采用磁控共溅射技术制备;减反射层为Al2O3,采用反应磁控溅射方法制备。
上述太阳能吸收涂层的制备方法,包括以下步骤:
步骤1)基底的预处理:采用金刚石刀将硅晶圆裁切成1cm×1cm大小,然后依次置于丙酮和污水乙醇中分别超声清洗10min,最后用去离子水反复冲洗,烘干备用。
步骤2)红外反射层的制备:以纯度为99.95%的Al靶为溅射靶材,室温下采用直流磁控溅射在基底上制备Al膜,薄膜沉积前,溅射室真空度抽到5.0×10-4Pa,铝靶溅射功率为60W,Ar气流量20sccm,工作气压为0.3Pa,溅射时间为60min,进行室温沉积。
步骤3)吸收层的制备:第一层溅射完后,以步骤2)中的铝靶(直流溅射)和纯度为99.95%的硫化钼靶(射频溅射)作为溅射靶材,室温下进行磁控共溅射制备复合薄膜。硫化钼靶溅射功率固定为50W,铝靶溅射功率固定为80W,Ar气流量20sccm,薄膜沉积过程中,Ar/O2气流量比为3:1,沉积时间为1h,得到MoS2-Al2O3薄膜。
步骤4)减反射层的制备:最后以铝靶作为溅射靶材,室温下采用反应溅射制备减反射层,铝靶溅射功率为80W,O2作为反应气体,Ar/O2气流量比为3:1,溅射气压为0.3Pa,沉积时间为1h,得到氧化铝薄膜,作为减反射层。
实施例2
一种太阳能吸收涂层,依次由红外反射层、吸收层和减反射层组成,红外反射层为金属铝,采用直流磁控溅射技术制备;吸收层为硫化钼-氧化铝复合薄膜,采用磁控共溅射技术制备;减反射层为硫化钼,采用射频磁控溅射方法制备。
步骤1)采用实施例1中的方法进行基底预处理。
步骤2)红外反射层的制备:以纯度为99.95%的铝靶为溅射靶材,室温下采用直流磁控溅射制备铝膜,薄膜沉积前,溅射室真空度抽到5.0×10-4Pa,铝靶溅射功率为60W,Ar气流量20sccm,工作气压为0.3Pa,溅射时间为60min,进行室温沉积。
步骤3)吸收层的制备:第一层溅射完后,以铝靶(直流溅射)和纯度为99.95%的硫化钼靶(射频溅射)作为溅射靶材,室温下进行磁控共溅射制备复合薄膜。硫化钼靶溅射功率固定为50W,铝靶溅射功率固定为80W,Ar气流量20sccm,薄膜沉积过程中,Ar/O2气流量比为3:1,沉积时间为1h,得到MoS2-Al2O3薄膜。
步骤4)减反射层的制备:最后以硫化钼靶作为溅射靶材,室温下采用射频溅射制备减反射层,硫化钼靶溅射功率为60W,Ar气流量为20sccm,溅射气压为0.5Pa,沉积时间为1h,得到硫化钼薄膜,作为减反射层。
实施例3
一种太阳能吸收涂层,依次由红外反射层、吸收层和减反射层组成,红外反射层为金属钼,采用直流磁控溅射技术制备;吸收层为硫化钼-氧化铝复合薄膜,采用磁控共溅射技术制备;减反射层为氧化铝,采用反应磁控溅射方法制备。
步骤1)按照实施例1进行基底预处理。
步骤2)红外反射层的制备:以纯度为99.95%的钼靶为溅射靶材,室温下采用直流磁控溅射制备钼膜,薄膜沉积前,溅射室真空度抽到5.0×10-4Pa,钼靶溅射功率为60W,Ar气流量20sccm,工作气压为0.3Pa,溅射时间为60min,进行室温沉积。
步骤3)吸收层的制备:第一层溅射完后,以铝靶(直流溅射)和纯度为99.95%的硫化钼铝靶(射频溅射)作为溅射靶材,室温下进行磁控共溅射制备复合薄膜。硫化钼靶溅射功率固定为50W,铝靶溅射功率固定为80W,Ar气流量20sccm,薄膜沉积过程中,Ar/O2气流量比为3:1,沉积时间为1h,得到MoS2-Al2O3薄膜。
步骤4)减反射层的制备:最后以铝靶作为溅射靶材,室温下采用反应溅射制备减反射层,铝靶溅射功率为80W,O2作为反应气体,Ar/O2气流量比为3:1,溅射气压为0.3Pa,沉积时间为1h,得到氧化铝薄膜,作为减反射层。
实施例4
一种太阳能吸收涂层,依次由红外反射层、吸收层和减反射层组成,红外反射层为金属钼,采用直流磁控溅射技术制备;吸收层为硫化钼-氧化铝复合薄膜,采用磁控共溅射技术制备;减反射层为硫化钼,采用射频磁控溅射方法制备。
步骤1)采用实施例1中的方法进行基底预处理。
步骤2)红外反射层的制备:以纯度为99.95%的金属钼靶为溅射靶材,室温下采用直流磁控溅射制备钼膜,薄膜沉积前,溅射室真空度抽到5.0×10-4Pa,钼靶溅射功率为60W,Ar气流量20sccm,工作气压分别为0.3Pa、0.5Pa、0.7Pa和1.0Pa,溅射时间为60min,进行室温沉积。
步骤3)吸收层的制备:第一层溅射完后,以金属铝靶(直流溅射)和纯度为99.95%的硫化钼靶(射频溅射)作为溅射靶材,室温下进行磁控共溅射制备复合薄膜。硫化钼靶溅射功率固定为50W,铝靶溅射功率固定为80W,Ar气流量20sccm,薄膜沉积过程中,Ar/O2气流量比为3:1,沉积时间为1h,得到MoS2-Al2O3薄膜。
步骤4)减反射层的制备:最后以硫化钼靶作为溅射靶材,室温下采用射频溅射制备减反射层,硫化钼靶溅射功率为60W,Ar气流量为20sccm,溅射气压为0.5Pa,沉积时间为1h,得到硫化钼薄膜,作为减反射层。
对实施例1、实施例2、实施例3、实施例4所得到的太阳能吸收涂层进行表征。
对上述实施例所制备的太阳能吸收涂层进行接触角测试,如图2结果显示,实施例4步骤2)中工作气压为0.3Pa时所制备得到的太阳能吸收涂层的接触角为104°,大于90°,表现为疏水性,因此所得太阳能吸收涂层具有自清洁作用。
由于太阳能吸收涂层是提高太阳能光热转换效率的关键材料,需要具备长期的热稳定性能,对太阳能吸收涂层进行退火处理来研究其热稳定性。将实施例4步骤2)中工作气压为0.3Pa时所制备得到的太阳能吸收涂层进行真空退火处理,退火温度为400℃,保温1h,随炉冷却至室温。采用光谱仪测试太阳能吸收涂层退火前后的反射和吸收图谱,图3和图4结果显示,实施例4所得到的太阳能吸收涂层退火前的涂层吸收率大于0.94、发射率小于0.10,具有良好的光学性能;退火后,吸收率仍保持在0.94以上,表现出优异的热稳定性。
综上,按照实施例1、实施例2、实施例3、实施例4所得到的太阳能吸收涂层的光学性能如下:接触角在大气质量因子AM1.5条件下,涂层吸收率≥0.94,反射率≤0.10。在5.0×10-4Pa高真空环境下,经400℃长时间保温后,涂层吸收率和发射率没有明显变化。另外,涂层接触角>90°,表现为疏水性,具有较好的自清洁性。

Claims (9)

1.一种硫化钼-氧化铝太阳能吸收涂层,其特征在于,包括依次连接的红外反射层、吸收层和减反射层,所述红外反射层为导电金属,所述吸收层为MoS2-Al2O3复合薄膜,所述减反射层为Al2O3或MoS2
2.根据权利要求1所述的硫化钼-氧化铝太阳能吸收涂层,其特征在于,所述导电金属为铝或钼。
3.权利要求1或2所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,包括:
步骤1)以导电金属靶为溅射靶材,在基底上采用磁控溅射的方式制备金属薄膜,作为红外反射层;
步骤2)以铝靶和硫化钼靶作为溅射靶材,在红外反射层上进行磁控共溅射制备MoS2-Al2O3复合薄膜,作为吸收层;
步骤3)以铝靶或硫化钼靶为溅射靶材,在吸收层上采用磁控溅射的方式制备Al2O3薄膜或MoS2薄膜,作为减反射层。
4.根据权利要求3所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,所述基底为单晶硅、金属铝、玻璃或不锈钢。
5.根据权利要求4所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,所述单晶硅为单面抛光的Si(100)基底。
6.根据权利要求3所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,步骤1)之前,对所述基底进行预处理:将基底依次置于丙酮和无水乙醇中分别超声清洗,然后用水冲洗,烘干。
7.根据权利要求3所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,对于步骤1)中的导电金属靶和步骤3)中的铝靶,采用直流溅射的方式进行磁控溅射,溅射功率为60~80W。
8.根据权利要求3所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,对于硫化钼靶,采用射频溅射的方式进行磁控溅射,溅射功率为50~80W。
9.根据权利要求3所述的硫化钼-氧化铝太阳能吸收涂层的制备方法,其特征在于,步骤1)、步骤2)和步骤3)均在室温下进行。
CN202311331042.9A 2023-10-13 2023-10-13 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法 Pending CN117267962A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311331042.9A CN117267962A (zh) 2023-10-13 2023-10-13 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311331042.9A CN117267962A (zh) 2023-10-13 2023-10-13 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN117267962A true CN117267962A (zh) 2023-12-22

Family

ID=89215849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311331042.9A Pending CN117267962A (zh) 2023-10-13 2023-10-13 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN117267962A (zh)

Similar Documents

Publication Publication Date Title
CN103388917B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN102501459B (zh) 一种中高温太阳能选择性吸收涂层的制备方法
CN105299935A (zh) 一种太阳光谱选择性吸收涂层及其制备方法和集热器
CN105970175B (zh) 一种碳化钛-碳化锆高温太阳能选择性吸收涂层及其制备方法
CN106884145A (zh) 一种太阳光谱选择性吸收涂层及其制备方法
CN105091377A (zh) 一种太阳能选择性吸收涂层及其制备方法
CN102108491A (zh) 一种高温太阳能选择性吸收涂层及其制备方法
CN103302917B (zh) 一种双吸收层TiON耐候性光热涂层及其制备方法
CN110595084A (zh) 一种金属渐变性高温太阳能吸收涂层及其制备方法
CN204535163U (zh) 一种太阳光谱选择性吸收涂层和集热器
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN109457219B (zh) 一种中低温太阳光谱选择性吸收涂层及其制备方法
CN110699642B (zh) 一种高熵合金基高温太阳能吸收涂层及其制备方法
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN109341116B (zh) 一种Cr-Si-N-O太阳能选择性吸收涂层及其制备方法
CN204478557U (zh) 一种双吸收层太阳光谱选择性吸收涂层
CN106086882B (zh) 一种碳化钛-碳化钨紫色太阳能选择性吸收涂层及其制备方法
CN109724274B (zh) 一种纳米复合太阳能光谱选择性吸收涂层及其制备方法
CN108468033B (zh) 一种耐高温太阳能选择性吸收涂层及其制备方法
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN117267962A (zh) 一种硫化钼-氧化铝太阳能吸收涂层及其制备方法
CN111208589A (zh) 一种耐高温选择性发射红外隐身材料及其制备方法
CN201344668Y (zh) 一种选择性太阳能光热吸收复合涂层
CN106403329A (zh) 高温太阳能选择性吸收涂层及其制备方法
CN109972111A (zh) 一种高掺杂MoOx基光热转换涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication