CN116670729A - 具有多段架构的生物特征感测传感器和***、及其使用方法 - Google Patents

具有多段架构的生物特征感测传感器和***、及其使用方法 Download PDF

Info

Publication number
CN116670729A
CN116670729A CN202280008583.5A CN202280008583A CN116670729A CN 116670729 A CN116670729 A CN 116670729A CN 202280008583 A CN202280008583 A CN 202280008583A CN 116670729 A CN116670729 A CN 116670729A
Authority
CN
China
Prior art keywords
sensor
pixel
sensing
pixel array
fingerprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280008583.5A
Other languages
English (en)
Inventor
肖田
关劲康
瑞安·约翰·希金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike Scientific Biometric Group Co ltd
Original Assignee
Nike Scientific Biometric Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike Scientific Biometric Group Co ltd filed Critical Nike Scientific Biometric Group Co ltd
Publication of CN116670729A publication Critical patent/CN116670729A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1335Combining adjacent partial images (e.g. slices) to create a composite input or reference pattern; Tracking a sweeping finger movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1353Extracting features related to minutiae or pores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

提供了一种用于生物特征感测的多段像素矩阵、传感器或设备、***和方法。这样的设备或***包括传感器,该传感器包括像素矩阵,该像素矩阵具有两个或更多个像素阵列作为在所述像素矩阵中逻辑划分的独立段。所述像素矩阵既可以包括热感测像素,又可以包括电容感测节点。所述设备或***可以包括耦合到传感器的多个专用集成电路(ASIC)。每个ASIC被配置为捕获由至少一个像素阵列测量的生物特征图案的图像数据。每个像素阵列由多个ASIC中的一个或多个ASIC独立驱动和扫描。所述设备或***还包括微控制器单元,所述微控制器单元耦合至多个ASIC并用于处理图像数据和/或控制***的操作。这种传感器可以是指纹传感器。

Description

具有多段架构的生物特征感测传感器和***、及其使用方法
优先权声明和交叉引用
本申请要求于2021年1月8日提交的申请号为63/134,966的美国临时申请的优先权,该申请的全部内容通过引用明确并入本申请。
技术领域
本申请总体上涉及用于测量部分导热表面中的图案的设备或装置以及方法。更具体地,本申请的主题涉及诸如指纹传感器等用于生物特征感测的设备或装置、***以及用于测量或捕获生物特征(例如,指纹)图案的图像的方法。
背景技术
指纹传感器是一种用于提供生物特征安全性的技术形式。手指皮肤上由脊和谷形成的精细图案可以通过传感阵列进行映射,其基本操作原理各不相同。一些传感器利用热信号,而其他传感器利用电信号、压力信号或光信号。有源传感器量化特定生物参数对给定刺激的响应。准确度水平受限于用于读取指纹图案的物理原理。此外,在执行指纹扫描时,对环境变量(如灰尘或湿度)的抗干扰性也很重要。
指纹传感器通常用在电子设备中以验证用户的身份并限制访问,除非传感器验证授权用户正在尝试使用该设备。例如,某些智能***需要在使用前通过指纹传感器验证用户。指纹传感器也包含在计算设备中(例如智能手机、平板电脑、笔记本电脑和销售点设备),以确保只有授权用户才能解锁和使用此类设备。
发明内容
本申请提供了一种用于生物特征感测的多段像素矩阵、传感器或设备、***和方法。
根据一些实施例,一种用于生物特征感测的***包括传感器,该传感器包括像素矩阵,该像素矩阵具有两个或更多个像素阵列,作为在像素矩阵中逻辑划分的独立段。该***还包括耦合到传感器的多个专用集成电路(ASIC)。每个ASIC被配置为捕获由至少一个像素阵列测量的对象的生物特征图案的图像数据。每个像素阵列被配置为由多个ASIC中的一个或多个独立地驱动和扫描。该***还可以包括耦合到多个ASIC的微控制器单元(MCU)。MCU包括一个或多个处理器以及至少一个编码有一个或多个程序且有形的非暂态机器可读介质,该程序用于处理所述图像数据,和/或控制该***的操作。在一些实施例中,多个ASIC和传感器一起设置在生物特征感测设备内。
在一些实施例中,像素矩阵包括任何合适数量的像素阵列,例如,从2个到大约12个像素阵列。像素阵列(或段)的数量可以是2到12范围内的任意整数。
传感器还可以包括多个支持电路。每一像素阵列连接至少一支持电路。在一些实施例中,***中的传感器还可以包括多个开关。每个开关连接一个或多个支持电路和一个或多个ASIC。每个像素阵列被配置为由多个ASIC中的一个或多个ASIC通过一个或多个开关独立地驱动和扫描。
在一些实施例中,每个像素阵列包括排列成多行和多列的多个像素。每个像素阵列包括热感测像素,这些热感测像素被配置为基于有源热感测原理的操作,其中功率热脉冲被施加到每个像素阵列并且测量对应于生物特征图案的响应。对于热感测,每个像素阵列中的像素可以包括一个或多个串联连接在像素行线和像素列线之间的二极管。
根据一些实施例,每个像素阵列还包括电容感测网格,该电容感测网格包括分布在每个像素阵列中的电容感测节点。该***或设备还可以在相应的ASIC中或在MCU中,在相应的ASIC中或MCU之外包括电容感测网格的辅助电路,作为独立集成电路。该电容感测网格与该辅助电路相连。
通过MCU,***被配置为执行如本申请所述的功能和步骤。例如,这些步骤包括:检测传感器上是否存在具有生物特征图案的对象,通过扫描像素阵列中的一部分像素来执行粗略扫描以确定对象与传感器之间的接触边界,以及在接触边界内选择性地进行详细扫描,以提供生物特征图案的图像数据。这些步骤还可以包括如本申请所述的用于检测滚动运动和位置、组合图像以及处理和比较图像数据的步骤。
在另一个方面,本申请提供了一种用于生物特征感测的传感器或设备。这种设备包括传感器,该传感器包括像素矩阵,该像素矩阵具有两个或更多像素阵列作为在像素矩阵中逻辑划分的独立段,以及耦合到该传感器的多个专用集成电路(ASIC)。每个ASIC被配置为捕获由至少一个像素阵列测量的对象的生物特征图案的图像数据。每个像素阵列被配置为由多个ASIC中的一个或多个独立地驱动和扫描。在一些实施例中,传感器是指纹传感器,对象是手指,并且生物特征图案是指纹。
在一些实施例中,每个像素阵列包括排列成多行和多列的多个像素,并且多个像素包括热感测像素。每个像素阵列还可以包括电容感测网格,该电容感测网格包括分布在每个像素阵列中的电容感测节点。电容传感网格被配置为检测对象的存在和/或对象的滚动运动和位置。电容感测节点可以是互电容感测节点或自电容感测节点。自电容感测节点被配置为无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址。互电容感测节点配置为无源矩阵寻址。
该装置还可以包括如本申请所述的开关。该设备还可以包括耦合到多个ASIC的微控制器单元(MCU)。MCU包括一个或多个处理器以及至少一个编码有一个或多个程序且有形的非暂态机器可读介质,该程序用于如本申请所述的处理图像数据,和/或控制所述设备的操作。
在另一个方面,本申请提供了一种使用包括传感器的设备或***的方法,该传感器包括像素矩阵,该像素矩阵具有两个或更多个像素阵列作为在像素矩阵中逻辑划分的独立段。这种方法包括以下步骤:检测传感器上是否存在具有生物特征图案的对象,通过扫描像素阵列中的一部分像素来执行粗略扫描(预扫描)以确定对象和传感器之间的接触边界,以及在接触边界内选择性地执行详细扫描以提供生物特征图案的图像数据。
在一些实施例中,传感器是指纹传感器,对象包括至少一个手指,并且生物特征图案是指纹。
如本申请所述,每个像素阵列包括设置成多行和多列的多个像素。多个像素包括热感测像素。每个像素阵列还可以包括电容感测网格,该电容感测网格具有分布在每个像素阵列中的电容感测节点。
在这样的方法中,通过热感测像素或电容感测节点来检测对象(例如传感器上的手指触摸)的存在。粗略扫描和详细扫描通过热感测像素执行。
这样的方法可以进一步包括通过使用电容感测节点的电容扫描来动态跟踪对象的滚动运动和位置。该方法还可以包括一个或多个步骤,用于组合在对象的滚动运动期间通过热扫描捕获的对象的生物特征图像,以使用MCU提供完整的生物特征图案。
在一些实施例中,电容感测节点是互电容感测节点或自电容感测节点。自电容传感节点可以是无源矩阵寻址的,或由薄膜晶体管阵列进行的有源矩阵寻址。互电容感测节点被配置为无源矩阵寻址。
本申请提供的传感器、装置、***和方法具有现有技术无法提供的显着益处。例如,本申请提供的技术提供更短的扫描时间、更低的总功耗、改进的图像扫描带宽、扫描移动/滚动对象(例如手指或多个手指)的能力以及高分辨率。例如,可以提供大型指纹传感器或***以满足指纹采集配置文件(FAP)标准。
附图说明
本申请可以结合附图以及下面的详细描述得到最好的理解。需要强调的是,根据惯例,附图的各种特征不一定按比例绘制。相反,为清楚起见,各种特征的尺寸被任意扩大或者缩小。在整个说明书和附图中,相似的附图标记表示相似的特征。
图1是根据一些实施例的示例性***,例如生物特征传感器***,的框图。
图2是根据一些实施例的示例性传感器或设备,例如指纹传感器或设备,的示意图。
图3示出了滚动手指在指纹传感器上的不同接触区域。
图4A示出了一些实施例中的像素阵列。
图4B-图4C示出了根据一些实施例的具有多段感测区域和像素阵列的两个示例性像素矩阵。
图5A示出了根据一些实施例的具有图4A的像素阵列,例如指纹传感器的设备。
图5B示出了根据一些实施例的示例性装置,例如具有多段像素矩阵(例如用于说明的图4C的像素矩阵)的手指传感器。
图6示出了根据一些实施例的具有多段像素矩阵(例如用于示意的图4C的像素矩阵)的带开关的手指传感器等示例性设备。
图7示出了根据一些实施例利用如具有多段像素矩阵(或称为多像素阵列)的手指传感器的示例性装置进行选择性主动热扫描的方法的流程图。
图8A-图8C示出了根据一些实施例由图7的方法的三个步骤所获取的指纹,包括手指检测(图8A)、快速预扫描(图8B)和详细指纹扫描(图8C)。
图9示出了根据一些实施例的示例性传感器,例如具有多段像素矩阵和二维电容感测网格的手指传感器,该二维电容感测网格具有电容感测节点。
图10示出了在未旋转状态(A)和旋转状态下的手指的矩形指纹扫描边界的两个例子。
图11A-图11C示出了根据一些实施例的图7的方法的三个步骤中的指纹扫描边界的三个例子,包括手指检测(图11A)、快速预扫描(图11B)和详细指纹扫描(图11C)。
图12示出了根据一些实施例的使用示例性***的手指滚动扫描操作的过程。
图13示出了根据一些实施例的使用示例性***连续捕获滚动手指的图像的过程。
图14示出了根据一些实施例利用示例性***以最小的图像捕获次数捕获滚动手指的图像从而减少总的图像扫描功率消耗的过程。
图15示出了根据一些实施例的用于生物特征感测的示例性方法的流程图。
具体实施方式
本示例性实施例的描述旨在与附图一起阅读,附图将被视为整个书面描述的一部分。在描述中,相对术语如“下部”、“上部”、“水平”、“垂直”、“上面”、“下面”、“向上”、“向下”、“顶部”和“底部”以及其衍生词(例如,“水平”、“向下”、“向上”等)应理解为指当时描述的方向或讨论中的图纸所示。这些相对术语是为了描述的方便,并不要求设备以特定的方向构造或操作。有关附件、联接等的术语,如“连接”和“互连”,指的是结构直接或间接通过中间结构固定或连接在一起的关系,以及可动或刚性的附件或关系,除非另有明确描述。
就下文的描述而言,应当理解,下面描述的实施例可以承担替代性的变化和实施方式。还应理解的是,此处描述的具体物品、组合物和/或工艺是示例性的,不应视为限制性的。
在本申请中,单数形式的限定包括复数含义,并且对特定数值的参考至少包括该特定数值,除非上下文明确指出。当数值被表示为近似值时,通过使用前缀“约”,将被理解为该特定数值形成了另一个实施方案。如本申请所使用的,“约X”(其中X是一个数值)最好是指所提及数值的±10%,包括在内。例如,短语“约8”最好是指7.2至8.8的值,包括在内。如果存在的话,所有的范围都是包容的和可组合的。例如,当提到“1至5”的范围时,所提到的范围应理解为包括“1至4”、“1至3”、“1-2”、“1-2和4-5”、“1-3和5”、“2-5”等范围。此外,当正面提供备选方案的清单时,这种清单可以被解释为意味着任何备选方案都可以被排除,例如,通过权利要求中的否定限制。例如,当叙述“1至5”的范围时,所叙述的范围可被解释为包括1、2、3、4或5中的任何一个被否定地排除的情况;因此,对“1至5”的叙述可被解释为“1和3-5,但不包括2”,或者简单地“其中不包括2”。其目的是,本申请正面叙述的任何组件、元素、属性或步骤都可以在权利要求中明确排除,无论这些组件、元素、属性或步骤是否被列为备选方案,或是否被单独地叙述。
除非明确指出,本申请使用的术语“连接”或“耦合”被理解为包括组件之间的不同连接或耦合,以便传导电力或传输信号进行通信。这种连接或耦合可以通过电线、无线或基于云的模式。
本申请提供了一种用于感测(例如生物特征感测)的多段像素矩阵、传感器或设备、装置、***和方法。本申请还提供了一种制造多段像素矩阵、传感器、设备、装置和***的方法。本申请是以手指作为示例对象,以指纹作为生物特征图案的例子来描述的,仅做说明之用。本申请提供的产品和方法可用于测量一般对象的部分导热表面的图案。例如,这种对象可以是手掌或人体其他部位的皮肤。
大面积的指纹传感区域一直是非常理想的,因为它在一次扫描中捕获了更多的指纹信息,提供了更高的识别精度,降低了错误接受率和错误拒绝率。同时,为了获得高质量的指纹图像,必须有较高的指纹扫描分辨率,以精确地捕捉到指纹的细微特征、脊线轮廓和边缘特征。这种细节对高置信度的指纹匹配至关重要,并能实现区分真假手指的反欺骗能力。美国联邦调查局认证的个人身份验证(PIV)和图像质量标准(IQS)要求传感器的最低分辨率为500dpi。大面积感测区和高扫描分辨率的要求意味着感测***必须有足够高的带宽,以便在合理的扫描时间内从传感器上的大量像素收集完整的指纹图像。
能够同时扫描多个手指的大型指纹传感器在消费类电子产品中越来越受欢迎,其对于执法机构、边境巡逻和其他高安全性的应用来说,也变得越来越重要。特别是FAP60指纹传感器,它可以同时扫描四个手指并从滚动的手指上捕捉连续的指纹,是政府办公室、海关移民和军事应用的事实标准。因此,为了满足日益增长的需求,下一代指纹传感器必须具有极高的图像扫描和处理带宽,能够从超大型传感区域收集高分辨率的指纹图像,识别多个单独的指纹,以及动态地收集从滚过传感器的移动手指的指纹。
主动热原理是实现超大型和高分辨率的指纹采集配置文件(FAP)标准指纹传感器的首选解决方案之一。其本身不受阳光干扰,在手指潮湿或出汗的情况下也能正常工作。并且其提供了一个薄的外形尺寸,重量轻,成本效益高,可以替代光学的同类产品。这些特点对于整合到移动应用和在民用应用中更广泛地采用是非常有利的。通过采用新的传感***结构,使下一代有源热传感器对光学传感器具有竞争力,本申请的技术大大改善了扫描带宽、扫描时间和能源消耗。
本申请是以选择性主动热感测作为主要扫描方法进行描述的。本申请所述的多段式结构等技术也可用于以光学扫描为主要扫描方式的传感器和***。
在图1-图14中,类似的术语由类似的参考数字表示,并且为了简洁起见,不重复上文参照前述数字提供的结构描述。图7-图8和图11-图15中描述的方法是参照图1-图6和图9中描述的示例性结构来描述的。
图1是根据一些实施例的诸如生物特征传感器***100的示例性***的示意图。这样的示例性***可以是生物特征***的一个可能的架构。
参考图1,在图示的实施例中,生物特征传感器***100包括生物特征(例如,指纹)传感器10、图像捕获专用集成电路(“ASIC”)50和微控制器单元(“MCU”)60。ASIC 50通过接口11与生物特征传感器10进行通信,MCU 60通过接口51与ASIC 50进行通信。ASIC 50和MCU60中的任何一个或两者都可以被嵌入到一个芯片中。在ASIC 50的控制下,生物特征传感器10被配置为捕获生物特征图案的图像,如指纹,并通过接口11传输图像数据作为信号。在一些实施例中,生物特征传感器10输出模拟信号,而接口11是一个模拟接口。ASIC 50可以接收模拟信号并在将图像数据发送到MCU 60之前进行模数转换(“A/D转换”)。
或者,在一些实施例中,A/D转换可以在指纹传感器10内发生,从而生物特征传感器10输出数字信号,并且接口11是数字接口。例如,在生物特征传感器10包括像素矩阵的实施例中(如下文所述),每个像素可以包括A/D转换并输出数字信号到ASIC 50。在一些实施例中,指纹传感器10可以直接输出数字信号到MCU 60。接口11还承载来自生物特征传感器10的各种其他信号。ASIC 50和/或MCU 60可以评估这些信号,以确定生物特征传感器10上试样的存在和位置。该信息被ASIC 50和/或MCU 60用来控制扫描。例如,ASIC 50和/或MCU60可以识别生物特征传感器10的一个子部分,ASIC 50可以指示生物特征传感器10只扫描该子部分。
ASIC 50可以是处理芯片,其从生物特征传感器10读取图像数据并通过接口51(例如,SPI、USB或其他合适的接口)将其传输到MCU 60。MCU 60处理图像数据,提取特征特性,并生成指纹模板(例如,指纹的图像),例如,基于图像数据中所谓的“细节”。在一些实施方案中,MCU 60具有指纹匹配功能,该功能将指纹模板与一个或多个存储的指纹(例如,对应于被授权人员的指纹)进行比较,以确定该模板是否与任何存储的指纹相匹配。在一些实施例中,ASIC 50和MCU 60是图像获取控制器70的组件。在各种实施例中,图像获取控制器70还包括一个或多个处理器(未示出),该处理器可以是生物特征传感器***100被集成到其中的主机***(例如,智能手机、智能卡等)的一部分。
在各种实施例中,ASIC 50、MCU 60、图像获取控制器70和/或智能卡芯片(未示出)的功能可以被集成到主机***内的单个芯片或多个芯片中。例如,生物特征传感器***100可用于移动电话、个人电脑、门禁***、USB阅读器、销售点终端、智能卡或任何其他适当的应用。在一些实施例中,例如对于智能***实施例,指纹模板可以被转移到智能卡芯片(集成电路卡芯片,ICC)中,在所谓的卡上生物特征比较应用中进行存储和匹配,有时也称为“卡上匹配”或“SE(安全元件)上匹配”。
根据一些实施例,MCU 60本身可以是***100的控制器,并被配置为控制整个指纹模块或***100的操作。例如,MCU 60的功能可以从检测手指的存在、收集或扫描指纹,到处理图像并将图像加密到主机。有时,MCU 60的功能可能取决于用户希望在MCU 60中完成多少任务。在一些需要“片上匹配”的实施例中,MCU 60对收集到的指纹进行比较,并确定它是否与先前存储在MCU 60中的指纹相匹配。在一些实施例中,用户可能希望MCU 60只是提供一个完整的图像,该图像将在主机***中“匹配”(例如,微软公司的HELLO视窗操作***)。然而,在其他一些应用中,用户可能希望对模块操作有更多的控制,MCU 60被配置为响应主机的具体命令而执行。
参考图1和图2,在一些实施例中,指纹传感器10和ASIC 50都可以设置在一个衬底上,并被称为指纹传感器或指纹传感设备15。图2是根据一些实施例的示例性***中的示例性生物特征(例如,指纹)传感器或生物特征(例如,指纹)感测设备15的部分示意图。MCU 60可以被设置在生物特征感测设备15中,或者与生物特征感测设备15分离,同时与生物特征感测设备15连接。
参考图2,在图示的实施例中,生物特征感测设备15包括生物特征传感器10,其包括衬底14、用于生物特征传感器10的像素矩阵16、电路52、以及连接点53。像素矩阵16可以是一个或多个像素阵列(即多段像素矩阵或阵列),如本申请所述。在一些实施例中,ASIC50可以安装在衬底14上,例如,如图2所示。在一些实施例中,生物特征传感器10是一种柔性传感器,而衬底14是一种柔性材料。在不同的实施例中,衬底14也可以由聚合物、金属箔、半导体材料、石英、玻璃或任何其他材料或其组合构成,这些材料适用于在生产中沉积微电子结构。合适的聚合物材料的例子包括,但不限于,聚对苯二甲酸乙二醇酯(PET),聚萘乙二醇酯和聚酰亚胺。合适的金属箔的例子包括,但不限于,钢、铝和金属合金。合适的半导体材料的例子包括,但不限于,硅和III-V半导体材料。在一些实施例中,衬底14是由柔性材料如聚酰亚胺和金属箔制成。
如图2所示,像素矩阵16被定位在衬底14的表面上。在一些实施例中,像素矩阵16使用薄膜晶体管(TFT)制造工艺或其他沉积工艺在衬底14的表面上形成。例如,可以使用低温多晶硅(LTPS)制造工艺。连接点53与像素矩阵16电性耦合,例如,可通信地通过ASIC 50耦合,并允许与外部***连接,例如,MCU 60(图1)。在一些实施方案中,可在像素矩阵16上涂抹保护性涂层(未图示)。正如本申请将进一步描述的,周围的电路52包括地址线,允许像素矩阵16的某些行或列,或像素矩阵16的某个区域的行或列,被选择性地扫描或读取。
在各种实施例中,生物特征传感器10基于主动热感测原理运行。在这样的实施方案中,在短时间内对每个传感器像素施加一个低功率的热脉冲,并测量响应。这种类型的指纹传感器可以通过大面积生产工艺来生产,例如那些形成LTPS薄膜晶体管和器件的工艺。基于主动热原理,主动热传感器测量对象在给定加热刺激下的导热性。适用于本申请中的生物特征传感器10的主动热感测原理的例子在Dinh的题为“Sensor for Acquiring aFingerprint Image Based on Heat Transfe(基于热传导获取指纹图像的传感器)”美国专利No.6,091,837以及同样是Dinh的题为“Apparatus for Fingerprint Sensing andOther Measurements(用于指纹传感和其他测量的装置)”的美国专利No.8,724,860中披露,其中全部内容均通过参考而纳入本申请。对刺激的反应是由传感器阵列内的每个感测点测量的。一个元件的热反应在某种程度上是所提供的刺激的函数,即刺激越大,反应越大。感测部位通过向该部位施加电流而被加热。
热传感器原理利用热传递机制,以区分指纹谷和脊,因为它们的皮肤结构具有不同的热传递特性。在传感器阵列(或本申请所述的传感器阵列的一部分)的选定像素上施加一个短的热脉冲,通过传感器温度变化的测量来监测手指和底层各个传感器之间的热交换。相对较高的传感器温度表明,由于热导率低,在所考虑的传感器与手指之间的热交换很少,或热损失很小。具有低热导率的点映射出局部的指纹谷结构,而具有高热导率的点,即具有高热传导/转移,映射出局部的指纹脊结构。中等热导率的点对应于指纹脊和指纹谷之间的局部过渡区。使用传感元件(例如,指纹传感器像素)测量温差,并对测量结果进行处理以生成指纹传感器上的指纹图像。
本申请所述的每个像素阵列包括传感元件或像素18,如热感测像素19(如图2所示)。像素阵列可以是像素18的二维网络。在一些实施例中,一个像素或传感器元件可以包括一个或多个串联在像素行线和像素列线之间的二极管。二极管靠近传感器表面,与要测量的指纹有良好的热接触,可同时作为像素加热器和温度感应元件。
像素的加热功率与二极管的数量、每个二极管上的给定电流和电压的乘积成正比。二极管对温度敏感,如果电流是偏置的,像素中的任何温度变化反映了电压的相应变化,如果电压是偏置的,则反映了电流的相应变化。
像素二极管可以是任何微电子器件结构,具有纯整流或组合整流特性。合适的二极管的例子包括但不限于PN结整流器、肖特基整流器、PIN二极管,或其任何组合。二极管可以由复合半导体(如锗或硅)或金属(如具有适当特性的铝)或有机材料构成。原子结构可以是单晶、非晶或多晶的。
像素可以用导电层或半导体层(未显示)覆盖,其可以接地以屏蔽和保护传感器。可以在导电层或半导体层上涂上保护层(未显示),以在使用期间提供机械和化学保护。
表1总结了指纹采集配置文件(FAP)标准传感器的规格,这些规格在美国联邦调查局规范PIV-071006和电子生物识别传输规范(EBTS)附录F中定义。FAP60传感器的像素总数是FAP20传感器的20倍。因此,FAP60的传感带宽和吞吐量必须按比例放大,以保持在合理的扫描时间内。
表1
下一代指纹传感器的另一个挑战是要从如图3所示的滚动的手指上捕获连续的指纹。如图3所示,从位置(A),到(B),到(C),到(D),然后到(E),一个具有手指甲71的手指70在传感器10上从一侧滚到另一侧。指甲71在手指70的一侧(即上侧),而指纹则在手指70的另一侧。在位置(C),手指70被压在传感器10上,具有最大的接触面积。与静止的手指不同,在任何特定时刻,只有全部指纹的一部分与传感器10接触,可用于图像采集。滚动的手指的每个部分指纹只会短暂地接触传感表面,留下一个很短的时间窗口来正确捕捉移动的指纹。这不仅需要一个高带宽的传感***,还需要一个智能传感***来准确定位和跟踪手指的移动,分配可用的扫描资源以生成高质量的指纹图像。
本申请通过扩大传感带宽,实现并提供符合各种FAP规格直至FAP60的基于主动热感测原理的大面积指纹传感器。
根据一些实施例,用于生物特征传感的示例性***100包括传感器10,其包括像素矩阵16,像素矩阵16具有两个或更多像素阵列(例如,图4B-图4C、图5B和图6中的36A、36B、36C和36D),作为在像素矩阵16中逻辑地划分的独立段。一个像素矩阵在逻辑上被划分为多个段。
此处使用的术语“逻辑划分”或“逻辑分割”是指一个像素阵列(即一个完整的像素阵列)被重新安排或细分为多个段(多个像素阵列)以方便图像收集或图像感应。在用户会注意到的子部分之间不存在视觉边界或物理间隙。电气工程中的“逻辑划分”一般是指在逻辑上将一个较大的任务细分为几个较小的任务,以提高性能,而所有的任务都可以用同样的方式进行一致和统一的处理或对待。
参照图4A,像素矩阵16包括一个单一的像素阵列26。
参照图4B和图4C,示出了两个示例性的像素矩阵16具有多段图像感测和处理架构。如图4B-图4C所示,每个像素矩阵16具有在像素矩阵16中逻辑地划分的多个像素阵列36。在图4B中,显示了两个像素阵列36(A,B)。在图4C中,显示了四个像素阵列36(A、B、C、D)。这样一个新的传感器结构的设计和配置是,大的传感区域可以被逻辑地划分为多个段,每个单独的像素阵列(或段)可以由相应的驱动电路独立控制。逻辑上的划分不影响像素尺寸和图像分辨率,而且相邻段之间没有物理间隙。这种划分允许有源感测区域被多个ASIC 50并行扫描。
在一些实施例中,像素矩阵包括任何合适数量的像素阵列,例如,从2到约12个像素阵列,从2到8个像素阵列,从2到6个像素阵列,从2到4个像素阵列。像素阵列(或段)的数量可以是2至12范围内的任何整数。例如,像素阵列或段的数量可以是2、3、4、5、6、7或8。像素阵列或段的数量不受微控制器中使用的算法的限制,但可能受设备制造中物理实现的限制。例如,对于一些只有2至3个金属层的集成电路IC或TFT工艺,像素阵列的数量可能很低,例如,大约2-4个像素阵列。对于另一个例子,对于具有6个或更多金属布线层的工艺,可以轻易地支持更多的像素阵列,例如8个或8个以上的阵列。
如图2所述,在一些实施例中,每个像素阵列36包括排列在多行和多列中的多个像素。每个像素阵列可以有相应的不可见边界。每个像素阵列36包括热感测像素,这些像素被配置为基于主动热感测原理进行操作,其中一个功率热脉冲被施加到每个像素阵列,并测量对应于生物特征图案的响应。对于热感应,每个像素阵列中的像素可以包括一个或多个串联在像素行线和像素列线之间的二极管。
参考图5A-图5B,也正如图1-图2中描述的那样,传感器或传感设备15包括至少一个专用集成电路(ASIC)50和至少一个支持电路52。
图5A显示了包括单一像素阵列26的示例性设备15。图5B示意了包括多个像素阵列36的示例性传感器或设备15。如图5B所示,传感器或设备15可进一步包括多个ASIC 50(标记为50A、50B、50C和50D)和多个支持电路52(标记为52A、52B、...52H)。每个像素阵列36都与至少一个支持电路52连接。每个ASIC 50被配置为捕获由至少一个像素阵列36测量的对象的生物特征图案的图像数据。每个像素阵列36被配置为由多个ASIC 50中的一个或多个独立驱动和扫描。在图5B中,“Ckt”是指“电路”。有时,一个ASIC 50可以被指示在多个像素阵列36上扫描图像。另一方面,一个像素阵列36可以由多个ASIC 50驱动。在一个像素阵列周围可能有多个如四种不同类型的支持电路,用于在扫描过程中向相应的像素输送输入信号,并收集相应的模拟数据给ASIC 50以生成指纹图像。这些电路类似于SRAM或任何存储器产品的解码器电路和读出电路。
在一些实施例中,每个像素阵列或段36由单独的ASIC驱动和扫描(图5B)。如果有源感测区在逻辑上被划分为4个段,则4个ASIC50被配置为并行工作。图像扫描带宽增加了4倍,收集一个完整的图像大约需要原来扫描时间的四分之一。换句话说,收集完整图像的扫描时间减少到原始扫描时间的1/N,其中N是分割的段数。
参考图6,在一些实施例中,***100中的传感器或设备15可以进一步包括多个开关54(例如,标记为54A、54B、54C和54D)。图6中的标记“SW”指开关。每个开关54与一个或多个支持电路52和一个或多个ASIC 50连接。每个像素阵列36被配置为通过一个或多个开关54由多个ASIC 50中的一个或多个独立驱动和扫描。在一些实施例中,这样的开关54是一个电子接触开关。像素阵列中的热感应元件的信号可以使用电子接触开关,例如双栅极MosFET晶体管,来寻址和控制。
在一些实施例中,多个ASIC 50和传感器10一起设置在生物特征感测设备15内。图5B和6中所示的传感器或设备15是***100的一部分。如图1所述,***100可进一步包括与多个ASIC 50耦合的微控制器单元(MCU)60。MCU 60包括一个或多个处理器和至少一个有形的、非暂时性的机器可读介质,其上编码有一个或多个程序,被配置为处理图像数据和/或控制***的操作。在一些实施例中,ASIC的数量可以对应于像素阵列的数量。***100可以只包括一个MCU 60。
通过开关54,用户可以选择为每个像素阵列36专用的一个ASIC 50,或者有多个ASIC 50处理一个像素阵列36以提高扫描速度和带宽。一个强大的MCU 60可以用来管理所有的ASIC 50,MCU 60可以决定如何最好地安排资源以减少扫描时间,提高扫描质量,或两者兼具。
参考图6,在一些实施例中,每个像素阵列段36可以由多个ASIC 50独立驱动并同时扫描。在图6所示的设置中,多个ASICs 50可以一起操作,以在同时从同一像素阵列段36收集指纹图像。这种设置对于从一个或多个特定像素阵列段36收集指纹图像特别有用。扫描资源被重新定向以平行工作,加速了特定局部区域的指纹扫描。
FAP60的感应区(81.3×76.2mm)与指纹大小相比要大得多。即使是4个手指的扫描,指纹也只占总感应区域的一小部分。在大多数情况下,指纹覆盖总感应区域的15%以下。
在另一个方面,根据一些实施例,可以使用至少两个步骤的选择性热扫描。粗略的低分辨率热扫描用于检测和定位指纹,以便执行高分辨率热扫描,仅在指纹所在的感测区域捕获图像。传感***不是从整个传感区域收集完整的图像,而是智能地选择感兴趣的区域进行详细的指纹热扫描,大大减少了热扫描活动。因此,扫描时间和扫描能量消耗都按比例减少。
当扫描分辨率为500dpi或以上时为高扫描分辨率。500dpi是美国联邦调查局FAP指纹图像采集的传感器标准。低扫描分辨率可以是例如100dpi或更低。其目的主要是定位手指的位置或指纹边界的位置,这样就不会在扫描没有值的区域上浪费时间或精力。
通过MCU 60,***100被配置为执行本申请所述的功能和步骤。参照图7,例如,一个示例性的方法200包括至少三个步骤。第一步是检测传感器上具有生物特征图案的对象的存在。第二步是通过扫描像素阵列中的一部分像素来执行粗略的扫描,以确定对象和传感器之间的接触边界。第三步是在接触边界内选择性地进行详细扫描,以提供生物特征图案的图像数据。
参考图7,在待机模式期间,如方框110所示,传感***100周期性地以低分辨率执行初始热扫描(或通过使用下面在图9中描述的电容式传感网格进行电容式扫描),以检测传感器上是否存在单个或者多个手指的触摸。只有均匀分布在传感器像素阵列中的一小部分像素(例如,2%)被选择用于手指检测。一旦检测到手指触摸并发现其与传感器稳定接触(方框112),***100进入下一个预扫描(粗热扫描)阶段,在确定的手指触摸区域周围选择另一组像素以确定指纹边界(方框114)。***100可以在确定的触摸区域周围选择更高比例的像素(例如,8%),以提高边界计算的精度。之后,如方框116所示,进行全分辨率的热扫描(即详细的热扫描),以收集确定边界内的详细指纹图像。指纹扫描区域只是全像素阵列的一个小子集。
参考图8,进一步示意了图7中步骤的例子,包括手指检测(图8A)、快速预扫描(图8B)和详细指纹扫描(图8C)。指纹72和触摸区74以及扫描区76示于图8A-图8C。
通过使用方法200,选择性扫描方法不仅大大改善了图像扫描和能源消耗,而且还大大减少了后续的图像处理计算工作和内存需求。
通过结合多段式传感和选择性热扫描,图像传感带宽和吞吐量比传统技术中的带宽和吞吐量高一个数量级以上。这将大大缩小扫描时间性能差距,使指纹传感器能够满足FAP60传感器的要求,而低图像扫描功耗使其比现有的同类技术如现有的光学技术更有利。
方法200中的步骤还可以包括用于检测滚动运动和位置、组合图像以及处理和比较图像数据的步骤,如本申请中所述。
在另一个方面,通过集成电容扫描以实现超低的待机模式功耗,可以进一步针对移动应用改进大型指纹传感器。使用粗略的热扫描进行手指检测往往会遇到功耗和检测响应之间的折中;希望更频繁地检测手指的存在以提高***响应,但待机功耗将成比例地增加。与热扫描相比,电容式扫描的运行速度要快得多,耗电量也低。集成电容式扫描使传感***能够更频繁地检测手指触摸,同时保持非常低的待机功耗。此外,与热扫描像素相比,每个电容式感测节点产生的投射电容场覆盖的区域更广,三维(3-D)空间更大。电容式感测节点的适当部署可以为整个像素阵列提供连续和更广泛的检测覆盖。除了更频繁的检测外,电容式扫描还能提高手指检测的准确性和分辨率,这是一种潜在的更有效的解决方案,而且操作成本更低。
参考图9,根据一些实施例,示例性传感器10进一步包括电容感测网格78,该网格包括分布在每个像素阵列36或像素矩阵16中的电容式感测节点78a(在图9中以点表示)。图9中的线条代表热扫描的像素阵列36。该***或设备可进一步包括在相应ASIC或MCU中用于电容感测网格78的辅助电路(未显示)。该辅助电路也可以是相应ASIC或MCU之外的独立IC。电容感测网78与辅助电路相连。为了实现电容式扫描,如图9所示,在指纹传感器10中集成了一个横跨主动感应区的电容式感测节点78a的二维网格。电容式感测节点78a的网格比具有热感测像素19的像素阵列36更粗糙。网格78可以在每个像素阵列36中实现或在像素矩阵16中实现。
由于检测精度和分辨率的提高,快速电容式扫描不仅可以在待机模式下用于识别传感器上手指的存在,还可以更精确地定位每个手指触摸的位置和估计其大小。一旦手指与传感器稳定接触,***就会运行类似的粗略热扫描(快速预扫描)以确认手指的存在并计算适当的指纹边界。
在一些实施例中,电容式感测节点的二维网格可以使用具有X个发射电极(Tx)和Y个接收电极(Rx)的互电容式感测来实现。被动矩阵寻址的互电容式扫描支持多点触摸功能,而且成本相对较低。Tx和Rx电极可以嵌入到指纹传感器中,并均匀间隔地分布在像素阵列中。在一个例子中,Tx电极均匀间隔地分布在像素阵列的长边上,两个相邻的电极之间有K个像素。Rx电极均匀间隔地分布在像素阵列的短边上,2个相邻电极之间有M个像素。K和M是基于产品分辨率和其他性能规格的可调数字。在另一个例子中,Tx电极均匀间隔地分布在像素阵列的短边上,Rx电极均匀间隔地分别在像素阵列的长边上。
在另一个实施例中,电容传感节点的二维网格78使用有源矩阵寻址自电容传感来实现。与互电容式传感相比,自电容式传感可以提供更高的灵敏度和更高的触摸分辨率,其代价是更多的信号路由和实现开销以寻址自电容式传感节点。
选择性热扫描不仅明显减少了指纹扫描面积,而且使传感***能够专门为每个手指确定自定义的指纹边界,优化扫描覆盖范围,进一步减少不必要的扫描活动。有了像FAP60这样的大型传感器,只要指纹在传感区域内,就可以呈任何角度。指纹可以在感应区旋转,或者每个手指可以有不同的方向。
如图10所示,两个指纹是相同的,右边的一个旋转了45°。为了覆盖完整的指纹,与未旋转的指纹相比,旋转的指纹的矩形扫描边界需要多扫描大约25%的面积,按比例扫描更多的空像素,从而增加扫描时间和能耗。
使用电容式扫描时,手指触摸位置和尺寸估计的准确性大大改善。因此,快速预扫描可以更好地依靠从电容扫描中收集到的手指信息,并有策略地在投影的指纹周边选择少量的热感测像素,为随后的详细指纹热扫描计算出更精确和定制的指纹轮廓。如图11A-图11C所示,扫描边界74不是使用固定尺寸或矩形边界76,而可以是不规则的,为每个检测到的指纹72进行特制。这进一步减少了在非接触或未占用的像素上的不必要的扫描活动,有助于在旋转的和未旋转的手指之间保持更一致的扫描时间。
在另一个方面,本申请提供了本申请所述的一种用于生物特征感测的传感器或设备15。这样的设备15包括传感器10,该传感器包括像素矩阵16,该像素矩阵16具有两个或更多的像素阵列36,作为在像素矩阵16中逻辑地划分的独立段,以及耦合到传感器10的多个ASIC 50。每个ASIC 50被配置为捕获由至少一个像素阵列36测量的对象的生物特征图案的图像数据。每个像素阵列36被配置为由多个ASIC 50中的一个或多个独立驱动和扫描。在一些实施例中,传感器10是指纹传感器,对象是手指70,而生物特征图案是指纹72。
在一些实施例中,每个像素阵列36包括设置成多行和多列中的多个像素,并且该多个像素包括热感测像素。每个像素阵列可以进一步包括一个电容感测网格78,包括分布在每个像素阵列36中的电容式感测节点78a。电容感测网格78被配置为检测对象的存在,和/或对象的滚动运动和位置。电容式感测节点78a可以是互容式感测节点或自容式感测节点。自电容传感节点被配置为被动矩阵寻址,或由薄膜晶体管阵列进行主动矩阵寻址。互容传感节点被配置为无源矩阵寻址。
设备15可进一步包括本申请所述的开关。设备15还可以包括耦合到多个ASIC 50的微控制器单元(MCU)60。MCU 60包括一个或多个处理器和至少一个编码有一个或多个程序的有形非临时机器可读介质,该程序被配置为处理图像数据和/或控制如上所述设备的操作。
表2总结了根据一些实施例的实验例(FAP60传感器)的4指测试案例研究的结果。FAP60有源感测区使用多段式架构逻辑上分为8段,每段由单独的ASIC驱动和扫描。由于各段是并行扫描的,全图像扫描时间从13.8秒大幅减少到1.73秒,比传统解决方案快8倍。启用选择性热扫描后,只扫描指纹区域,扫描时间进一步减少到0.67秒,大约再快2.5倍。快速预扫描需要额外的时间进行边界评估和图像处理,但与详细的指纹图像扫描所节省的时间相比,这种开销要小得多。此外,图像扫描的总能耗大约小了5倍。没有手指接触的传感器像素阵列段被禁用,只有与指纹接触的传感器像素被激活;这意味着图像扫描和处理活动大大减少。进一步启用客户扫描边界功能,使扫描边界更紧密地围绕每个指纹轮廓,绕过非接触像素,从而节省更多的扫描时间和能源消耗。通过实施这些创新功能,测试案例研究表明,扫描时间减少了20多倍,而能源消耗减少了近6倍。
表2
如表2所示,与单像素阵列相比,使用多段式架构的性能改进是显著的,包括更快的扫描时间和更低的总功耗。图像扫描时间可以从13.8秒下降到0.61秒(快了20多倍),而能量消耗减少了近6倍。这些都是巨大的性能改进。由于图像扫描带宽大大改善,即使是移动/滚动的手指也能被扫描到。这实现了我们目前无法支持的新产品功能。
除了改善手指触摸评估外,电容式扫描和热扫描之间的相互合作使传感***能够支持手指滚动扫描,以便在短时间内捕获指纹。快速电容式扫描的整合使传感***能够动态跟踪手指的移动,即时确定适当的热扫描边界,并在手指滚过传感区域时优化指纹扫描操作,以便捕捉指纹。换句话说,它提供了必要的能力来创建一个智能传感***,利用可用的扫描资源来捕获连续滚动的指纹。
图12示意了一个操作实例,其中电容式感测节点78使用自电容式感测来实现。当手指70滚过感应区域时,每个电容式感测节点78检测到的触摸值发生变化。触摸值随着手指的接近而增加,如果是完全接触则保持不变,而当手指滚开时则减少。通过连续监测触摸值,传感***将能够在任何给定的时刻精确定位移动的手指70。不是从一个任意的起点开始扫描,示例性传感***100可以启用像素阵列36中滚动的手指70目前所在的相应部分的热感测像素19,以及选择目前与手指70接触的较小的像素子集来收集详细的指纹图像。在图12中,显示了传感器10中像素阵列36的未扫描热像素80、已扫描热像素82和主动扫描热像素84。有了这种手指跟踪能力,热扫描可以在时间、位置和接触面积(扫描尺寸)上更好地与滚动的手指对齐,优化图像扫描质量和带宽。
提高图像质量和信噪比(SNR)的一种技术是对同一指纹区域的多个图像进行平均,以产生最终图像。在一些实施例中,由于较高的图像扫描带宽,传感***100可以被配置为连续捕捉传感器10上的滚动手指70,以便在连续扫描中多次捕捉同一指纹区域,如图13中所示。然后在图像处理过程中把这些图像组合在一起,形成一个完整的滚动指纹,并对重复的部分进行平均,以提高图像质量和信噪比。在图13中,扫描的数量(9)仅用于说明,可以是任何合适的数量。
在一些实施例中,传感***100可以被配置为最小化重复的图像捕获,以减少总的图像扫描功率消耗。例如,传感***100可以被设置成如图14所示,任何给定的指纹区域被扫描一次。扫描的总次数和扫描活动被最小化,以节省电力。例如,如图13-图14所示,扫描的总次数可以从9次减少到5次。每个滚动手指的最佳扫描总数可以在3到7的范围内。
参考图15,如上所述,一般性地描述了根据一些实施例的用于生物特征感测的示例性方法200。该方法200用于使用包括所述示例性传感器10的设备或***。这样的传感器10包括一个像素矩阵16,它具有两个或更多的像素阵列36,作为在像素矩阵16中逻辑上划分的独立段。这样的方法200包括步骤202、204和206。
在步骤202,检测传感器10上具有生物特征图案的对象的存在。在一些实施例中,传感器10是指纹传感器,该对象包括至少一个手指70,并且该生物特征图案是指纹72。如本申请所述,传感器有一个具有多段的像素矩阵16。每个像素阵列36包括排列在多行和多列中的多个像素。多个像素18包括热感测像素19。每个像素阵列36可以进一步包括一个电容感测网格78,该网格具有分布在每个像素阵列中的电容式感测节点。
在步骤204,通过扫描像素阵列中的一小部分像素来执行粗略的扫描(预扫描),以确定对象和传感器之间的接触边界。在这样的方法中,通过热感测像素19或电容感测节点78检测传感器10上的对象如手指70触摸的存在。粗略的扫描和详细的扫描是通过热感测像素进行的。
在步骤206,选择性地在接触边界内执行详细扫描,以提供生物特征图案的图像数据。
在步骤208,如图12-图14所述,通过使用电容式传感节点78的电容式扫描动态地跟踪对象的滚动运动和位置。在一些实施例中,电容式感测节点78是互容式感测节点或自容式感测节点。自电容传感节点可以是无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址。互电容感测节点被配置为无源矩阵寻址。
在步骤210,使用MCU将在对象滚动运动期间通过热扫描捕获的对象的生物特征图像组合起来以提供完整的生物特征图案。步骤210可包括一个或多个步骤。
本申请至少提供了以下条款中描述的产品和方法,这些条款仅是示例,并不限制本申请的范围。
1.一种用于生物特征感测的***,包括:
包括像素矩阵的传感器,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段;
与所述传感器耦合的多个专用集成电路(ASIC),其中每个所述ASIC用于采集由至少一个所述像素阵列测量的对象的生物特征图案的图像数据,每个所述像素阵列被配置为由所述多个ASIC中的一个或多个ASIC独立驱动并扫描;以及
与所述多个ASIC耦合的微控制器单元(MCU),所述MCU包括一个或多个处理器以及至少一个编码有一个或多个程序且有形的非暂态机器可读介质,所述程序用于处理所述图像数据,和/或控制所述***的操作。
2.根据条款1的***,其中,所述像素矩阵包括2至大约12个所述像素阵列。
3.根据条款1-2中任何一项的***,其中多个ASIC以及所述传感器共同设置在生物特征感测设备内。
4.根据条款1-3中任一项的***,其中传感器还包括多个支持电路,其中每个所述像素阵列连接至少一个所述支持电路。
5.根据条款1-4中任一项的***,还包括多个开关,其中每个所述像素阵列被配置为由所述多个ASIC中的一个或多个ASIC通过一个或多个所述开关独立驱动以及扫描。
6.根据条款1-5中任何一项的***,其中每个所述像素阵列包括排列成多行和多列的多个像素。
7.根据条款1-6中任一项的***,其中每个所述像素阵列包括热感测像素,并用于根据主动热感测原理工作,其中,对每个所述像素阵列施加功率热脉冲,并测量对应于生物特征图案的响应。
8.根据条款1-7中任何一项的***,其中每个所述像素阵列中的像素包括一个或多个串联在像素行线和像素列线之间的二极管。
9.根据条款1-8中任一项的***,其中每个所述像素阵列还包括电容感测网格,所述电容感测网格包括分布在每个所述像素阵列中的电容感测节点。
10.根据条款9的***,还在相应的ASIC中或所述MCU中或者在所述相应的ASIC或所述MCU外包括辅助电路,作为独立的集成电路,其中所述电容感测网格与所述辅助电路连接。
11.根据条款1-9中任一项的***,其中所述***用于通过所述MCU执行以下步骤:
检测所述传感器上是否存在具有生物特征图案的对象;
通过扫描像素阵列中的一小部分像素进行粗略扫描,以确定所述对象和所述传感器之间的接触边界;以及
在所述接触边界内选择性地进行详细扫描,以提供所述生物特征图案的所述图像数据。
12.一种用于生物特征感测的设备,包括
包括像素矩阵的传感器,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段;以及
与所述传感器耦合的多个ASIC,其中每个所述ASIC用于采集由至少一个所述像素阵列测量的对象的生物特征图案的图像数据,每个所述像素阵列被配置为由所述多个ASIC中的一个或多个所述ASIC独立驱动并扫描。
13.根据条款12的设备,其中所述传感器为指纹传感器,所述对象为手指,所述生物特征图案为指纹。
14.根据条款12-13中任何一项的设备,其中每个所述像素阵列包括排列成多行和多列的多个像素,且所述多个像素包括多个热感测像素。
15.根据条款12-14中任一项的设备,其中每个所述像素阵列还包括电容感测网格,所述电容感测网格包括分布在每个所述像素阵列中的多个电容感测节点,所述电容感测节点用于检测所述对象的存在和/或所述对象的滚动运动以及位置。
16.根据条款15中任何一项的设备,其中所述电容感测节点为互电容感测节点或自电容感测节点。
17.根据条款15-16中任何一项的设备,其中所述自电容感测节点被配置为无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址。
18.根据条款15-16中任何一项的设备,其中所述互电容感测节点被配置为无源矩阵寻址。
19.根据条款12-18中任一项的设备,还包括与所述多个ASIC耦合的MCU,所述MCU包括至少一个处理器以及至少一个编码有一个或多个程序且有形的非暂态机器可读介质,所述程序用于处理所述图像数据,和/或控制所述设备的操作。
20.一种使用设备或***的方法,所述设备或者所述***包括传感器,所述传感器包括像素矩阵,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段,所述方法包括以下步骤:
检测所述传感器上是否存在具有生物特征图案的对象;
通过扫描像素阵列中的一小部分像素进行粗略扫描,以确定所述对象和所述传感器之间的接触边界;以及
在所述接触边界内选择性地进行详细扫描,以提供所述生物特征图案的图像数据。
21.根据条款20的方法,其中所述传感器为指纹传感器,所述对象包括至少一个手指,所述生物特征图案为指纹。
22.根据第20-21条中任何一条的方法,其中每个所述像素阵列包括排列成多行和多列的多个像素,所述多个像素包括热感测像素,并且每个像素阵列还包括电容感测网格,所述电容感测网格具有分布在每个所述像素阵列中的多个电容感测节点。
24.根据条款22-23中任一项的方法,其中通过所述热感测像素进行所述粗略扫描以及所述详细扫描。
25.根据条款22-24中任一项的方法,还包括:利用所述电容感测节点,通过电容扫描,来动态跟踪所述对象的滚动运动以及位置。
26.根据条款21-25中任一项的方法,还包括:对所述对象滚动运动期间通过热扫描采集的所述对象的生物特征图像进行组合,以利用MCU提供完整的生物特征图案。
27.根据条款22-26中任一项的方法,其中所述电容感测节点为互电容感测节点或自电容感测节点。
28.根据条款22-27中任一项的方法,其中所述自电容感测节点被配置为无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址,以及所述互电容感测节点被配置为无源矩阵寻址。
本申请中提供的传感器、设备、***和方法提供了现有技术无法提供的显著的有益效果。例如,本申请的技术提供了更快的扫描时间、更低的总功耗、改进的图像扫描带宽、扫描移动/滚动对象(如一个手指或多个手指)的能力,以及高分辨率。例如,可以提供一个大型的指纹传感器或***,以满足指纹采集配置文件(FAP)标准。
本申请描述的方法和***可以至少部分地体现为计算机实现的过程和用于实践这些过程的装置的形式。所披露的方法也可以至少部分地体现为用计算机程序代码编码的有形、非瞬时机器可读存储介质的形式。该介质可以包括,例如,RAM、ROM、CD-ROM、DVD-ROM、BD-ROM、硬盘驱动器、闪存或任何其他非瞬时机器可读存储介质,或这些介质的任何组合,其中,当计算机程序代码被加载到计算机并由计算机执行时,计算机成为实施该方法的设备。这些方法也可以至少部分地以计算机的形式体现出来,计算机程序代码被载入和/或执行,这样,计算机就成为实施这些方法的装置。当在通用处理器上实施时,计算机程序代码段配置处理器以创建特定的逻辑电路。该方法可替代性地至少部分地体现在由特定应用集成电路形成的数字信号处理器中,用于执行该方法。
尽管已经以示例性实施例的方式描述了该主题,但它并不限于此。相反,所附的权利要求书应被广义地解释为包括其他变体和实施例,这些变体和实施例可由本领域的熟练人员做出。

Claims (28)

1.一种用于生物特征感测的***,包括:
传感器,包括像素矩阵,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段;
多个专用集成电路(ASIC),耦合至所述传感器,其中每个ASIC被配置为捕捉由至少一个像素阵列测量的对象的生物特征图案的图像数据,每个像素阵列被配置为由所述多个ASIC中的一个或多个ASIC独立驱动和扫描;以及
微控制器单元(MCU),耦合至所述多个ASIC,并包括一个或多个处理器以及编码有一个或多个程序的至少一个有形的非暂态机器可读介质,所述一个或多个程序被配置为处理所述图像数据和/或控制所述***的操作。
2.根据权利要求1所述的***,其中,所述像素矩阵包括2至大约12个像素阵列。
3.根据权利要求1所述的***,其中,所述多个ASIC以及所述传感器共同设置在生物特征感测设备内。
4.根据权利要求1所述的***,其中,所述传感器还包括:多个支持电路,其中每个像素阵列与至少一个支持电路连接。
5.根据权利要求1所述的***,还包括:多个开关,其中每个像素阵列被配置为由所述多个ASIC中的一个或多个ASIC通过一个或多个开关独立驱动和扫描。
6.根据权利要求1所述的***,其中,每个像素阵列包括排列成多行和多列的多个像素。
7.根据权利要求1所述的***,其中,每个像素阵列包括热感测像素,并被配置为根据有源热感测原理操作,其中对每个像素阵列施加功率热脉冲并测量对应于生物特征图案的响应。
8.根据权利要求7所述的***,其中,每个像素阵列中的像素包括串联在像素行线和像素列线之间的一个或多个二极管。
9.根据权利要求7所述的***,其中,每个像素阵列还包括:电容感测网格,所述电容感测网格包括分布在每个所述像素阵列中的电容感测节点。
10.根据权利要求9所述的***,还包括:在相应ASIC中或所述MCU中或者在所述相应ASIC或所述MCU外的辅助电路,作为独立的集成电路,其中所述电容感测网格与所述辅助电路连接。
11.根据权利要求1所述的***,其中,所述***被配置为通过所述MCU执行以下步骤:
检测所述传感器上存在具有生物特征图案的对象;
通过扫描像素阵列中的一部分像素来执行粗略扫描,以确定所述对象和所述传感器之间的接触边界;以及
在所述接触边界内选择性地执行详细扫描,以提供所述生物特征图案的图像数据。
12.一种用于生物特征感测的设备,包括:
传感器,包括像素矩阵,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段;以及
多个专用集成电路(ASIC),耦合至所述传感器,其中每个ASIC被配置为捕捉由至少一个像素阵列测量的对象的生物特征图案的图像数据,每个像素阵列被配置为由所述多个ASIC中的一个或多个ASIC独立驱动和扫描。
13.根据权利要求12所述的设备,其中,所述传感器为指纹传感器,所述对象为手指,以及所述生物特征图案为指纹。
14.根据权利要求12所述的设备,其中,每个像素阵列包括排列成多行和多列的多个像素,并且所述多个像素包括多个热感测像素。
15.根据权利要求14所述的设备,其中,每个像素阵列还包括电容感测网格,所述电容感测网格包括分布在每个像素阵列中的多个电容感测节点,所述电容感测节点用于检测所述对象的存在和/或所述对象的滚动运动和位置。
16.根据权利要求15所述的设备,其中,所述电容感测节点为互电容感测节点或自电容感测节点。
17.根据权利要求16所述的设备,其中,所述自电容感测节点被配置为无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址。
18.根据权利要求16所述的设备,其中,所述互电容感测节点被配置为无源矩阵寻址。
19.根据权利要求12所述的设备,还包括:微控制器单元(MCU),耦合至所述多个ASIC,并包括一个或多个处理器以及编码有一个或多个程序的至少一个有形的非暂态机器可读介质,所述一个或多个程序被配置为处理所述图像数据和/或控制所述设备的操作。
20.一种使用设备或***的方法,所述设备或者***包括传感器,所述传感器包括像素矩阵,所述像素矩阵具有两个或更多个像素阵列,作为在所述像素矩阵中逻辑上划分的独立段,所述方法包括以下步骤:
检测所述传感器上存在具有生物特征图案的对象;
通过扫描像素阵列中的一部分像素来执行粗略扫描,以确定所述对象和所述传感器之间的接触边界;以及
在所述接触边界内选择性地执行详细扫描,以提供所述生物特征图案的图像数据。
21.根据权利要求20所述的方法,其中,所述传感器为指纹传感器,所述对象包括至少一个手指,以及所述生物特征图案为指纹。
22.根据权利要求20所述的方法,其中,每个像素阵列包括排列成多行和多列的多个像素,所述多个像素包括热感测像素,并且每个像素阵列还包括电容感测网格,所述电容感测网格具有分布在每个像素阵列中的多个电容感测节点。
23.根据权利要求22所述的方法,其中,通过所述热感测像素或所述电容感测节点检测所述传感器上存在对象。
24.根据权利要求22所述的方法,其中,通过所述热感测像素执行所述粗略扫描以及所述详细扫描。
25.根据权利要求22所述的方法,还包括:利用所述电容感测节点,通过电容扫描来动态跟踪所述对象的滚动运动以及位置。
26.根据权利要求25所述的方法,还包括:对所述对象滚动运动期间通过热扫描捕捉的所述对象的生物特征图像进行组合,以利用MCU提供完整的生物特征图案。
27.根据权利要求22所述的方法,其中:所述电容感测节点为互电容感测节点或自电容感测节点。
28.根据权利要求22所述的方法,其中所述自电容感测节点被配置为无源矩阵寻址,或被配置为由薄膜晶体管阵列进行有源矩阵寻址,以及所述互电容感测节点被配置为无源矩阵寻址。
CN202280008583.5A 2021-01-08 2022-01-04 具有多段架构的生物特征感测传感器和***、及其使用方法 Pending CN116670729A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163134966P 2021-01-08 2021-01-08
US63/134,966 2021-01-08
PCT/IB2022/000006 WO2022149048A1 (en) 2021-01-08 2022-01-04 Sensor and system for biometric sensing having multi-segment architecture, and methods of using the same

Publications (1)

Publication Number Publication Date
CN116670729A true CN116670729A (zh) 2023-08-29

Family

ID=80623562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280008583.5A Pending CN116670729A (zh) 2021-01-08 2022-01-04 具有多段架构的生物特征感测传感器和***、及其使用方法

Country Status (7)

Country Link
US (2) US11790684B2 (zh)
EP (1) EP4275188A1 (zh)
JP (1) JP2024502164A (zh)
KR (1) KR20230129507A (zh)
CN (1) CN116670729A (zh)
TW (1) TW202307732A (zh)
WO (1) WO2022149048A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO951427D0 (no) 1995-04-11 1995-04-11 Ngoc Minh Dinh Fremgangsmåte og anordning for måling av mönster i en delvis varmeledende overflate
US7910902B2 (en) 2004-09-22 2011-03-22 Next Biometrics As Apparatus for fingerprint sensing based on heat transfer
US10203816B2 (en) * 2013-05-07 2019-02-12 Egis Technology Inc. Apparatus and method for TFT fingerprint sensor
US9799719B2 (en) * 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
US10061449B2 (en) * 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
KR102339546B1 (ko) * 2015-02-06 2021-12-16 엘지디스플레이 주식회사 센서 스크린 및 그를 구비한 표시장치
US9817535B2 (en) * 2016-03-07 2017-11-14 Synaptics Incorporated Mitigating spatially correlated noise in data from capacitive sensors
CN110032303A (zh) * 2019-04-18 2019-07-19 京东方科技集团股份有限公司 触控基板及其制备方法和显示装置
US11854291B2 (en) 2019-09-19 2023-12-26 Next Biometrics Group Asa Biometric sensor with presence sensors
CN112987959B (zh) * 2019-12-18 2024-01-26 京东方科技集团股份有限公司 一种触控面板、其驱动方法及显示装置
US11302112B1 (en) * 2021-03-16 2022-04-12 Motorola Mobility Llc Electronic devices and corresponding methods for enrolling fingerprint data and unlocking an electronic device

Also Published As

Publication number Publication date
US20240029468A1 (en) 2024-01-25
WO2022149048A1 (en) 2022-07-14
US20220222964A1 (en) 2022-07-14
EP4275188A1 (en) 2023-11-15
TW202307732A (zh) 2023-02-16
US11790684B2 (en) 2023-10-17
JP2024502164A (ja) 2024-01-17
KR20230129507A (ko) 2023-09-08

Similar Documents

Publication Publication Date Title
EP1399875B1 (en) Method and system for extracting an area of interest from within a swipe image of a biological surface.
US6333989B1 (en) Contact imaging device
US8724860B2 (en) Apparatus for fingerprint sensing and other measurements
US8031046B2 (en) Finger sensing device with low power finger detection and associated methods
US6580816B2 (en) Scanning capacitive semiconductor fingerprint detector
US6643389B1 (en) Narrow array capacitive fingerprint imager
JP2002123823A (ja) 指紋撮像装置
US20240096126A1 (en) Biometric sensor with presence sensors
Koundinya et al. Multi resolution touch panel with built-in fingerprint sensing support
US20120288169A1 (en) Multi-sided card having a resistive fingerprint imaging array
US11790684B2 (en) Sensor and system for biometric sensing having multi-segment architecture, and methods of using the same
CN111052133B (zh) 用于确定手指与指纹传感器接触的方法和指纹感测***
US11132522B2 (en) Sensors configured to operate at multiple resolutions
US11527094B2 (en) Low power baseline tracking for fingerprint sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination