CN116759025A - Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete - Google Patents

Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete Download PDF

Info

Publication number
CN116759025A
CN116759025A CN202310686900.5A CN202310686900A CN116759025A CN 116759025 A CN116759025 A CN 116759025A CN 202310686900 A CN202310686900 A CN 202310686900A CN 116759025 A CN116759025 A CN 116759025A
Authority
CN
China
Prior art keywords
steel slag
coarse aggregate
obtaining
concrete
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310686900.5A
Other languages
Chinese (zh)
Inventor
沈奇罕
吴涛
陶锐睿
王凤芹
李科炫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202310686900.5A priority Critical patent/CN116759025A/en
Publication of CN116759025A publication Critical patent/CN116759025A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention belongs to the technical field of engineering materials, and particularly relates to a mixing proportion design method and a manufacturing method of steel slag replaced coarse aggregate concrete. The invention comprises the following steps: determining a replacement rate; obtaining a conversion coefficient; obtaining the calculation intensity; obtaining a formulation strength; obtaining an actual measurement value of the compressive strength of cement; determining the value of an aggregate regression coefficient; obtaining a water-cement ratio; determining unit water consumption; obtaining the cement consumption; determining sand rate; obtaining the consumption of coarse aggregate; obtaining the steel slag consumption; obtaining the stone dosage; the mixing ratio is obtained. The invention can obviously improve the efficiency of determining the consumption of each component, save test workload, shorten test period, reduce economic cost, and can rapidly realize the design purpose of the mix proportion of the steel slag to replace coarse aggregate concrete under the requirement of target strength while ensuring the strength of the concrete finished product to meet the use requirement; the calculation steps involved in the present invention may provide a reference for the compilation of a relevant type of intelligent algorithm.

Description

Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete
Technical Field
The invention belongs to the technical field of engineering materials, and particularly relates to a mixing proportion design method and a manufacturing method of steel slag replaced coarse aggregate concrete.
Background
The steel slag is impurities separated from liquid-phase furnace charge after smelting at high temperature after adding fluxes such as limestone, dolomite, iron ore and the like into the steel-making process and smelting slag-making materials, and contains rich elements such as calcium, iron, silicon and the like. Steel slag has great potential for recycling due to the fact that many chemical components of steel slag are similar to those of cement clinker. The steel slag is used as an admixture for concrete, so that the production cost of the concrete can be reduced, the consumption of cement can be reduced, and the problem of environmental pollution caused by the steel slag can be solved.
At present, various steel slag is processed and produced into steel slag micro powder according to the requirements of high performance of concrete on the basis of strict classification management, classification treatment and classification processing, so as to develop and form steel slag concrete and finished products thereof, and the steel slag micro powder is disclosed in patent texts such as 'high-temperature resistant concrete based on iron tailings and steel slag powder' with the name of 'CN 112851264A' and 'preparation method of steel fiber rubber steel slag recycled aggregate concrete' with the name of 'CN 101774223B'. Therefore, the prior art is innovative for the application of steel slag in concrete, and is mainly focused on the application of steel slag powder as an additive in the concrete, but is lack of research on the application of steel slag aggregate as concrete coarse aggregate, the design of the mixing ratio of steel slag to replace the coarse aggregate concrete, and the like. Firstly, the concrete strength evaluation method aiming at different steel slag coarse aggregate replacement rates is unknown at present, so that the steel slag coarse aggregate replacement is difficult to perform strength conversion, and the steel slag coarse aggregate replacement is difficult to apply in actual engineering; secondly, the existing design process for replacing coarse aggregate concrete by using clear steel slag is lacking, so that the actual production and application are difficult; thirdly, the lack of the preparation flow and method of the steel slag replaced coarse aggregate concrete causes the lack of the related flow of the preparation of the steel slag replaced coarse aggregate concrete, and the industrial production of the steel slag replaced coarse aggregate concrete is difficult to realize. Therefore, a solution is needed.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a mix proportion design method of steel slag-replaced coarse aggregate concrete, which can obviously improve the efficiency of determining the amount of each component, save test workload, shorten test period, reduce economic cost, ensure the strength of a concrete finished product to meet the use requirement and simultaneously can quickly realize the mix proportion design purpose of steel slag-replaced coarse aggregate concrete under the requirement of target strength; meanwhile, the calculation steps involved in the invention can provide references for intelligent algorithm programming of concrete expert analysis and support systems, proportioning design software and the like.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
the mixing proportion design method of the steel slag replaced coarse aggregate concrete is characterized by comprising the following steps of:
s1, determining the replacement rate of steel slag to replace coarse aggregatem
S2, obtaining conversion coefficients of steel slag replaced coarse aggregate concrete and common concrete by the following steps
S3, obtaining the calculated strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,sk
Wherein:
f cu,s the compressive strength standard value of the target concrete;
s4, obtaining the preparation strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,so
Wherein:
f cu,s the compressive strength standard value of the target concrete;
s4, obtaining the preparation strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,so
Wherein:
γ c the margin coefficient is the cement strength value;
f ce,k is the cement strength grade value;
s6, determining aggregate regression coefficientsα A Andα B is a value of (2);
s7, obtaining the water-cement ratio of the steel slag replaced coarse aggregate concrete by the following steps ofW/C
S8, determining the unit water consumptionW 0
S9, obtaining the cement dosage by the following methodC 0
S10, determining the sand rate;
s11, obtaining the coarse aggregate dosage by the following formula:
wherein:
S 0 the amount of sand;
G 0 the use amount of the coarse aggregate;
ρ c is cement density;
ρ m is the density of water;
ρ 0S is the apparent density of the sand;
ρ 0G is the apparent density of the coarse aggregate;
αis the percentage of the air content of the concrete;
S P is sand rate;
s12, obtaining the steel slag dosage by the following methodZ 1
Z 1 =G 0 ·m
S13, obtaining the stone dosage by the following methodZ 2
Z 2 =G 0 ·(1-m);
S14, the mixing ratio of the steel slag to the coarse aggregate concrete is as follows:
C 0 W 0 S 0 Z 1 Z 2
preferably, in the step S4,t=1.645。
preferably, in the step S6, when the coarse aggregate is crushed stone,α A =0.46,α B =0.07; when the coarse aggregate is pebble, the coarse aggregate is prepared,α A =0.48,α B =0.33。
preferably, in the step S11, when the bleed air type admixture is not used,α=1。
preferably, the manufacturing method applies the mixing proportion design method of the steel slag replaced coarse aggregate concrete, and is characterized in that:
sa. determining the weight of cement, water, steel slag, sand and stones required for preparing concrete according to the mixing proportion of the steel slag to replace coarse aggregate concrete;
sb. materials are weighed according to the required weight, and cement, steel slag, sand and stones are sequentially added into a stirrer and stirred for 2-3 min;
sc. after the materials are stirred and mixed uniformly, adding mixing water and a water reducing agent, and continuously stirring for 3-5 minutes to form slurry; and (3) after the slurry is completely fluidized in a stirrer, obtaining the slurry of the required steel slag replaced coarse aggregate concrete.
Preferably, the cement is ordinary Portland cement grade P.O 42.5.42.5.
Preferably, the steel slag is steel slag particles with the grain diameters of 5-10 mm and 10-20 mm, which are selected from converter slag produced by adopting a hot disintegrating process through a mechanical screening method, and sheet-shaped particles in the steel slag particles are removed; the converter slag adopts Chen Zha stacked for more than one year, the crushing value is not more than 30%, the free calcium oxide content is not more than 3%, the mud content is not more than 0.5%, and the water absorption rate is not more than 1%.
Preferably, the sand is common medium sand, and the fineness modulus is 2.3-3.0.
Preferably, the cobble adopts limestone with continuous gradation of 5-20 mm, the mud content is not more than 0.5%, and the water absorption is not more than 1%.
Preferably, the mixing water adopts neutral natural water; the water reducing agent is a polycarboxylic acid high-efficiency water reducing agent, and the water reducing rate is not less than 30%.
The invention has the beneficial effects that:
1) Through the scheme, the invention not only provides a simplified calculation method of the compressive strength of the concrete under different steel slag coarse aggregate replacement rates, but also realizes the rapid prediction of the compressive strength of the concrete with steel slag replaced coarse aggregate; meanwhile, the mixing proportion design problem of the steel slag replaced coarse aggregate concrete under the target strength requirement is solved, and the concrete application design of the steel slag replaced coarse aggregate concrete is realized.
In actual operation, the technical scheme of the invention consists of an intensity conversion formula and a mix proportion design calculation. And for the strength conversion formula, calculating a conversion coefficient by the replacement rate of the steel slag to replace the coarse aggregate, converting the design strength of the steel slag to replace the coarse aggregate concrete into calculated strength according to the conversion coefficient, and converting the calculated strength into preparation strength. And designing a proportion design calculation part according to the calculated preparation strength to obtain a proportion of the steel slag to replace coarse aggregate concrete, namely a proportion of the water, the cement, the sand, the stone and the steel slag, and then accurately and quickly determining the component dosages of the water, the cement, the sand, the stone and the steel slag by using the proportion without a test or a small verification test.
The invention can obviously improve the efficiency of determining the consumption of each component, save the test workload, shorten the test period, reduce the economic cost, and can rapidly realize the design of the mixing proportion of the steel slag to replace coarse aggregate concrete under the requirement of target strength while ensuring the strength of the concrete finished product to meet the use requirement.
Meanwhile, the calculation steps involved in the invention can provide references for the establishment of intelligent algorithms such as a concrete expert analysis and support system, proportioning design software and the like.
2) Furthermore, on the basis of the scheme, the invention also provides a manufacturing method for specifying the concrete preparation flow of the steel slag replaced coarse aggregate concrete, and providing basic guarantee for the production and manufacture of the steel slag replaced coarse aggregate concrete.
Detailed Description
For ease of understanding, the specific structure and operation of the invention are further described herein:
when the related mix proportion design is carried out, firstly, the design strength of the steel slag replacement coarse aggregate concrete to be prepared is determined, and the design strength is converted into the calculated strength according to the strength conversion formula of the steel slag replacement coarse aggregate concrete and the common concrete. Secondly, considering the strength guarantee rate requirement of the concrete, and converting the calculated strength of the steel slag replaced coarse aggregate concrete into the preparation strength by utilizing a formula. Finally, according to the standard requirements and test data, parameters such as an actual measurement value of the compressive strength of the cement, an aggregate regression coefficient, a water-cement ratio, unit water consumption, sand rate, sand consumption, stone consumption, steel slag consumption and the like are sequentially determined. The value of the aggregate regression coefficient can be set by reference according to the appearance and performance of the aggregate; the unit water consumption is set by reference according to the type of coarse aggregate, the maximum grain size and the slump value required by design.
For further explanation of the present invention, the following is an example of preparing steel slag-substituted coarse aggregate concrete with a strength grade of C50, and the steel slag-substituted coarse aggregate concrete is designed in proportion to demonstrate the specific embodiment of the present invention:
example 1:
target concrete: preparing a steel slag replacement coarse aggregate concrete test piece with the designed strength grade of C50, wherein the required strength guarantee rate is 95%, the construction requirement slump is 35-50 mm, and mechanical stirring and mechanical vibration are adopted.
The adopted material specification is as follows:
and (3) cement: ordinary Portland cement with strength grade of 42.5 and cement density of 3.00 g/cm 3 The cement surplus coefficient is 1.08;
sand: grading of the sand in the river is qualified, and the apparent density is 2650kg/m 3 The water content is 1%;
stone: crushed stone with grain size of 5-20 mm, qualified grading and apparent density of 2700kg/m 3
Water: tap water.
At this time:
the standard value of the compressive strength of the target concrete can be known from the concrete strength grade of C50f cu,s 50MPa;
from the strength assurance rate of 95%, it is known thatt=1.645;
From the cement strength grade of 42.5, it is known thatf ce,k =42.5MPa;
From the cement margin coefficient of 1.08, it can be seen thatγ c =1.08;
From cement density 3.00 g/cm 3 It can be seen thatρ c =3 .00g/cm 3
The apparent density of the sand was 2650kg/m 3 It can be seen thatρ 0S =2.65g/cm 3
The apparent density of the stone is 2700kg/m 3 It can be seen thatρ 0G =2.7g/cm 3
Density of waterρ m =1g/cm³;
The coarse aggregate is stone, when the stone takes broken stone,α A =0.46,α B =0.07。
the specific operation steps are as follows:
s1, determining the replacement rate of steel slag to replace coarse aggregatem=0.4;
S2, obtaining conversion coefficients of steel slag replaced coarse aggregate concrete and common concrete by the following steps
S3, obtaining the calculated strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,sk
S4, obtaining the preparation strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,so
Wherein:
m is the standard deviation of the strength of the target concrete, and 6MPa is taken according to the table look-up of the strength of the target concrete;
s5, obtaining the actual measurement value of the compressive strength of the cement by the following methodf ce
S6, determining aggregate regression coefficientsα A Andα B is a value of (2);
when coarse aggregate is replaced, broken stone is replaced by steel slag, so that the regression coefficient of the related aggregate is taken according to the broken stone; from the foregoing, when the coarse aggregate is crushed stone,α A andα B 0.46 and 0.07, respectively.
S7, obtaining the water-cement ratio of the steel slag replaced coarse aggregate concrete by the following steps ofW/C
S8, determining the unit water consumptionW 0 The method comprises the steps of carrying out a first treatment on the surface of the Can be obtained by looking up a table according to the indexes of concrete slump, vibrio consistency, maximum particle size of broken stone and the likeW 0 =185kg;
S9, obtaining the cement dosage by the following methodC 0
S10, determining sand ratio S P According to the water-cement ratio and the indexes of maximum grain size of pebbles and broken stone, the sand ratio S is obtained by looking up a table P Taking 35%;
s11, obtaining the coarse aggregate dosage by the following formula:
when the air-entraining type additive is not mixed,αtaking 1;
at this time, it can be seen that:
the method can obtain: s is S 0 =598kg,G 0 =1111kg;
S12, obtaining the steel slag dosage by the following methodZ 1
Z 1 =G 0 ·m=1111×0.4=444.5kg;
S13, obtaining the stone dosage by the following methodZ 2
Z 2 =G 0 ·(1-m)=1121×(1-0.4)=666.5kg。
By integrating the numerical values, the mixing ratio of the steel slag to the coarse aggregate concrete is as follows:C 0 W 0 S 0 Z 1 Z 2 =1:0.37:1.19:0.88:1.33。
based on the above example 1, the steel slag substitution rate was changedmThe actual amounts of the respective components of the steel slag-substituted coarse aggregate concrete were obtained by performing the calculations of example 2, example 3, example 4, example 5, example 6 and example 7.
The mixing ratio and the amount of each component of the steel slag replacement coarse aggregate concrete of the finally obtained examples 1-7 are shown in Table 1:
TABLE 1
The slurry is prepared by adopting the component amounts in the examples according to the preparation method of the invention; according to the method specified in GB/T50081-2002 "test method Standard for mechanical Properties of concrete", the slurry is prepared into test blocks, and after curing for 28 days, the compressive Strength test is performed on the prepared steel slag-substituted coarse aggregate concrete test blocks, and the compressive Strength test values of the steel slag-substituted coarse aggregate concrete test blocks prepared by the component amounts in examples 1-7 are shown in Table 2:
TABLE 2
The concrete sample obtained by using the steel slag obtained by the invention to replace coarse aggregate concrete can be obtained through compressive strength experiment measurement, and the strength is larger than or equal to a target value, namely the use requirement is met.
It will be understood by those skilled in the art that the present invention is not limited to the details of the foregoing exemplary embodiments, but includes other specific forms of the same or similar structures that may be embodied without departing from the spirit or essential characteristics thereof. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Furthermore, it should be understood that although the present disclosure describes embodiments, not every embodiment is provided with a separate embodiment, and that this description is provided for clarity only, and that the disclosure is not limited to the embodiments described in detail below, and that the embodiments described in the examples may be combined as appropriate to form other embodiments that will be apparent to those skilled in the art.
The technology, shape, and construction parts of the present invention, which are not described in detail, are known in the art.

Claims (10)

1. The mixing proportion design method of the steel slag replaced coarse aggregate concrete is characterized by comprising the following steps of:
s1, determining the replacement rate of steel slag to replace coarse aggregatem
S2, obtaining conversion coefficients of steel slag replaced coarse aggregate concrete and common concrete by the following steps
S3, by the following formulaObtaining the calculated strength of the steel slag replaced coarse aggregate concretef cu,sk
The method comprises the steps of carrying out a first treatment on the surface of the Wherein:
f cu,s the compressive strength standard value of the target concrete;
s4, obtaining the preparation strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,so
The method comprises the steps of carrying out a first treatment on the surface of the Wherein:
f cu,s the compressive strength standard value of the target concrete;
s4, obtaining the preparation strength of the steel slag replaced coarse aggregate concrete by the following steps off cu,so
The method comprises the steps of carrying out a first treatment on the surface of the Wherein:
γ c the margin coefficient is the cement strength value;
f ce,k is the cement strength grade value;
s6, determining aggregate regression coefficientsα A Andα B is a value of (2);
s7, obtaining the water-cement ratio of the steel slag replaced coarse aggregate concrete by the following steps ofW/C
S8, determining the unit water consumptionW 0
S9, obtaining the cement dosage by the following methodC 0
The method comprises the steps of carrying out a first treatment on the surface of the S10, determining the sand rateS P
S11, obtaining the coarse aggregate dosage by the following formula:
the method comprises the steps of carrying out a first treatment on the surface of the Wherein:
S 0 the amount of sand;
G 0 the use amount of the coarse aggregate;
ρ c is cement density;
ρ m is the density of water;
ρ 0S is the apparent density of the sand;
ρ 0G is the apparent density of the coarse aggregate;
αis the percentage of the air content of the concrete;
S P is sand rate;
s12, obtaining the steel slag dosage by the following methodZ 1
Z 1 =G 0 ·m
S13, obtaining the stone dosage by the following methodZ 2
Z 2 =G 0 ·(1-m);
S14, the mixing ratio of the steel slag to the coarse aggregate concrete is as follows:
C 0 W 0 S 0 Z 1 Z 2
2. the method for designing the mixing ratio of the steel slag replacement coarse aggregate concrete according to claim 1, which is characterized in that: in the step S4 of the above-mentioned process,t=1.645。
3. the method for designing the mixing ratio of the steel slag replacement coarse aggregate concrete according to claim 1, which is characterized in that: in the step S6, when the coarse aggregate is crushed stone,α A =0.46,α B =0.07; when the coarse aggregate is pebble, the coarse aggregate is prepared,α A =0.48,α B =0.33。
4. the method for designing the mixing ratio of the steel slag replacement coarse aggregate concrete according to claim 1, which is characterized in that: in the step S11, when the bleed air type admixture is not used,α=1。
5. the preparation method applies the mixing proportion design method of the steel slag replacement coarse aggregate concrete as claimed in claim 1 or 2 or 3 or 4, and is characterized in that:
sa. determining the weight of cement, water, steel slag, sand and stones required for preparing concrete according to the mixing proportion of the steel slag to replace coarse aggregate concrete;
sb. materials are weighed according to the required weight, and cement, steel slag, sand and stones are sequentially added into a stirrer and stirred for 2-3 min;
sc. after the materials are stirred and mixed uniformly, adding mixing water and a water reducing agent, and continuously stirring for 3-5 minutes to form slurry; and (3) after the slurry is completely fluidized in a stirrer, obtaining the slurry of the required steel slag replaced coarse aggregate concrete.
6. The method of manufacturing according to claim 5, wherein: the cement is ordinary Portland cement of grade P.O 42.5.42.5.
7. The method of manufacturing according to claim 5, wherein: the steel slag is steel slag particles with the grain diameters of 5-10 mm and 10-20 mm, which are produced by adopting a hot disintegrating process, of converter slag and are selected by a mechanical screening method, and sheet-shaped particles in the steel slag particles are removed; the converter slag adopts Chen Zha stacked for more than one year, the crushing value is not more than 30%, the free calcium oxide content is not more than 3%, the mud content is not more than 0.5%, and the water absorption rate is not more than 1%.
8. The method of manufacturing according to claim 5, wherein: the sand is common medium sand, and the fineness modulus is 2.3-3.0.
9. The method of manufacturing according to claim 5, wherein: the cobble adopts limestone with continuous gradation of 5-20 mm, the mud content is not more than 0.5%, and the water absorption rate is not more than 1%.
10. The method of manufacturing according to claim 5, wherein: the mixing water adopts neutral natural water; the water reducing agent is a polycarboxylic acid high-efficiency water reducing agent, and the water reducing rate is not less than 30%.
CN202310686900.5A 2023-06-12 2023-06-12 Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete Pending CN116759025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310686900.5A CN116759025A (en) 2023-06-12 2023-06-12 Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310686900.5A CN116759025A (en) 2023-06-12 2023-06-12 Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete

Publications (1)

Publication Number Publication Date
CN116759025A true CN116759025A (en) 2023-09-15

Family

ID=87960172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310686900.5A Pending CN116759025A (en) 2023-06-12 2023-06-12 Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete

Country Status (1)

Country Link
CN (1) CN116759025A (en)

Similar Documents

Publication Publication Date Title
Bao et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete
Al-Jabri et al. Copper slag as sand replacement for high performance concrete
CN102850011B (en) Technological process for preparing active powder concrete by using iron tailing
CN108558303A (en) A kind of regeneration concrete bulk and its production method
CN109437718A (en) A kind of C40 grades of large dosage solid waste concrete and preparation method thereof
Sudarvizhi et al. Performance of Copper slag and ferrous slag as partial replacement of sand in Concrete
WO2014148944A1 (en) Method for producing nano-cement, and nano-cement
CN104386969B (en) A kind of high-strength high-durability lightweight aggregate concrete and preparation method thereof
CN107686298B (en) A kind of self-compaction composite concrete and preparation method thereof
CN105819727A (en) Composite mineral admixture for concrete
CN101215137A (en) Ferromanganese ore slag concrete blending material and producing method thereof
Amani et al. Investigation on the sustainable use of electric arc furnace slag aggregates in eco-friendly alkali-activated low fineness slag concrete as a green construction composite
CN116434894B (en) Mixing proportion design method and manufacturing method of steel slag replaced fine aggregate concrete
KR20120066769A (en) Manufacture and composition of high strength concrete using fine aggregate from fe-ni slag
CN110395954A (en) A kind of electrolytic manganese residues lightweight aggregate hollow block and preparation method thereof
CN110482925B (en) High-strength concrete and preparation process thereof
CN108083729A (en) A kind of concrete being combined by slag as aggregate and preparation method thereof
CN116759025A (en) Mixing proportion design method and manufacturing method of steel slag replaced coarse aggregate concrete
Motisariya et al. Experimental analysis of strength and durability properties of cement binders and mortars with addition of microfine sewage sludge ash (SSA) particles
CN107935511A (en) High-titanium slag pervious concrete and preparation method thereof
CN113232155A (en) Design method of recycled aggregate concrete mixing proportion
CN107556041A (en) A kind of method that foamed brick is prepared using coking chemical waste water sludge and tar slag
CN112225485A (en) Nucleating agent, copper tailing autoclaved aerated concrete product, preparation method and application
CN106082894B (en) The semi-rigid environment friendly pervious face brick of one kind and manufacturing method
CN109369040A (en) A kind of novel compound cement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination