CN116878173A - 太阳能热电联产与储能分布式综合能源利用***及方法 - Google Patents

太阳能热电联产与储能分布式综合能源利用***及方法 Download PDF

Info

Publication number
CN116878173A
CN116878173A CN202310786699.8A CN202310786699A CN116878173A CN 116878173 A CN116878173 A CN 116878173A CN 202310786699 A CN202310786699 A CN 202310786699A CN 116878173 A CN116878173 A CN 116878173A
Authority
CN
China
Prior art keywords
heat
energy
temperature solid
collector
photovoltaic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310786699.8A
Other languages
English (en)
Inventor
徐辉
王燕辉
徐洪涛
屈治国
晏桂珍
张鹏
初婷
严亮亮
焦广利
王成才
曹中云
汤刚
王厚高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Nuclear Power Equipment Manufacturing Co ltd
Original Assignee
Shandong Nuclear Power Equipment Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Nuclear Power Equipment Manufacturing Co ltd filed Critical Shandong Nuclear Power Equipment Manufacturing Co ltd
Priority to CN202310786699.8A priority Critical patent/CN116878173A/zh
Publication of CN116878173A publication Critical patent/CN116878173A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种太阳能热电联产与储能分布式综合能源利用***及方法,至少包括:聚光器、分频器、透镜、光伏电池、集热器、真空管集热器、低温固体储热器、高温固体储热器和换热器;聚光器用于将汇聚的太阳光反射给分频器,透镜用于接收分频器分频后的短波段光谱并发送至光伏电池受光面,光伏电池用于接收透镜出射的汇聚光并进行发电,集热器与光伏电池接触以吸收光伏电池的热量,真空管集热器用于接收分频器分频后的长波段光谱辐射,通过低温固体储热器与高温固体储热器分别实现与集热器和真空管集热器的换热;本发明满足了工业环境下的多品质多品味能量储存,达到了能源梯级互补利用的目的,降低了传统建筑的能耗。

Description

太阳能热电联产与储能分布式综合能源利用***及方法
技术领域
本发明涉及能源综合利用技术领域,特别涉及一种太阳能热电联产与储能分布式综合能源利用***及方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术,并不必然构成现有技术。
太阳能作为一种可再生能源,可以通过光伏电池输出电能,也可以通过集热器输出热能,太阳能光伏光热***在工业及低能耗家庭建筑中占有至关重要的地位,能够清洁高效的提供热能和电能。
由于光伏电池硅材料禁带波长的限制,其只能将短波太阳辐射转化为电能,其余无法被转化的长波辐射将导致光伏电池温度升高,致使光电转换效率降低,分频器具有良好的光谱选择性,通过分频器构建分离式光伏光热***可以实现太阳辐射的全光谱利用,并高效的产生热能和电能,因此,可将分频器与光伏和光热***结合,通过分频器分频将无法被转换为电能的长波辐射能分离至真空管集热器,并转换为热能,然后,将短波辐射能过滤反射,并辐射于光伏电池表面转换为电能。
专利号CN 114892180 A提供了一种折平板聚光分频光伏光热利用装置,其太阳能电池板位于折平板聚光器上方且位于折平板聚光器的聚光位置,分频器设置于折平板聚光器上表面,真空管集热器位于折平板聚光器下方,真空管集热器的入口处设有梯级相变材料预热管,提高了太阳能的利用效率。
但是,发明人发现,上述方案虽然实现了太阳光的多波长利用,但是其并无法实现储热及储电的联合应用,目前的工业环境中大多使用传统的热水储热***和蓄电池实现热能和电能的储存和利用,这两种储能***的性能极易受到环境的影响,在波动的外界环境中,***的效率较低,固体储热***具有较大的储能密度和良好的稳定性,可以被广泛应用到工业环境中,然而,单一熔点的潜热储热介质的环境适应性较差,无法满足不同季节条件下的使用。
发明内容
为了解决现有技术的不足,本发明提供了一种太阳能热电联产与储能分布式综合能源利用***及方法,充分利用全光谱太阳能,适应于不同的季节和不同辐射条件下的用户需求,实现了热电氢能的相互转化和依存,满足了工业环境下的多品质多品味能量储存,达到了能源梯级互补利用的目的,降低了传统建筑的能耗。
为了实现上述目的,本发明采用如下技术方案:
本发明第一方面提供了一种太阳能热电联产与储能分布式综合能源利用***。
一种太阳能热电联产与储能分布式综合能源利用***,包括:聚光器、分频器、透镜、光伏电池、集热器、真空管集热器、低温固体储热器、高温固体储热器和换热器;
聚光器用于将汇聚的太阳光反射给分频器,透镜用于接收分频器分频后的短波段光谱并发送至光伏电池受光面,光伏电池用于接收透镜出射的汇聚光并进行发电,集热器与光伏电池接触以吸收光伏电池的热量,真空管集热器用于接收分频器分频后的长波段光谱辐射;
集热器的输出端与低温固态储热器的输入端通过管路连接,低温固态储热器的输出端与集热器的输入端通过管路连接,低温固体储热器与冷水管道换热,输出生活热水;
真空管集热器的输出端经与高温固体储热器的储热输入端通过管路连接,高温固体储热器的储热输出端与真空管集热器的输入端通过管路连接,高温固体储热器的放热输出端与换热器的输入端通过管路,换热器的输出端与高温固体储热器的放热输入端通过管路连接。
作为本发明第一方面进一步的限定,低温固态储热器的输出端至集热器的输入端之间的管路上,依次连接有第一流量计、第一水泵和第一阀门。
作为本发明第一方面进一步的限定,高温固体储热器的储热输出端至真空管集热器的输入端之间的管路上,依次连接有第二流量计、第二水泵和第二阀门。
作为本发明第一方面进一步的限定,高温固体储热器的放热输出端至换热器的输入端之间的管路上,依次连接有第三流量计、第三泵和第三阀门。
作为本发明第一方面进一步的限定,光伏电池输出端与电解池连接,电解池制取的氢气经氢气管道与储罐输入端连接,光伏电池输出端经逆变器与电网连接。
作为本发明第一方面进一步的限定,聚光器为抛物线槽式聚光器,聚光器与可调控高度与方向的自动双轴追踪器连接,分频器为红外分频玻璃,长波段光可透过分频器辐射至真空管集热器,短波段光经分频器反射至透镜,透镜聚集分频器的反射光,辐射于光伏电池。
作为本发明第一方面进一步的限定,真空管集热器包括吸热管和玻璃管,吸热管和玻璃管之间的夹层保持真空,传热流体工质由吸热管的一端流入,经太阳辐射加热后,从吸热管另一端流出。
作为本发明第一方面进一步的限定,集热器为平板型集热器,与光伏电池的背板贴合接触,用于吸收光伏电池产生的热量。
作为本发明第一方面进一步的限定,透镜、光伏电池以及集热器位于聚光器和分频器之间的位置。
本发明第二方面提供了一种太阳能热电联产与储能分布式综合能源利用方法。
一种太阳能热电联产与储能分布式综合能源利用方法,利用本发明第一方面所述的太阳能热电联产与储能分布式综合能源利用***,包括以下过程:
当太阳辐射充足时,白天使真空管集热器、光伏电池、集热器、低温固体储热器、高温固体储热器、换热器、储罐和逆变器进行工作,以进行热能的储存、电能的储存以及电能与热能的利用,夜晚使光伏电池、高温固体储热器、换热器、储罐和逆变器进行工作,以满足夜间电能与热能的需求;
当太阳辐射不足时时,白天使真空管集热器、光伏电池、集热器、低温固体储热器、高温固体储热器进行工作,完成热能与电能的储存,夜晚使光伏电池、高温固体储热器、换热器、储罐和逆变器进行工作,以满足夜间电能与热能的需求。
与现有技术相比,本发明的有益效果是:
1、本发明创新性的提出了一种太阳能热电联产与储能分布式综合能源利用***及方法,充分利用全光谱太阳能,适应于不同的季节和不同辐射条件下的用户需求,实现热电氢能的相互转化和依存,结合低温固态储热其和高温固态储热器,满足工业环境下的多品质多品味能量储存,达到了能源梯级互补利用的目的,降低了传统建筑的能耗。
2、本发明创新性的提出了一种太阳能热电联产与储能分布式综合能源利用***及方法,能够产出大量热能和电能,满足不同环境下多品质、多品味能量的储存,缓解了阴雨天气太阳能***热能和电能供应不足的问题;同时,将太阳能通过分频器的作用,结合集热器、光伏电池和固体储热器,对太阳辐射光谱进行分频利用,达到了全光谱太阳能利用、节能环保、相互依存、高效储存能量的目的。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例提供的太阳能热电联产与储能分布式综合能源利用***的示意图;
其中,1-聚光器;2-分频器;3-透镜;4-光伏电池;5-集热器;6-真空管集热器;7-低温固体储热器;8-高温固体储热器;9-换热器;10-电解池;11-储罐;12-逆变器;13-第一流量计;14-第一水泵;15-第一阀门;16-第四阀门;17-第二流量计;18-第二水泵;19-第二阀门;20-第三流量计;21-第三泵;22-第三阀门;23-第五阀门;24-第六阀门;25-第七阀门。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如图1所示,本实施例提供了一种太阳能热电联产与储能分布式综合能源利用***,包括:聚光器1、分频器2、透镜3、光伏电池4、集热器5、真空管集热器6、低温固体储热器7、高温固体储热器8、换热器9、电解池10、储罐11、逆变器12、第一流量计13、第一水泵14、第一阀门15、第四阀门16、第二流量计17、第二水泵18、第二阀门19、第三流量计20、第三泵21、第三阀门22、第五阀门23、第六阀门24和第七阀门25。
本实施例中,聚光器1按照固定位置安装于分频器2的对面位置,配置可调控高度与方向的自动双轴追踪器(即聚光器与自动双轴追踪器连接,用于伴随自动双轴追踪器变换位置),使***在不同环境条件下实现了较高的辐射输入密度,透镜3设于分频器2正前方,光伏电池4设于透镜3的正前方,集热器5设于光伏电池4的背板上(贴合接触以实现热量采集),真空管集热器6设于分频器2正后方;
真空管集热器6的输出端经第七阀门25连接高温固体储热器8储热输入端,高温固体储热器8的储热输出端经第二流量计17、第二水泵18、第三阀门19连接真空管集热器6的输入端,高温固体储热器8放热输出端经第三流量计20、第三泵21、第三阀门22连接换热器9输入端,换热器9的输出端经第六阀门24连接高温固体储热器8放热输入端,换热器9输出的热水经第五阀门23通入电解池10;
集热器5的输出端经第四阀门16连接低温固体储热器7的输入端,低温固体储热器7的输出端经第一流量计13、第一水泵14、第一阀门15连接集热器5输入端,光伏电池4输出端连接电解池10,电解池8制取的氢气经氢气管道连接储罐11输入端,光伏电池4输出端连接逆变器12的输入端,逆变器12的输出端连接电网,逆变器12的输出端连接第一流量计13、第一水泵14、第二流量计17、第二水泵18、第三流量计20和第三泵21,以实现交流供电。
本实施例中,优选的,聚光器1为抛物线槽式聚光器,配置可调控高度与方向的自动双轴追踪器,用于聚焦太阳辐射,提高了阴天环境下太阳辐射的能量密度。
本实施例中,优选的,分频器2的具体形式为红外分频玻璃,其具有选择透光特性,长波段光可透过分频器2辐射于真空管集热器6,短波段光经分频器2反射于透镜3。
本实施例中,优选的,透镜3聚集分频器2的反射光,辐射于光伏电池4。
本实施例中,优选的,真空管集热器6由吸热管和玻璃管组成,吸热管和玻璃管夹层保持真空,传热流体工质由吸热管的一端流入,经太阳辐射加热后,从另一端流出。
本实施例中,优选的,集热器5是平板型集热器,可以贴附在光伏电池4的背板上,用于吸收光伏电池4产生的热量。
本实施例中,优选的,逆变器12输出的交流电源可作为第一流量计13、第一水泵14、第二流量计17、第二水泵18、第三流量计20、第三泵21的工作电源,以及供给电网。
本实施例中,优选的,高温固体储热器8中填充具有储能能力的固体材料,其储能温度大于200℃,固体材料包括氧化银和沙砾,其外部采用绝热材料,使高温固体储热器8内部与外界环境达到热绝缘状态,保证蓄热的高效节能。
本实施例中,优选的,低温固体储热器7中填充具有储能能力的固体材料,其储能温度在100℃,固体材料包括氧化银、沙砾,其外部采用绝热材料,使低温固体储热器7内部与外界环境达到热绝缘状态,保证蓄热的高效节能。
本实施例中,优选的,高温固体储热器8、真空管集热器6液体回路中的基础循环工质是导热油、水和纳米流体等。
本实施例中,优选的,低温固体储热器7、集热器5液体回路中的基础循环工质是导热油、水和纳米流体等。
本实施例中,优选的,高温固体储热器8、换热器9液体回路中的基础循环工质是导热油、水和纳米流体等,换热器9中填充纯水,循环流体工质与换热器9中的纯水进行热量交换,水温升高后,其被用于用户热能所需或通入电解池10。
本实施例中,优选的,聚光器1按照固定位置安装于分频器2的对面位置,配置可调控高度与方向的自动双轴追踪器,使***在不同环境条件下实现较高的辐射输入密度;聚光器1聚集的太阳光辐射于分频器2,从而实现太阳辐射不同波段光谱的分频,通过分频的太阳辐射分别实现光热与光伏转换,继而实现电能和热能的利用。
本实施例中,在光热转换过程中,分频后的长波段光谱辐射于真空管集热器6,用于加热其内部换热管内的低温流体,继而,高温的流体工质从真空管集热器6的出口流出,经过阀门25流入高温固体储热器8中,通过热量交换,完成热量的储存;
在光电转换过程中,分频后的短波段光谱经透镜3二次聚光作用于光伏电池4表面,从而实现了电能的储存;同时,光电转换过程配有光伏电池冷却***,光伏电池4背部设有集热器5,其内部换热管内的低温流体用于回收光伏电池4产生的余热,继而,高温流体从集热器5输出端流出,经第四阀门16流入低温固体储热器7中,通过热量交换,完成余热的回收;
在热能利用过程中,高温固体储热器8放热输出端流出高温流体,经第三阀门22流入换热器9,与板式换热其内部的低温水进行热量交换,继而,高温水从换热器输出端流出,一部分用于生活用水,另一部分流入电解池10,低温固体储热器7与冷水管道换热,输出生活热水,实现低温固体储热器7的热能利用。
在电能利用过程中,首先光伏电池4输出的直流电接入电解池10,用于电解来自换热器9的高温水,继而产生氢气,电解高温水产生的氢气通入储罐11储存;其次,光伏电池4输出的直流电接入逆变器的输入端,继而,从逆变器12输出端输出交流电,其中一部分用于本***耗电设备,如第一流量计13、第一水泵14、第二流量计17、第二水泵18、第三流量计20、第三泵21,其余交流电接入电网。
本实施例中,分频器2、透镜3、光伏电池4、集热器5和真空管集热器6可固定安置于同一支架。
本***中光热转换***、光电转换***、热能利用***以及电能利用***可协调匹配工作,实现***中热能的储存或释放以及电能的储存和释放,根据应用的实际需求和情景,从而实现了可调节的和高效的热能与电能的储存和利用。
当太阳辐射充足时,白天同时开启光热转换***、光电转换***、热能利用***和电能利用***,使真空管集热器6、光伏电池4、集热器5、低温固体储热器7、高温固体储热器8、换热器9、储罐11和逆变器12进行工作,从而实现热能的储存、电能的储存以及电能与热能的利用,夜晚开启热能利用***和电能利用***,使光伏电池4、高温固体储热器8、换热器9、储罐11和逆变器12进行工作,满足夜间电能与热能的需求;
当太阳辐射不足时时,白天仅开启光热转换***和光电转换***,使真空管集热器6、光伏电池4、集热器5、低温固体储热器7、高温固体储热器8、同时进行工作,完成热能与电能的储存,夜晚开启热能利用***和电能利用***,使光伏电池4、高温固体储热器8、换热器9、储罐11和逆变器12进行工作,满足夜间电能与热能的需求。
当太阳辐射充足时,白天可持续开启光热转换***和光电转换***,同时开启光伏电池冷却***,其中光电转化过程产生的电能储存于光伏电池4中,通过逆变器12输出交流电能,从而一部分满足***中耗电部件,如泵和流量计的短期电能使用,其余部分电能供于电网。
本发明通过分频器2实现太阳辐射的全光谱利用,通过光热和光电转换,实现了多品味、多品质的能量转化,通过低温固体储热器7、高温固体储热器8、光伏电池4实现多品味、多品质的能量储存。
本发明具有成本低廉、独立模块化、环境适应性强、低能耗自循环的特点,提高了太阳能的综合利用效率,利于工业以及低能耗家庭建筑结合使用,具有一定商业化发展的潜力。
本发明建立于全光谱太阳能利用的基础上,实现不同波段辐射能量的梯级利用与耦合,满足能源利用过程中的清洁、高效和可再生的需求;本发明能够产出大量热能和电能,满足不同环境下多品质、多品味能量的储存,缓解阴雨天气太阳能***热能和电能供应不足的问题;同时,本发明将太阳能通过分频器的作用,结合集热器、光伏电池、固体储热器,对太阳辐射光谱进行分频利用,以达到全光谱太阳能利用、节能环保、相互依存、高效储存能量的目的。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种太阳能热电联产与储能分布式综合能源利用***,其特征在于,
包括:聚光器、分频器、透镜、光伏电池、集热器、真空管集热器、低温固体储热器、高温固体储热器和换热器;
聚光器用于将汇聚的太阳光反射给分频器,透镜用于接收分频器分频后的短波段光谱并发送至光伏电池受光面,光伏电池用于接收透镜出射的汇聚光并进行发电,集热器与光伏电池接触以吸收光伏电池的热量,真空管集热器用于接收分频器分频后的长波段光谱辐射;
集热器的输出端与低温固态储热器的输入端通过管路连接,低温固态储热器的输出端与集热器的输入端通过管路连接,低温固体储热器与冷水管道换热,输出生活热水;
真空管集热器的输出端经与高温固体储热器的储热输入端通过管路连接,高温固体储热器的储热输出端与真空管集热器的输入端通过管路连接,高温固体储热器的放热输出端与换热器的输入端通过管路,换热器的输出端与高温固体储热器的放热输入端通过管路连接。
2.如权利要求1所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
低温固态储热器的输出端至集热器的输入端之间的管路上,依次连接有第一流量计、第一水泵和第一阀门。
3.如权利要求1所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
高温固体储热器的储热输出端至真空管集热器的输入端之间的管路上,依次连接有第二流量计、第二水泵和第二阀门。
4.如权利要求1所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
高温固体储热器的放热输出端至换热器的输入端之间的管路上,依次连接有第三流量计、第三泵和第三阀门。
5.如权利要求1-4任一项所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
光伏电池输出端与电解池连接,电解池制取的氢气经氢气管道与储罐输入端连接,光伏电池输出端经逆变器与电网连接。
6.如权利要求1-4任一项所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
聚光器为抛物线槽式聚光器,聚光器与可调控高度与方向的自动双轴追踪器连接,分频器为红外分频玻璃,长波段光可透过分频器辐射至真空管集热器,短波段光经分频器反射至透镜,透镜聚集分频器的反射光,辐射于光伏电池。
7.如权利要求1-4任一项所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
真空管集热器包括吸热管和玻璃管,吸热管和玻璃管之间的夹层保持真空,传热流体工质由吸热管的一端流入,经太阳辐射加热后,从吸热管另一端流出。
8.如权利要求1-4任一项所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
集热器为平板型集热器,与光伏电池的背板贴合接触,用于吸收光伏电池产生的热量。
9.如权利要求1-4任一项所述的太阳能热电联产与储能分布式综合能源利用***,其特征在于,
透镜、光伏电池以及集热器位于聚光器和分频器之间的位置。
10.一种太阳能热电联产与储能分布式综合能源利用方法,其特征在于,利用权利要求1-9任一项所述的太阳能热电联产与储能分布式综合能源利用***,包括以下过程:
当太阳辐射充足时,白天使真空管集热器、光伏电池、集热器、低温固体储热器、高温固体储热器、换热器、储罐和逆变器进行工作,以进行热能的储存、电能的储存以及电能与热能的利用;夜晚使光伏电池、高温固体储热器、换热器、储罐和逆变器进行工作,以满足夜间电能与热能的需求;
当太阳辐射不足时时,白天使真空管集热器、光伏电池、集热器、低温固体储热器、高温固体储热器进行工作,完成热能与电能的储存;夜晚使光伏电池、高温固体储热器、换热器、储罐和逆变器进行工作,以满足夜间电能与热能的需求。
CN202310786699.8A 2023-06-29 2023-06-29 太阳能热电联产与储能分布式综合能源利用***及方法 Pending CN116878173A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310786699.8A CN116878173A (zh) 2023-06-29 2023-06-29 太阳能热电联产与储能分布式综合能源利用***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310786699.8A CN116878173A (zh) 2023-06-29 2023-06-29 太阳能热电联产与储能分布式综合能源利用***及方法

Publications (1)

Publication Number Publication Date
CN116878173A true CN116878173A (zh) 2023-10-13

Family

ID=88259618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310786699.8A Pending CN116878173A (zh) 2023-06-29 2023-06-29 太阳能热电联产与储能分布式综合能源利用***及方法

Country Status (1)

Country Link
CN (1) CN116878173A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441177A (zh) * 2013-09-06 2013-12-11 上海新产业光电技术有限公司 新型多用途聚光太阳能***
CN104901625A (zh) * 2015-05-26 2015-09-09 南方科技大学 一种太阳能全光谱分频调控的光伏光热联合***
CN107178910A (zh) * 2017-05-22 2017-09-19 东北电力大学 一种基于cpvt和梯级蓄热的太阳能供热***
CN107763864A (zh) * 2017-10-30 2018-03-06 无锡源代码科技有限公司 一种基于光伏太阳能的绿色环保型储热装置
CN108055001A (zh) * 2017-12-06 2018-05-18 西安交通大学 一种可动态调控的太阳能聚光分频热电联产装置及方法
WO2019011309A1 (zh) * 2017-07-14 2019-01-17 武汉丰盈长江生态科技研究总院有限公司 传热储热分离式太阳能光热利用方法和***
CN113757762A (zh) * 2021-08-31 2021-12-07 大唐吉林发电有限公司热力分公司 一种太阳能复合储能供热***
CN114719452A (zh) * 2022-03-17 2022-07-08 上海理工大学 基于纳米流体分频的家用太阳能热电氢储能利用***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441177A (zh) * 2013-09-06 2013-12-11 上海新产业光电技术有限公司 新型多用途聚光太阳能***
CN104901625A (zh) * 2015-05-26 2015-09-09 南方科技大学 一种太阳能全光谱分频调控的光伏光热联合***
CN107178910A (zh) * 2017-05-22 2017-09-19 东北电力大学 一种基于cpvt和梯级蓄热的太阳能供热***
WO2019011309A1 (zh) * 2017-07-14 2019-01-17 武汉丰盈长江生态科技研究总院有限公司 传热储热分离式太阳能光热利用方法和***
CN107763864A (zh) * 2017-10-30 2018-03-06 无锡源代码科技有限公司 一种基于光伏太阳能的绿色环保型储热装置
CN108055001A (zh) * 2017-12-06 2018-05-18 西安交通大学 一种可动态调控的太阳能聚光分频热电联产装置及方法
CN113757762A (zh) * 2021-08-31 2021-12-07 大唐吉林发电有限公司热力分公司 一种太阳能复合储能供热***
CN114719452A (zh) * 2022-03-17 2022-07-08 上海理工大学 基于纳米流体分频的家用太阳能热电氢储能利用***

Similar Documents

Publication Publication Date Title
Sahota et al. Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies
Tyagi et al. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology
CN210154106U (zh) 一种基于双冷凝器的热管光伏光热***
CN103441177B (zh) 多用途聚光太阳能***
CN101893327B (zh) 一种太阳能热水热电转换装置
CN106679232A (zh) 一种低倍聚光的太阳能热/电/冷一体化集成***
CN114719452B (zh) 基于纳米流体分频的家用太阳能热电氢储能利用***
CN107221996A (zh) 一种基于太阳能温差发电的供电***
Psomopoulos Solar energy: Harvesting the sun’s energy for a sustainable future
CN106979546A (zh) 一种热管式聚光光伏光热供暖***
CN102393079A (zh) 一种综合利用太阳能和空气能的集成供能***
CN203466205U (zh) 新型多用途聚光太阳能***
CN106487325A (zh) 一种槽式太阳能聚光热电气联产多级应用装置
CN109945512A (zh) 一种高效的光伏光热集成***
CN111953292B (zh) 一种太阳能分频型电热联供装置
CN116938127A (zh) 一种电、热输出比例可调节的聚光光伏-光热一体化***
CN116878173A (zh) 太阳能热电联产与储能分布式综合能源利用***及方法
CN108444111A (zh) 一种光热双回收太阳能***
CN201705598U (zh) 太阳能热水热电转换装置
CN113606798A (zh) 一种太阳能与地热能耦合的聚光分频光伏光热地热一体化***
CN116697622A (zh) 基于太阳能二次聚光分频的分布式综合能源***及方法
CN208567164U (zh) 聚焦式光伏光热一体化供暖装置
CN103626126A (zh) 太阳能集热产氢设备
Wang Developments of Photovoltaic/thermal (PVT) Collectors
Abdulsahib et al. Photovoltaic thermal (PVT) with advanced tube design and working fluid-a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination