CN116970504A - 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法 - Google Patents

一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法 Download PDF

Info

Publication number
CN116970504A
CN116970504A CN202311235189.8A CN202311235189A CN116970504A CN 116970504 A CN116970504 A CN 116970504A CN 202311235189 A CN202311235189 A CN 202311235189A CN 116970504 A CN116970504 A CN 116970504A
Authority
CN
China
Prior art keywords
pichia pastoris
gene
nmn
nampt
mycoprotein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311235189.8A
Other languages
English (en)
Inventor
吴信
洪凯
高乐
李雨蒙
戎友燕
田旭彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202311235189.8A priority Critical patent/CN116970504A/zh
Publication of CN116970504A publication Critical patent/CN116970504A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02012Nicotinamide phosphoribosyltransferase (2.4.2.12), i.e. visfatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明属于基因工程领域,涉及一种高产菌体蛋白的毕赤酵母菌及其生产含NMN的单细胞蛋白的方法。通过敲除细胞壁基因PAS_chr4_0305,并将烟酰胺磷酸核糖基转移酶通过表达载体导入到毕赤酵母中,获得重组菌。本发明的毕赤酵母具有生长速度快,甲醇菌体蛋白生产效率高的特点;甲醇蛋白含量近60%,含有全部8种必需氨基酸,具有优氨基酸配比的特性;在甲醇菌体蛋白生产的同时,联产NMN,通过全细胞催化,重组菌胞内NMN含量达到1.46 mg/g.DCW。本发明可提升产品综合经济效益,提升发酵原料的转化率和利用率。

Description

一种高产菌体蛋白的毕赤酵母菌及其生产含NMN的单细胞蛋 白的方法
技术领域
本发明涉及基因工程技术领域,具体涉及一种高产菌体蛋白的毕赤酵母菌及其生产含NMN的单细胞蛋白的方法。
背景技术
β-烟酰胺单核苷酸(β-Nicotinamide mononuclotide,简称NMN)天然存在于生物体内,是哺乳动物体内辅酶I烟酰胺腺嘌呤二核苷酸(Nicotinamideadeninedinucleotide,NAD +)合成途径的关键前体。NAD +参与了机体许多重要的生理过程,其异常代谢严重影响机体细胞和组织的健康,随着年龄增长NAD +在体内的含量逐渐降低。NAD +分子量大,无法直接通过口服转运至胞内,而是需要通过摄取前体,在胞内少量合成。近年来《Science》、《Nature》和《Cell》等国际权威学术期刊陆续发表相关研究报道,补充NMN能增加和恢复体内NAD+水平,有效延缓衰老和防止老年痴呆症等多种神经元退化疾病。因此,因而,NMN在食品保健、医药及日化行业中具有巨大的开发潜力和广阔的市场前景。美国FDA、日本MHLW和欧盟ESFA等国家先后批准NMN作为膳食补充剂进行市场销售,我国药监局也于2022年1月24日进行NMN化妆品新原料备案公示。目前,NMN的生产方法有化学合成和酶法转化两种方式。化学合成以呋喃糖或烟酰胺核糖为原料经过缩合及磷酸化合成NMN,反应条件苛刻,杂质多、收率低、成本高,且涉及大量有毒有害试剂的使用,限制了其在食品领域中的应用。因此,酶法转化成为NMN的主流生产方式,其中,半酶法以烟酰胺核糖(NR)或其氯化物(NRCI)为底物,经烟酰胺核糖激酶(NRK)一步转化获得NMN,工艺稳定成熟,转化率高。例如,CN114107160 A公开了以NRC1和三磷酸腺苷(ATP)为底物,以六偏磷酸钠为ATP再生体,在烟酰胺核糖激酶和多聚磷酸激酶的催化下生成NMN;全酶法以烟酰胺和核糖为底物,经烟酰胺磷酸核糖转移酶、核糖磷酸焦磷酸激酶和核糖激酶等酶的级联催化获得NMN。公开号为CN110195089A和CN114317515A的中国专利公开了以烟酰胺、ATP和核糖为原料,分别在烟酰胺磷酸核糖转移酶、核糖磷酸焦磷酸激酶以及核糖激酶或通过固定化的含有多磷酸激酶(PPK2)、核酮糖-5-磷酸异构酶(RKI1)、磷酸核糖焦磷酸合成酶(Prps)以及烟酰胺磷酸核糖转移酶(Nampt)的全细胞催化作用下制备NMN。2021年国内学者已成功利用大肠杆菌、毕赤酵母等异源表达发酵生产NAMPT。然而,大多数发明都是基于胞外转化生产NMN,且产率较低。
发明内容
为了克服现有技术不足,本发明提供了一株具有生产NAMPT的巴斯德毕赤酵母菌株 (P. pastoris)。利用该宿主可实现高表达NAMPT酶,具有实验操作简单、生产和使用成本低,易扩大生产等优势。本发明利用整合质粒将NAMPT基因整合到毕赤酵母染色体基因组,构建整合型重组毕赤酵母,经发酵过程持续甲醇诱导表达得到NAMPT酶。菌体经超声破碎后简单离心得到上清溶液即为粗酶液。
本发明提供了一种异源表达重组NAMPT酶的毕赤酵母基因工程菌株。其是在野生型巴氏毕赤酵母(Pichia pastoris)中敲除细胞壁O-糖基化蛋白基因。
所述野生型巴氏毕赤酵母是毕赤酵母X33,更具体的所述野生型巴氏毕赤酵母是保藏编号为CGMCC NO. 24324的Pichia pastoris C1,在2023年05月30日授权公告的ZL2022 1 1381199.8中披露。
更优选地,其进一步通过同源重组的方法导入人来源的尼克酰胺磷酸核糖转移酶NAMPT基因,优选地将所述NAMPT基因整合至基因组中。
具体地,所述导入采用基因编辑的方式实现,且将启动子AOX可操作与所述NAMPT基因连接。
更具体地,所述细胞壁糖基化基因的基因号为PAS_chr4_0305;所述NAMPT基因的基因号为Gene ID: 10135, Chromosome 7 - NC_000007.14。
在具体实施方式中,所述PAS_chr4_0305基因的核苷酸序列如SEQ ID NO:1所示;所述NAMPT基因的核苷酸序列如SEQ IDNO:2所示。
本发明提供所述的毕赤酵母菌在制备含NMN的菌体蛋白中的应用,或者在制备功能性饲用蛋白中的应用。
本发明提供一种功能性饲用蛋白的制备方法,其通过在甲醇培养基中好氧发酵所述的毕赤酵母菌得到。
具体实施方式中,所述培养基为BMMY培养基,培养温度28-30℃,pH 值4.5-6.0,获得的功能性饲用蛋白的NMN含量0.2-1.46 mg/g. DCW。
本发明所使用的毕赤酵母菌株Pichia pastoris C1,作为真核生物,具有发酵简单、易于遗传操作、蛋白表达水平高、有利于蛋白纯化等诸多优势。毕赤酵母作为专性需氧菌,可以使用甲醇作为唯一碳源;具体醇氧化酶(AOX)启动子表达***可严格调控毕赤酵母,实现高水平表达。毕赤酵母表达***除了以上特点外,同时可实现高密度培养,进行大规模发酵,十分适合进行重组蛋白的工业放大化生产制备。
与现有重组NAMPT酶生产技术相比,本发明具有优势如下:本发明的毕赤酵母具有生长速度快,甲醇菌体蛋白生产效率高的特点;甲醇蛋白含量近60%,含有全部8种必需氨基酸,具有优氨基酸配比的特性;在甲醇菌体蛋白生产的同时,联产NMN,通过全细胞催化,重组菌胞内NMN含量达到1.46 mg/g. DCW。本发明可提升产品综合经济效益,提升发酵原料的转化率和利用率。
附图说明
图1为编码NAMPT的核苷酸序列连入质粒pPIC3.5K的质粒图谱。
图2为将NAMPT基因序列成功整合到Pichia pastoris C1和Pichia pastoris C2菌株的PCR电泳验证图。其中,图2 NAMPT基因序列成功整合到P. pastorisC1及P. pastorisC2菌株的PCR电泳验证图。其中,5000bp DNA Ladder;泳道2-9为验证的1-8号转化子,其中泳道2和4-5为成功转入P. pastorisC1菌株的目的基因(记为GS01),泳道6-8为成功转入P. pastorisC2菌株的目的基因(记为GS02),泳道1和3未成功整合目的基因。
图3为NAMPT酶在P. pastorisGS01、GS02中表达的SDS电泳图。
图4为P. pastorisGS02表达的胞内NMN含量测定图。
生物材料保藏信息:本发明使用的重组毕赤酵母宿主为毕赤酵母Pichia pastoris C1,其保藏在中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:中国北京市朝阳区北辰西路1号院3号),保藏号为:CGMCC NO. 24324,保藏时间为:2022年1月17日。
具体实施方式
实施例中使用的试剂、溶液、培养基如下:
主要溶液的配制:
(1)10×YNB:3.4g YNB(不含硫酸铵和氨基酸)、10g硫酸铵加入100mL灭菌后的水中,加热至YNB完全溶解,过0.22μM滤膜除菌,4℃保存。
(2)500×B(0.02%生物素):溶解10mg生物素于50mL灭菌的水中,过0.22μM滤膜除菌,4℃保存。
(3)10×D(20%葡萄糖):20g D-葡萄糖溶解于100mL水中,50℃以下加热溶解,高温高压灭菌,于4℃保存。
(4)1mol/L磷酸钾缓冲液(pH 6.0): 13.2mL 1mol/L的K2HPO4,与86.8mL 1mol/L的KH2PO4混合,调pH至6.0,高温高压灭菌后室温保存。
(5)10×GY(10%甘油):10mL 100%甘油中加入90mL水,混匀,过滤或高压灭菌,室温保存。
(6)10×M(5%甲醇):5mL甲醇与95mL水混匀,过0.22μM滤膜除菌,4℃保存。
(7)G-418:0.1g G-418溶于1mL灭菌ddH2O中配制成100mg/mL的母液,-20℃保存。
主要培养基的配制:
(1)YPD液体培养基(Yeast Extract Peptone Dextrose Medium):溶解10g YeastExtract和20g Peptone于900mL水中,高温高压灭菌20min,使用时加入100mL10×D,室温保存。
(2)MD平板培养基(Minimal dextrose medium):15g琼脂粉溶解于800mL水中,高温高压灭菌20min。60℃下加入100mL 10×YNB、2mL 500×B、100mL 10×D混匀,平板放置于4℃。
(3)MDG平板培养基:将100mg/mL G-418加入MD平板中制成5mg/mL的MDG平板,4℃保存。
(4)BMGY培养基(Buffered Glycerol-complex Medium):10g Yeast Extract、20gPeptone溶解于700mL水中,高温高压灭菌20min,冷却至室温后加入100mL 1mol/L磷酸钾缓冲液(Ph 6.0)、100mL 10×YNB、2mL 500×B和100mL 10×GY。
(5)BMMY培养基(Buffered Methanol-complex Medium):10g Yeast Extract、20gPeptone溶解于700mL水中,高温高压灭菌20min,冷却至室温后加入100mL 1mol/L磷酸钾缓冲液(pH 6.0)、100mL 10×YNB、2mL 500×B和100mL 10×M。
基因组提取具体实施步骤如下:
(1)吸取需提基因组的菌液至新的1.5mL EP管中,12000g离心3min,弃上清。
(2)加入100μL含200mM醋酸锂,1%SDS的细胞裂解液,涡旋混匀,70℃孵育5min。
(3)孵育结束后加入300μL无水乙醇,涡旋振荡15s,12000g离心3min,弃上清。
(4)重新加入300μL 70%乙醇,洗涤并于12000g下离心3min,弃上清。
(5)60℃金属浴放置5min,挥干乙醇,加入100μL ddH2O,轻轻吹打混匀,12000g离心30s。
(6)取1μL上清作为模板进行PCR。
实施例1:蛋白表达底盘P. pastoris C2的构建
1、在本实施例中,选用CRISPR-Cas9基因编辑***来实现对出发菌株Pichia pastoris C1编码细胞壁稳定性所需的O-糖基化蛋白基因PAS_chr4_0305的无痕敲除,Pichia pastoris C1菌株为实验室前期筛选得到的具有高效代谢甲醇能力的毕赤酵母菌株,其由甲醇营养型毕赤酵母(Pichia pastoris)X33通过ARTP诱变与筛选获得(具体见中国专利202210611032.X中实施例1的描述)。
CRISPR-Cas9***通过小向导RNA (Small guide RNA,sgRNA) 的靶向序列定位至含有前间隔序列邻近基序 (Protospacer adjacent motif,PAM) 序列的特定位点,引导Cas9蛋白切割 DNA 形成双链断裂缺口,再依靠同源重组 (HR) 或者非同源末端连接(NHEJ) 修复的方式进行连接,从而引发基因编辑。本实施例选用pPICZ-Cas9-gGUT1质粒(双向启动子PHTX1控制Cas9蛋白和靶向GUT1基因的20 bp的sgRNA)进行质粒修改达到目的基因的编辑(其方法参见:Cai P , Duan X , Wu X , et al. Recombinationmachineryengineering facilitates metabolic engineering of the industrialyeastPichiapastoris[J]. Nucleic Acids Research, 2021(13):13)。
首先,设计靶向PAS_chr4_0305的sgRNA,构建敲除质粒pPICZ-Cas9-gPAS_chr4_0305。其中靶向PAS_chr4_0305的sgRNA序列由在线网站(CRISPR RGEN Tools, http://www.rgenome.net/)提供。本实施例选择基因PAS_chr4_0305序列的第121-140位的20 bp碱基作为该基因的sgRNA序列。以质粒pPICZ-Cas9-gGUT1为模板,经过Gibson组装将质粒pPICZ-Cas9-gGUT1中靶向GUT1的20 bp 序列修改为选定的靶向PAS_chr4_0305的sgRNA序列,经过大肠杆菌转化、质粒提取和基因测序,最终获得敲除质粒pPICZ-Cas9-gPAS_chr4_0305。(2)设计及构建供体DNA:PAS_chr4_0305-Donor。以Pichia pastoris C1基因组为模板,分别扩增出基因PAS_chr4_0305的上游500 bp和下游500 bp。再通过融合PCR方法将上下游片段融合成1000 bp的长片段,得到PAS_chr4_0305-Donor。(3)同时共转化pPICZ-Cas9-gPAS_chr4_0305和PAS_chr4_0305-Donor到Pichia pastoris C1菌株中,涂布YPDZ(YPD+博来霉素)平板。最后,挑取平板上的克隆进行菌落 PCR(见图3)以及基因测序验证,后挑取正确的转化子在YPD 培养基中进行传代,丢掉质粒后保菌,至此完成PAS_chr4_0305基因的敲除,菌株命名为Pichia pastoris C2。
实施例2:重组NAMPT毕赤酵母GS01、GS02的制备
1、构建重组质粒pPIC3.5k-NAMPT:本实施例选用pPIC3.5K质粒(AOX启动子)进行质粒修改达到目的基因的编辑,将pPIC3.5k质粒骨架按照相对等长原则分为两段(fragment 1、fragment 2)进行PCR,其中fragment 1包含AOX1 promoter至AOX1 3’fragment序列,fragment 2包含kanR至AOX1 terminator序列,并与添加同源臂的NAMPT片段进行Gibson组装获得融合质粒,如图1所示,经过大肠杆菌转化、质粒提取和基因测序,最终获得整合质粒pPIC3.5K-NAMPT。
2、重组质粒pPIC3.5k-NAMPT构建成功后,选择SacI酶进行线性化处理,经电泳验证正确后进行纯化回收,并将回收后的线性化重组质粒pPIC3.5k-NAMPT通过电击分别转化至毕赤酵母Pichia pastoris C1和Pichia pastoris C2感受态细胞中,涂布于MD平板培养基于30℃培养。待MD平板长出菌落后,用无菌ddH2O洗下并进行适度稀释,涂布于含5mg/mLG-418的MDG平板培养基筛选,30℃下培养2-3天,得到单菌落,其中在出发菌株Pichiapastoris C1上整合NAMPT基因的菌株记为GS01,在Pichia pastoris C2菌株上整合NAMPT基因的重组菌株记为GS02。挑取形态状态较佳的单菌落接种于YPD液体培养基扩大培养,同时使用甘油保存重组毕赤酵母菌株于-80℃冰箱。
3、重组毕赤酵母单克隆验证
YPD液体培养基中扩大培养的菌液进行基因组粗提取,作为PCR模板。使用Phanata高保真酶PCR体系扩增,PCR产物进行电泳验证(电泳结果如图2所示)。泳道2,4-8显示为1600bp左右长度明亮条带,表明目的基因NAMPT成功整合到出发菌株Pichia pastoris C1及Pichia pastoris C2菌株的基因组上,在进一步测序结果中验证到与目的基因的序列相符,表明重组毕赤酵母菌株GS01和GS02创制成功。
实施例2:酵母单细胞蛋白含量测定
毕赤酵母生产甲醇菌体蛋白分析:粗蛋白质GB/T 6432-1994《饲料中粗蛋白的测定方法》。氨基酸含量测定采用A200型amino Nova氨基酸分析仪参照中华人民共和国国家标准GB/T 18246-2000《饲料中氨基酸的测定》进行测定。经测定,GS01菌株甲醇菌体蛋白粗蛋白含量为55.68%,氨基酸含量为45.28%。其中必需氨基酸种类包括有8种。即:赖氨酸、蛋氨酸、色氨酸、缬氨酸、苏氨酸、苯丙氨酸、亮氨酸、异亮氨酸,必需氨基酸总含量为19.27%,占到总氨基酸的42.56%,P. pastoris GS02菌株甲醇菌体蛋白粗蛋白含量为58.71%,氨基酸含量为47.85%,均较P. pastoris GS01菌株有所提高。结果如下表。
实施例3:甲醇诱导P. pastoris GS02表达NAMPT酶及全细胞催化生产NMN
从-80℃冰箱中取出电泳和测序验证正确的菌株,接种至3mL YPD液体培养基中,220rpm,30℃,培养14-16h获得种子液。培养至OD600=0.1-1后离心弃上清,用BMGY培养基洗涤一次并重悬,调至统一OD600值,转接到50mL BMGY培养基中扩大培养,220 rpm,30℃,培养16-20h至OD600=1-2。BMGY培养基培养所得菌液以5000g,4℃,离心10min,弃上清,用BMMY培养基洗涤一次,并重悬于50mL的BMMY培养基中,220 rpm,30℃,进行培养,加入终浓度为2mg/L的NAM。每隔24小时补加一次0.5%的甲醇,继续220 rpm,30℃培养,每24h取样,诱导96h后结束发酵,对所得发酵菌液进行离心,分离菌体,对所收集菌体进行超声破碎,破碎后进行离心,上清液即为含有重组NAMPT酶的胞内粗提液。
对粗酶液进行SDS-PAGE电泳检测(结果如图3所示),泳道M为蛋白Marker-245kDa,泳道2为毕赤酵母X33野生型菌株,与预期相符,未出现目标条带,泳道3、4分别为重组毕赤酵母GS02、GS01菌株,在48-63kDa之间出现条带,与目的蛋白预期相对分子质量54kDa相符,通过质谱鉴定,特异性肽段与目标蛋白的匹配度达到83%,表明重组毕赤酵母P. pastoris GS01和P. pastoris GS02菌株均成功表达NAMPT。进一步分析P. pastoris GS01和P. pastoris GS02菌株粗酶液的SDS-PAGE条带的颜色深度,发现GS02菌株目标蛋白的条带颜色更深,表明GS02胞内NAMPT表达量更高,这一结果与实施例2中GS02粗蛋白含量更高的结论相符,表明敲除PAS_chr4_0305基因的P. pastoris C2酵母菌株与出发菌株C1相比,更有利于目标蛋白的表达。
实施例4:P. pastoris GS02全细胞催化的NMN测定
全细胞反应产物NMN的浓度测定:取破碎后的胞内粗提液样品2mL于离心管中,经13000 rpm 离心2min后,倒掉上清液,用 4 mL 超纯水重悬菌体沉淀后,使用超声细胞破碎仪在冰上超声破胞 15 min,然后沸水煮沸1 min使蛋白失活,取样 1 mL,经离心后备用。测量时在 1.5 mLTube管中依次加入 27.7 μL的 2M KOH溶液、27.7 μL 20%苯乙酮(DMSO)、69μL待测溶液,涡旋 10 s后,冰浴 2 min。向离心管中加入125 μL 88%甲酸,放置在37℃恒温震荡仪中,反应10 min。将250 μL反应后的混合液吸取至黑色96孔板中,设定酶标仪激发光为382nm,发射光为445 nm,测定混合液荧光度。将测量的荧光度代入NMN标准曲线,计算全细胞反应所得产物NMN的浓度,经测定毕赤酵母胞内NMN含量随着反应时间的延长呈先增加后降低的趋势,其中,在反应24h时胞内NMN含量达到最高值1.46 mg/g DCW(图4),表明反应24h是获得高NMN含量单细胞酵母蛋白的最佳时间。

Claims (10)

1.一种高产菌体蛋白含量的毕赤酵母菌,其特征在于,在野生型巴斯德毕赤酵母(Pichia pastoris)中敲除细胞壁O-糖基化蛋白基因,进一步通过同源重组的方法导入人来源的尼克酰胺磷酸核糖转移酶NAMPT基因。
2.如权利要求1所述的毕赤酵母菌,其特征在于,所述野生型巴斯德毕赤酵母是毕赤酵母X33,或者所述野生型巴斯德毕赤酵母是保藏编号为CGMCC NO. 24324的Pichia pastoris C1。
3.如权利要求1或2所述的毕赤酵母菌,其特征在于,将所述NAMPT基因整合至野生型巴斯德毕赤酵母的基因组中。
4.如权利要求3所述的毕赤酵母菌,其特征在于,所述导入采用基因编辑的方式实现,且将启动子AOX可操作与所述NAMPT基因连接。
5.如权利要求3所述的毕赤酵母菌,其特征在于,所述细胞壁糖基化基因的基因号为PAS_chr4_0305;所述NAMPT基因的基因号为Gene ID: 10135, Chromosome 7 - NC_000007.14。
6.如权利要求5所述的毕赤酵母菌,其特征在于,所述PAS_chr4_0305基因的核苷酸序列如SEQ ID NO:1所示;所述NAMPT基因的核苷酸序列如SEQ ID NO:2所示。
7.如权利要求1至6任一项所述的毕赤酵母菌在制备含NMN的菌体蛋白中的应用。
8.如权利要求1至6任一项所述的毕赤酵母菌在制备功能性饲用蛋白中的应用。
9.一种功能性饲用蛋白的制备方法,其特征在于,通过在甲醇培养基中好氧发酵如权利要求1至6任一项所述的毕赤酵母菌得到。
10.如权利要求9所述的制备方法,其特征在于,所述培养基为BMMY培养基,培养温度28-30℃,pH 值4.5-6.0,获得的功能性饲用蛋白的NMN含量0.2-1.46 mg/g. DCW。
CN202311235189.8A 2023-09-25 2023-09-25 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法 Pending CN116970504A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311235189.8A CN116970504A (zh) 2023-09-25 2023-09-25 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311235189.8A CN116970504A (zh) 2023-09-25 2023-09-25 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法

Publications (1)

Publication Number Publication Date
CN116970504A true CN116970504A (zh) 2023-10-31

Family

ID=88483557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311235189.8A Pending CN116970504A (zh) 2023-09-25 2023-09-25 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法

Country Status (1)

Country Link
CN (1) CN116970504A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836495A (zh) * 2022-05-16 2022-08-02 蓝色光钥(上海)智能科技有限公司 利用烟酰胺发酵生产nmn的基因工程菌的构建与应用
CN115851473A (zh) * 2022-11-06 2023-03-28 中国科学院天津工业生物技术研究所 一种高甲醇耐受的毕赤酵母菌株的构建及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836495A (zh) * 2022-05-16 2022-08-02 蓝色光钥(上海)智能科技有限公司 利用烟酰胺发酵生产nmn的基因工程菌的构建与应用
CN115851473A (zh) * 2022-11-06 2023-03-28 中国科学院天津工业生物技术研究所 一种高甲醇耐受的毕赤酵母菌株的构建及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈宇娴等: "β-烟酰胺单核苷酸的生理活性与合成研究进展", 生物工程学报, pages 516 - 536 *

Similar Documents

Publication Publication Date Title
CN113621631A (zh) 一种甲羟戊酸激酶基因rkmk及其应用
CN108753669B (zh) 一种腺嘌呤生产菌株及其构建方法和应用
CN115851779B (zh) 一种葡萄糖-6-磷酸脱氢酶基因RkZWF1及其应用
CN106676081B (zh) 一种磷脂酶b及其应用
CN115011616A (zh) 一种乙醛脱氢酶基因rkaldh及其应用
CN107257851A (zh) 正面影响天然或工程化的真核细胞的生理学的细菌伴侣蛋白的组合
KR102473375B1 (ko) 재조합 미생물, 그 제조방법 및 보효소 q10의 생산에 있어서 그의 사용
CN109913397A (zh) 产生5′-黄苷一磷酸的棒状杆菌属的微生物和使用该微生物制备5′- 黄苷一磷酸的方法
CN110551697B (zh) 侧耳类食用菌麦角硫因合成酶pegt1和pegt2在合成麦角硫因中的应用
CN1191369C (zh) 一种用代谢工程菌生产腺苷甲硫氨酸的方法
CN112522125A (zh) 一种透明质酸酶工程菌及其构建方法与应用
CN116970504A (zh) 一种高产菌体蛋白的毕赤酵母菌及其生产含nmn的单细胞蛋白的方法
CN112266923B (zh) 一种表达腺苷蛋氨酸合酶的枯草芽孢杆菌及应用
CN111378583B (zh) 一种里氏木霉及其应用
CN108913732B (zh) 一种莫纳可林j异源生产的方法及应用
CN109161489B (zh) 一种高产酸性蛋白酶的黑曲霉菌株
CN117126756B (zh) 一种用于制备烟酰胺磷酸核糖基转移酶的重组菌株的构建方法及其应用
KR20210048760A (ko) 푸코실락토오스의 검출 및 정량 방법
CN116042561B (zh) 一种s-腺苷蛋氨酸合成酶突变体及其应用
CN116286899B (zh) 一种NADH激酶基因RkNADHK1及其应用
CN111607548B (zh) 一种产甘露聚糖的重组大肠杆菌及其应用
KR100262249B1 (ko) 유기게르마늄을 균체내에 고농도로 함유하는 효모균주 및 그 제조방법
CN115820517A (zh) 一种提高生物合成甲基硒代半胱氨酸产量的方法
CN118222528A (zh) 一种谷氨酸脱氢酶基因RkGDH2及其应用
CN118006710A (zh) 一种生产烟酰胺单核苷酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination